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The transient solution is obtained analytically using continued fractions for a state-
dependent birth-death queue in which potential customers are discouraged by the
queue length. This queueing system is then compared with the well-known infinite
server queueing system which has the same steady state solution as the model under
consideration, whereas their transient solutions are different. A natural measure of
speed of convergence of the mean number in the system to its stationarity is also
computed.
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1 INTRODUCTION

In the study of queueing systems the emphasis has been on obtaining
steady state solution as it is simple to derive and straightforward
techniques can be employed. But in many potential applications steady
state measures of system performance simply do not make sense when
the practitioner needs to know how the system will operate up to some
specified time [20]. Time-dependent analysis helps us to understand the
behaviour of a system when the parameters involved are perturbed
and it can contribute to the costs and benefits of operating a system.
In addition, such transient analysis is useful in obtaining optimal
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solutions which lead to the control of the system. There has been a
resurgence of interest in the time-dependent analysis of birth-death
queueing models (see, for example, [10,16]).

The exact time-dependent analysis of the state-dependent queueing
systems is usually difficult and often impossible. Even in the simple
M/M/1 queue which is a birth-death process with constant birth and
death rates, analytical solution involves an infinite series of Bessel
functions and their integrals (see, for example, [15,17]). In real world
problems the underlying birth and death rates are complex and the
difficulty is compounded in the transient analysis of such models.

In this work, the transient solution to a state-dependent birth-death
queueing model in which potential customers are discouraged by
queue length is obtained using continued fractions. The Laplace
transforms of the density function for the length of the busy period
and the mean busy period are also deduced. This solution is then
compared with the well-known infinite server queueing model to il-
lustrate that these two models having diflerent transient behaviours
lead to the same steady state solution. This is also depicted through
graphs. A measure of speed of convergence towards stationarity is
computed in terms of the parameters of the model.

The model under consideration is the birth-death queueing system
with the birth and death rates as given below:

Ay = , n=0,1,2,... and p,=p, n=12,3... (L1)

This discouraged arrivals single server queueing system is useful to
model a computing facility that is solely dedicated to batch-job pro-
cessing [[14], p. 105]. Job submissions are discouraged when the facility
is heavily used and can be modelled as a Poisson process with the
state-dependent arrival rate. The time taken to process each job is
exponentially distributed with a constant service rate regardless of the
number of jobs in the system.

The well-known infinite server queue, denoted as M/ M /oo queue, is
often used to analyse manufacturing processes and to model phe-
nomena in telecommunication networks. In the context of broadband
integrated services digital networks based upon the asynchronous
transfer mode (ATM), this system has been pointed out to be of interest
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when studying open loop statistical multiplexing of data connections
on an ATM network [6].

The discouraged arrivals queue has been studied in the past by
Natvig [13], van Doorn [5] and Chihara [3] and here the arrivals are
geared (or could be controlled) in accordance with the availability of
service. However, the transient solution has not been obtained sofar
explicitly in closed form. In this paper, we have obtained the transient
solution analytically in closed form by employing a new and effective
continued fraction methodology. In this study the underlying forward
Kolmogorov differential-difference equations are first transformed
into a set of linear algebraic equations by employing Laplace trans-
forms. This transform is then represented as a continued fraction and
the inversion is carried out analytically.

2 CONTINUED FRACTIONS

Continued fraction approximations often provide good representa-
tions for transcendental functions, much more generally useful than
the classical representation by power series. In addition, a number of
problems have been found for which algorithms involving continued
fractions lend themselves to high-speed computer operations. A sys-
tematic study of the theory of continued fractions with stress on
computation can be found in Jones and Thron [7]. Its application to
the study of birth-death processes, a special Markov process, was
initiated by Murphy and O’Donohoe [12]. On account of their
algorithmic nature, they are used extensively in applied areas like
numerical analysis, computer science, the theory of automata, elec-
tronic communications. This importance has grown further with the
advent of fast computing facilities.
A continued fraction is denoted by

ay
a

by — 2
"Th+ Fim

or equivalently by

a a; as

bi+ by+ b3+
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where the a,’s and b,’s are real or complex numbers. The value ob-
tained by retaining the first n terms and omitting the remaining terms
is called the n-th convergent. For any continued fraction the exact
value of the fraction lies between two neighbouring convergents. All
even numbered convergents lie to the left of the exact value, that is
they give an approximation to the exact value by defect. All odd
numbered convergents lie to the right of the exact value, that is they
give an approximation to the exact value by excess.

Conolly and Langaris [4], and Parthasarathy and Lenin [16] have
applied continued fraction methodology, which was till then used only
to obtain numerical solutions, to obtain the transient solution of birth
and death processes analytically. We now apply this technique to ob-
tain analytically the transient system size probabilities of our models.

Some of the identities which are used in the following sections will
be now presented.

The confluent hypergeometric function, also referred to as Kummer
function, is denoted by {Fi(a;¢;z) and is defined by

IF.(aw)—l+‘zli+"gi'j::;2 TI @.1)
o~ (@) 2
ZS( v 2.2)

for z € U, parameters a,c € (' (¢ not a negative integer), with (a)
known as Pochhammer symbol, defined as

n?

1, n=_0
(a),,:{a(a+l)(g¢+2),..(a+n—]), n>1. (2.3)

Observe that (F|(0;¢;z) = 1 and | Fi(1;2; —z) = (1 — e7*)/z. Also, this
confluent hypergecometric function satisfies the following recurrence
relation [[1], (13.4.7), p. 507]

cle—=1)Fila—1,c—1,2) —az Fi(a+ 1,¢+ 1,2)
=clc—1-2)1F(a,c¢z). (2.4)
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The following identity is from Lorentzen and Waadeland [[11], (4.1.5),
p. 573].

iFila+ e+ 1;z) ¢ (a+1)z (a+2)z
1Fi(ae;2)  c—z+ c—z4 14+ c—z 42+

The following identities are from Andrews [2].

(c—a)1Fi(a;e+ 1,2)+aFi(a+ ¢+ 152) = ¢ Fi(a; ¢;2), (2.6)

ciFi(a+1;¢2) — e Fi(a,e,z) =z Fi(a+ l;e+ 1, 2), (2.7)
(c—a)1Fi(a—1,¢,2) + (2a—c+z)1Fi(a,¢,z) = a1Fi(a+1,¢,2),

(2.8)

Z(—) 1Fi(a+k;e+kyx) = 1Fi(a;c;x + p). (2.9)

k=0

In the sequel, for any function f{¢), let

i = [ e par

denotes its Laplace transform.
In the next section, we derive the transient solution for the model
under consideration by employing continued fractions.

3 DISCOURAGED ARRIVALS QUEUE

Let P,(t), n=0,1,2,... be the probability that there are n customers

in the system at time ¢. Then, the forward Kolmogorov equations for
the Model (1.1) are

dPy(t
) — wpi(n) - polo),
’ (3.1)
aP,(1) 1 p ‘
pra ;P,,_l(t) + wPpi () (n 1 +,u> P.(t), n>1.
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Assume that initially the system is empty. By taking Laplace trans-
forms, (3.1) is reduced to a system of simultaneous equations given by

(s + ) Po(s) — 1 = uPy(s),

) B =R Bur) b (), mzl OO
St P $) =+ Paci () + pPusi(s), n 2 1.
From the first equation of (3.2), we obtain
Pofs) = —— (33)
" Pi(s) |
S+ A— =
P()(S)
and the second equation of (3.2) can be written as, for n > 1,
X A
AP"(S) = n - . (3.4)
PII—| (‘) s+ A Ny Per (S)
n+1 P”(s)
Iterating this equation, we get
. 4 —
Py(s) n (n+1)
- = y 7 (3.5)
Pro() g L s
n—+1 n+2

By substituting (3.5) in (3.3) we get a continued fraction expression for
Po(s) as

Ay
. 1 A 2
P()(S) — P 4 2

s'+/1+t—v+fl—+t—
Stotp- st3ty
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By making use of (2.5) the above equation simplifies to

1F1<1; s 5+ 1; — 2)
sA +1) (s+p) (s + p)
)2

1Fi| 2 st 5+2; —/1;42
(s+p) (s+p)

+( +p)? A A
STH 1Fil 2 5 5+ 2; —ZF
(s+n)

Again, making use of (2.7) and using the fact that | Fy(0;¢; x) = 1, we
obtain
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The above expression is equivalent to the one given by Natvig [13]. In
a similar way, we will find P,(s). Making use of (2.6), (2.7) and (2.8),
we can write (3.5) as, forn > 1,

X (n+1)2 |F|<n+2 i 2+1+2———————M2)
Py(s) _ l S+ (s+p) (s+u)

i)n—l(s) a n S'/l ). ——).[l .
5+ i+ 1 n+l————5+n+1; 5
(s+p) (s+m) (s+m)

Iterating this equation and using (3.7), we get

n+1 2\
_ K S+
kY s SA
—_— et | —+2] - +n+1
<<s+ o ) (<s+ W’ ) <<s T 10y >

s, -
x 1 F| 11+2;——i—-—2—+n+2;~——/1ﬂ—3 . (3.8)
(5410 (s + 1)

Now, we will invert (3.8) by expanding the function as given below.

Po(s) = (n+ 1) (s + )2+
n (s 4" SA[sA + (s + “)2] A (D (s+ #)2]

( —/'L’u )/\’
G (n+2), (s+ )’

. k!
=0 (2 5+ 1142
(s+u) ‘

XA ) (4 ke 1)
B k'n!

X

k=0
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1 (S + M)Z(n+k+l)

X -
(s + )" TIHG ™ o2 + ils + p)’]

00 qntk+l Nk n+k+1 n+k+1 .
IR ¥ ) ( )(_]),

7%
k=0 kin! (s+p)™*" iZ(; i

.
SA +i(s + u)

i/{iwkﬂ(_”)k nfl n+k+1 .
=2 (1)
e =0

1 1
(s+/,t)2k+"sl+i(s+u)2

X

which on inversion becomes

00 /1,,+k+| K ntk+l n+k+1 ;
P"(t) e Z ._(L) Z ( ; )(—l) /1,,_,_2/\—,,'(1), n> 0,

pard kin! pary
(3.10)
where
1
/10,0([) :I’ (3.11)
3 ¥
o (1) = __—_1__— 0 (%ﬂl——\/%—ﬂlﬂ)t e (%+;t+\/ﬁ-+i.u)t . (3.12)
2\/'1—2 + 4
4 U

1 ! :
]1,,+2k'0(t) = mjo e_“yy’”'z"_'dy, forn+2k>0 (3 1 3)
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and, for n+2k, i > 1,

1
hn+2/\‘,i(r) =

2
2k — D12y /= 4+ =
(n+2k—1)12i 41‘2+i
X e_<§’+"—\/ffzf+i">' [’ o(é_ fz+a"£)y,v"+2/""'a’);
Jo

2 [ i t 3 2o,
=\ Ftpt —_5+—.) t (T+ '—'5'1——) i) o
—e ( 42 "1 e\ 42t yn+2l\ Idy . (314)

JO

Thus (3.10) gives explicit time-dependent system size probabilities for
the discouraged arrivals queueing system.

We observe that /1,40 (#) — 0, for i > 1, as t — oo and

l (&9
i 2. - o=y 2k -1
A ek (1) = 30— 1)!.[0 Ty
b
Ttk

and hence the stecady state solutions are given by

pn = lim P, (1)
1—00

B e An+k+l(_”)/\»—l— I
B prd k! n! A 2k
(},)H
=exp{j} B n=0,12,... (3.15)
K n!

We have obtained above the transient solution for the system size
probabilities with the assumption that there are zero customers in the
system initially. One gets a complicated expression for P,(t) with the
initial number m in the system by defining certain polynomials in s;
incorporating with P,(s) and then inverting it [12].
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Aliter:

If

(_j__+]) <__S_£__|_2) <_S£_._+n+])

(s+p)’ (s+p)’ (s+p)’ 5

g"(s) = n+1 ( )' )ll P"(s)’
s S+ u

then the second equation in (3.2) reduces to

((S j_/lu)2 +n+ 2) ((S —T—Aﬂ)z +n-+ l)gn—l (S) - (n + 2) <(S;Z::)2> n+1 (S)
sS4 A
((s—l—,u)2+ +2) (m-‘-n“‘l)g,,(s)

We identify this equation with the recurrence relation (2.4) with
a=n+2, c=sA/(s+p)* +2, z= —au/(s +pu)*. It is seen that this
also holds for the first equation of (3.2). Thus, we will have

() =1F1|n+2 s 2+n+2;——:—/1L2>
(s + u) (s+u)

and hence

n+1/ 1Y\
ﬁ S+I—l

u(s) = u
( ) ( +n+1)
s+u s—l—u

X \Fi|ln+2; ——54' +2,l'uz
(s+u) (s+m)

which is the same as (3.8) obtained earlier.
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Busy Period

Let the length of the busy period, a random variable, be denoted by T
and bh4(t) be its probability density function. Let the arrival of a
customer start the busy period and now the system is at state ‘1’. Now,
from (3.9), we finally deduce the Laplace transform i)A(.s) of the
density function b4(¢) of the busy period as

s — AL
2R3 s 43—k 2)
o Sstp (s + 1) (s + p)

ba(s)
S 5 2
(s + 4)2+2'F' 2
Tl (s+p) (s+p)

The mean busy period is given by

E(T) =lim <Lﬂ))

(3.16)

§s—0 Ry

Fiot L st 5 +2; —luz
(s+n) (s+u)

mg n
=08+ U sA .y
Fr( 25—+ 2
(s + n) (s4p)°

:l('ﬁ|17|<|;2::&>
Iz I

A
e — 1

A

In the next section, we obtain the transient solution for the infinite
server queue by our methodology and compare it with the model
under consideration, i.e., the discouraged arrivals queue.

4 INFINITE SERVER QUEUE

Let R,(t), n=0,1,2,... be the probability that there are n customers
in the system at time 7. Then, the forward Kolmogorov equations for
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this system are

dl;(t—) = uR,(t) — ARy(?),
d t . (4.1)
—B(!;t(—t) = iR"_l(t) + (I’l + I)I"RHH(I) - (l + n.u)Rn(t)7 n Z 1

Assume that initially the system is empty. The above system of
equations can easily be solved using generating functions. However,
we give here an alternate approach in tune with the analysis given in
the previous section.

Taking Laplace transforms (4.1) becomes

(s 4+ A Ro(s) — 1 = uRy (s),

) ) R (4.2)
(s+ 4+ n,u)R,,(s) = AR,_((s) + (71 + 1),[1R,,+1(S), n>1.

By repeated substitution of the second equation into the first equation
of (4.2) we get a continued fraction expression for Ry(s) as

N 1 A 22
Ro(s) = a a

. 4.
S+A—s+A+p— s+i4+2p— (4.3)
Using the identity (2.5),
fe(s)—lF< +1—’1) (4.4)
0 i\ by P .

By a similar procedure used for the discouraged arrivals queue, we
obtain

. A" s -
R,(s) = Fi{n+1l;—+n+1;,—|.
O = e e (e ey

i n-l—k) (i)"% H"+k
ps klnl W Ty (s +in)

Using partial fraction expansion the above equation becomes

_53 (n+k)! A"“wMﬁi (=1’ 1
- o k'n' U 'L < rtkil(n + k —i)ls + in
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which on inversion becomes

—D 4k " itk
R, I‘) _Z( /\En' ) (“) (] —e ;I) +k

k=0

o]

n!

cxp{—%(] '—e—"’)}v n=0,1,2,... (4.5)

We also see that the steady state solutions are given by

Fy = ,ILTQ R, (1)

(i)”
-—-cxp{——l} ,u' , n=0,1,2,... (4.6)
u n!

Aliter:
If

S+ p0) - (s +nu) o
an(s) = Shal) /1/1( l)Rn(S)v

then the second equation in (4.2) reduces to

We identify this equation with the recurrence relation (2.4) with
a=n+1l,c =a+n+ l,z= “l—,’ It is seen that this also holds for the
first equation of (4.2). Thus, we will have

Ky —A
gn(s) =1F (H-I— Ii—+n+ l;-*)
It 1
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and hence

ln

Ry(s) = s(s 4+ p)(s+2p) -+~ (s +np

171 (n I L 1;j>
) 1 p
which is the same as (4.5) obtained earlier.

Busy Period

Proceeding on similar lines as we have done for the discouraged
arrivals queue, we obtain the Laplace transform bp(s) of the density
function bp(t) of the busy period as

~ s+A s 1
bp(s) = -7
A 4 IFI(]§£+1;__/1>
woon
1F1<2;£+2;j)
kR __H (4.7)

StH 1Fi (1;£+ 1,;/1)
u 1

For different values of 4 with u = 1, Karlin [8] has given the first three
zeros of the function | Fy(1;s/u + 1; —4/p) which, for many purposes,
are sufficient to approximate the probability density function of the
duration of the busy period for large values of . The mean busy period
in this case can be easily deduced to be (¢*/* — 1)/4 same as the one
given by Takacs [19].

We observe that the transient solutions for the two models under
consideration are not the same (see (3.10) and (4.5)) whereas the steady
state solutions are (see (3.15) and (4.6)). This underlines the im-
portance of the transient analysis of systems under study. It is also
observed that both the models under consideration have the same
mean busy period.

For the purpose of illustration of our observations, we plot the
graphs of system size probabilities for the two models by assuming
certain values for the parameters 4 and p with the assumption that
initially the system is empty.

In Figure 1, some of the system size probabilities, Py(¢), Pi(t), P»(),
P3(t) and Ps(t), are plotted for the two models with the parameter
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A=48;, p=13

— Discouraged Arrivals Queue
——~ Infinite Server Queue

System Size Probabilities

15

Time

FIGURE 1 System size probabilities for the discouraged arrivals queue and the infinite
server queue.

values 1 = 4.8, u = 1.3. It can be observed from the figure that while
the discouraged arrivals queue attains the equilibrium distribution
around 15 time units, the infinite server queue reaches it more rapidly
around 5 time units.

5 CONVERGENCE TO STATIONARITY OF MEAN

In the performance evaluation of queueing systems the approximation
of the underlying stochastic processes by their stationary versions is of
considerable importance. As observed in the previous section, the two
models under consideration have the same steady state solution but
different transient solutions. One would naturally be interested to
study the speed of convergence of the underlying process towards its
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stationarity. Recently, Stadje and Parthasarathy [18] showed how to
compute measures of speed of convergence for the M/M/c queue. For
the models under consideration, we compute a measure of speed of
convergence of the mean number in the system to its stationary value
in terms of the model parameters A and p.

Let G 4(z,5) and Gp(z,s) be the Laplace transform of the generating
functions for P,(¢) for the discouraged arrivals queue and the infinite
server queue respectively. In the sequel, we consider only the dis-
couraged arrivals queue and the analysis for the infinite server queue
follows in similar lines. Now,

o0
Ga(z,8) =Y _ Py(s)z"
n=0

where P,(s) is given by (3.8). By making use of (2.9) we can deduce

< Iz )11
0 R
GA (Z, S) — 1 (2)11 S+ M

SA ; sA n!
o) oo™

3
X 1Fy <n+2;—L2+n+2;—“2)
(s + 1) (s +4)

_ 1 il 2 SA s lz_ /1;12'
sA (s+n) Stu (s+p)

s 5+ 1

(s+n)

(5.1)

Observe that

lim sG 4(z, 5) = ™"
5s—0

as expected. By differentiating » times G4 (z,5) and putting z = 1 we
can find the Laplace transform of the factorial moments. Now, let
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M, (t) be the nth factorial moment. Then,

. T
Mo (s) = 5‘— Galz,s)

=1

A n
!
B (n+ 1).<S+H)

B sA sh
s s+ 1] 5+n+1
(s+p) (s+w)

X 1 £ 11+2;—ﬁ—-—2+11+2;—j21—7 . (5.2)
(s + 1) (s + )

By expanding and simplifying we get

/‘,
. X ;Ln+/\’+l s
M) =S [ ——
; K\ (s + )

pket (KA1 | I
X -1 i n
,2; ; =1 (s 4 1)" s+ i(s + p)?

which on inversion becomes

00 ;Ln+/\'+| " ntk+1 n+ k + 1 ;
IAUED S IURD S CAUARS [CITWONINEE
k=0 "* i=0

where ‘+* denotes the convolution and g**(¢) is the k-fold convolution
of the function g(¢) given by

g(t) = e M(1 —pt)

and the functions /,;(f) are as defined in (3.11), (3.12), (3.13) and
(3.14).
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In particular, the Laplace transform of the mean number M () in
the system at time ¢ is

Mi(s) = S A3t 5
l —s SA 1 sA 42 i ’(s—l-,u)z ’(s+u)2
(s+p)° (s+ 1)’
(5.4)
2
_ S+ U . SA . SA
———s< " +1> 'F1<1’(s+u)2+2’(s+u)2>' (5.5)
(s +p)°

which on inversion yields

00 1k+2 k+2 )
Mo =Y e (M T ) 6o

k=0 i=0 !

where g*¥(¢) and hy; are as given in (3.13) and (3.14). In a similar way,
the variance can also be obtained.

Let X(#) be the number of customers in the system at time ¢ and
suppose that X(0) = 0. Then it is well-known that X(¢) is stochastically
increasing to a random variable X distributed according to the sta-
tionary distribution (see [9]). Consequently, E(X(¢)) T E(X) as t T oo.
Now we will find the measure, say 14, of the speed of convergence to
the stationarity in term of the parameters A and p. Thus,

Ii= jj(E(X) — E(X(1)))dr

— lim Joo (E(X) — E(X(1)))dt

~

= !im—l- (—j—l - le(s)).
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Using (5.5), we obtain

A
1 S K
PRSI Nk Y P R . L
s=05 | §A L (s +n) (s+p)
(s+ )’

On simplification, we finally deduce

A A
14 _F<l +—272> (57)

Observe that /4 gives the area between the two graphs, the graphs of
time-dependent mean number in the system and its stationary coun-
terpart. The smaller the number /4 the faster the convergence.

For the infinite scrver queue, we have

N 1 s A
Gp(z,s) =— 1 F{ 1=+ 1;—(z —
H( 78) SI |< 1'”"’ 7u( ])>
:cxp{—~%(l -1 —z)}

with mean A/pu(l — ¢™*). Thus, we deduce
A
[B == —Z

; (5.8)

which is, as one would expect, less than that of the one for the dis-
couraged arrivals queue and hence the infinite server queue attains
equilibrium faster than the discouraged arrivals queue.

As an illustration, in Figure 2, the expected system sizes for the two
models are drawn for A = 3.8, u = 1.3. The discouraged arrivals queue
reaches the steady state value around 15 time units whereas the infinite
server queue attains it around 5 time units. It can also be observed that
the area between the graph of mean system size of the discouraged
arrivals queue and its steady state counterpart, i.e., a straight line
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- -

A=38 u=13

— Discouraged Arrivals Queue
~ - Infinite Server Queue

Expected System Size
& o

-

0.5

1
0 5 10 15
Time

FIGURE 2 Expected system sizes for the discouraged arrivals queue and the infinite
server queue.

parallel to the time axis, is more than that of the infinite server queue
which confirms our observations.
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