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A new numerical approach is proposed to alleviate the computational cost of solving
non-linear non-uniform homogenized problems. The article details the application of the
proposed approach to lubrication problems with roughness effects. The method is based
on a two-parameter Taylor expansion of the implicit dependence of the homogenized
coefficients on the average pressure and on the local value of the air gap thickness. A
fourth-order Taylor expansion provides an approximation that is accurate enough to be
used in the global problem solution instead of the exact dependence, without introducing
significant errors. In this way, when solving the global problem, the solution of local
problems is simply replaced by the evaluation of a polynomial. Moreover, the method
leads naturally to Newton-Raphson nonlinear iterations, that further reduce the cost.

The overall efficiency of the numerical methodology makes it feasible to apply
rigorous homogenization techniques in the analysis of compressible fluid contact con-
sidering roughness effects. Previous work makes use of an heuristic averaging technique.
Numerical comparison proves that homogenization-based methods are superior when
the roughness is strongly anisotropic and not aligned with the flow direction.
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1. INTRODUCTION

Homogenization techniques allow, under quite general hypotheses, to
replace problems involving two (or more) very different scales by one
macroscopic problem describing the mean behavior of the unknown
field. The coefficients of this homogenized equation are calculated from
local problems that account for the microscopic features. The aim is to
avoid a huge numerical problem, with the global domain discretized
finely enough so as to resolve the microscopic scale.

Difficulties arise, however, when trying to decouple the global and
local problems in the presence of nonlinearities. In fact, the coefficients
of the latter depend on the solution of the former, which in turn
cannot be calculated until the coefficients of the homogenized equation
are evaluated from the solution of local problems. This strong
coupling appears, for example, in the homogenization of compressible
flows under lubrication conditions, and its treatment is the subject of
the present article. A typical technological application is the hard disk-
reading head assembly, with length of about 5mm and a surface-to-
surface gap of 0.01 microns. These dimensions make it impossible to
neglect roughness, that constitute the microscopic scale.

An alternative to homogenization techniques, when dealing with
one-dimensional (longitudinal or transversal) roughness shapes, is the
Film Thickness Averaging Method [10]. This method involves no local
problems, but ambiguities appear when applying it to genuinely two-
dimensional roughnesses. The usual way out of such ambiguities
consists of heuristic combinations of one-dimensional formulae.

In the following we propose a numerical method that considerably
reduces the number of local problems to be solved in a homogeniza-
tion problem. The basic idea is the use of Taylor expansions for the
evaluation of homogenized coefficients [6]. For the compressible
Reynolds equation these depend, at any point x, on the mean gap
(Hy(x)) and on the homogenized pressure (Py(x)) as follows:

A(x) = A*(Ho(x), Po(x), w(Ho(x), Po(x))) 1)

where w is the solution of the local problem, that depends on Ho(x)
and Py(x). The main trick is to find a Taylor expansion for 4* as
function of the two-vector a=(Hy, Py), as this dependence can be
shown to be smooth, and not as function of x.
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The steps of the method are

e Choose a representative vector o’ on the basis of reasonable

estimates of Hy and Py. Select the order » of the Taylor expansion to
be built around o.

e Solve the local problem to find w and its derivatives with respect to o
up to order » at o’.

e Calculate 4* and its derivatives up to order n at o° (expressions for
the derivatives follow from the chain rule). Store the coefficients of
the Taylor expansion.

e Solve the global homogenized problem, calculating the homoge-
nized coefficients from their expansions, thus not solving local
problems. Notice that this procedure decouples the global problem
from the local ones.

The resulting algorithm leads to very low CPU costs, so that it
becomes feasible to simulate general roughness shapes with homo-
genization techniques, which represent the fluid contact behaviour
better than the Averaging Method.

Finally, let us remark that the exposition is restricted to quasi-
periodic, steady problems. The quasi-periodicity assumption, that is,
that the roughness is a small-scale periodic perturbation of an arbitrary
reading head shape, is often invoked in two-scale analyses [3,9]. In
fact, stochastic rugosities are dealt with using similar theoretical
tools in which the period is replaced by a representative volume [7]. In
what concerns the steadiness assumption, this is certainly of
intrinsic interest to evaluate the fluid contact behavior once transient
effects have vanished. In addition, as shown in Ref. [8], dynamic
coefficients (such as stiffness) can be inferred from steady analyses by
perturbation techniques.

The plan of this article is as follows: In Section 2 two model
problems are introduced, a linear one for which the method is most
easily explained, and the compressible Reynolds equation modelling
the flow of air between two rough surfaces (i.e., the flying head and the
hard disk). The third section deals with the numerical method. A more
detailed mathematical analysis can be found in [5]. Section 4 contains
the numerical method used for the global problem, and Section 5
shows several numerical examples, in particular a comparison with
exact solutions available in 1D situations [6] and a strongly anisotropic
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example in which the advantages of homogenization over Film
Averaging are self evident.

2. DESCRIPTION OF THE HOMOGENIZED PROBLEMS

2.1. Linear Case

Consider the following Reynolds linear problem:

-V - (H}VP,)=f inQ )
P.=1 along 992

where Q= {x=(x;, x,) €10, 1[*}. The function H, has the following
form:
H(x) = Ho(x) + H, (ﬂ ,2)
e e

where ¢ is the roughness wavelength, that will tend to zero in the
analysis and H, is a given e-periodic function. When ¢ is very small,
direct solution of (2) becomes prohibitively expensive. This difficulty is
tackled by means of homogenization techniques [2, 6] briefly recalled
in the following.

Introducing the (local) variables y=(y1,y2) = ((x1/€), (x2/€)) run-
ning over the unit cell Y=]0, 1] x ]0, 1[ and the asymptotic expansion

P(x) = Po(x) + &P1(x,y) + £2Pa(x,y) + - - (3)

where Py, P,,..., are 1-periodic functions of the second variable. In
the following, we note H(x, y)= Hy(x)+ H,(y). Introducing the
expansion (3) into Eq. (2) and using the differential rule:

6 _9 .19
6)6,' - Bx,- Sayi

we obtain an expansion of differential operators with respect to €. An
identification of the leading term gives

~V, - (H*V,P) = VP - V,H? inY 4)
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6 3 BP() 6P1 a 3 (')Po %  _ .
G_xl[H (ax1+ay1)]+ax2 " (3_J€2+3Y2)] ARG

(5)
To decouple the two equations above consider the local problems
OH?
-V, - (H? =— inY
Vy - (H*Vywr) n in (6)
OH® .
"Vy . (H3VyW2) = —5_;_2_ nY (7)

where the unknowns w;, i=1, 2 are 1-periodic functions with respect
to y. From (4) we get
OPy oPy
Py =—— —_— C
! 6x1 wi+ axz w2 + (x)
Replacement into (5) and integration over Y yields the homogenized
problem

—V - (A*(Ho(x))VPy) =f inQ (8)
Py=1 along 00

where 4*(Hy(x)) is a 2 X 2 matrix with components

Ay = [, H}((Bwi/Bys) + 1)dy i=1,2
Ajy = [, H(Bun/0y1)dy )
Ay = [, H3 (8w /8y2)dy

Remark 1 Notice that the w; are calculated numerically, and that they
depend on x. This leads to a possibly large number of calculations for
different values of x, that may be done without further modifications
in parallel or, to alleviate the burden, by means of the method
described in Section 3.

2.2. Non Linear Case

Air flow between the two surfaces constituting a rigid disk assembly
(reading head and storage magnetic surface) is frequently approximed
using the Reynolds equation. For incompressible fluid, this approxima-
tion has been proved to be valid in [1] when the wavelength number is
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grater than the minimal gap. For compressible fluid, no rigorous proof
exists but same kind of assumption is usually adopted [4]. Incorporating
Burgdorfer’s correction for very thin air gaps, the equation reads
(upon normalization)

0 3 2y OP 2 0 3 2 _‘_?__PL
o, [(HP+6KH)6x|]+B %, (H P+6KH)6x2

= Al%(HP) —I—Azaixz-(HP)
x=(x1,x)€N=]0,1{x]0,1[ P(x)=1 x€d (10)

where H=(h/h,,) (h is the real gap and h,, the minimal gap) is the
normalized gap thickness, P=(p/p,) (p is the real pressure and p, the
ambiant pressure) the normalized air pressure, K is the Knudsen
number, B=b/L (b: width of the reading head, £: its length), and A =
(A1, Az) = (6pl/pah2%)U (p is the air viscosity and U the surface
velocity) the gas bearing number.

Actual magnetic surfaces are rough. In this case, the gap thickness
function H is replaced by

X x
H(x) = Ho() + 1 (2,22
e’ e
Using the same techniques as in the linear case one can obtain the
following homogenized problem for the homogenized pressure field Py

{v - (A*(Ho(x), Po(x))VPg) = V - (6*(Ho(x), Po(x))Po) in
Py=1 along 90

(11)
where the matrix 4* and the vector ©* are given by

(A =((i-D(B-1)+1)
Jy(H3P + 6KH?)((8w;/8y:) + 1)dy i=1,2
Ajy = [, (H*P + 6KH?)(8w»/Oy1)dy
Ay, = B2 [, (H3P -+ 6KH?) (8w /8y,)dy
6] = A1 [, (H + (H’P + 6KH?)(3x1/dy1))dy
+Az [, (H?P + 6KH?)(9x2/9y1)dy
6; = BA; [, (H + (HP + 6KH?)(9x2/y2)) dy
L +B2A, fY(H3P + 6KH2)(6x1/6y2)dy. (12)
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and wfi=1,2) and x{(i=1, 2) are 1-periodic solutions of the following
local problems (13) and (14)

L(Ho(x), Po(x))w; = ((i — 1)(B®> — 1) + 1)5—1—_(1{31’0 + 6KH?) (13)

L(Ho(x), Po(x))xi = ((i — 1)(B* — 1) + l)g;a—i(H) (14)

Above, L(Hy(x), Py(x)) stands for the operator

dy
_ 520 | 2y 0w
B [(H Po+6KH)ay2] (15)

L(Ho(x), Po(x))w = — _a_l [(H3Po + 6KH?) .gy.”%]

Remark 2 In this case, w;, x; depend also on Py, which is the unknown
of the global problem (11).

3. CALCULATION OF HOMOGENIZED COEFFICIENTS

The advantage of the homogenized problem (8) (resp. (11)) is
eliminating the need for the global mesh to resolve the e-scale, as is
the case for the exact problem (2) (resp. (10)). On the other hand, if
there exists no analytical solution to the local problems (as in the case
of two-dimensional roughness), a very large number of local problems
need be approximated on a partition of the unit cell (or local mesh).
Typically, if the global mesh consists of ND discretization points, the
number of local problems to solve is 4 x ND for the linear problem
(8)—(9) and 4 x ND x NIT for the nonlinear problem (11)—(12), where
NIT stands for the number of nonlinear iterations. As this number may
reach several thousands, further algorithmic improvement is in order. One
possibility to significantly reduce the complexity is described below. For
clarity, the presentation deals with the linear model, but extension to the
nonlinear case is straightforward.

3.1. The Proposed Method in the Linear Case

The key idea comes from noticing that the multiple evaluations of 4*
differ just in the values of a = Hy(x) intervening in (6)— (7). Though the
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dependence of 4* on « is strongly implicit, techniques coming from
sensitivity analysis allow for the construction of Taylor expansions
on a.

We propose to replace A* in (8) by its Taylor expansion of order n

Ti(e) =A'(a0) + 3 k(a—aoy 22 (1)
i=1""

around some representative value a®, so that, once the coefficients of
the expansion are known, no further solution of a local problem is
needed to evaluate 4* for an arbitrary value of a.

Remark 3 In the nonlinear case, problem (11), we consider a Taylor
expansion of 4*, ©* with respect to a = (o, az)= (Ho(x), Po(x)):

Tas (@) = A*(a®) + le—' ((ou —-a)) —6%1 + (a2 — @) 8%2) A*(a?)
P

(17
Tes(0) = 0°(a) + 3 (01 = o) o+ (02 - o) - ) ©°(a)
i=1""
(18

for a representative vector o = (af, o).

3.2. Calculation of the Homogenized Coefficients

The method used to compute the derivatives intervening in (16) begins
with the evaluation of the derivatives of the solutions w; of (6)—(7) up
to the order n. The method proceeds as the following inductive
sequence

Step 0 Solve the local problems (6)—(7).
Step 1 Computation of the following first derivatives

ow; o (oH? OH3
— . 3 ! = e— — . — . 1
v, (H v 6a> 3)’:( % ) +V, ( % Vw,) iny (19)

Step 2 Calculation of second derivatives, the corresponding equa-
tions are obtained by differentiation of (19). The process
continues up to the n#-th order derivative.
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Once the computation of all derivatives of w; up to order n has

finished, those of 4* are obtained from the chain rule. The coefficient
A’ and its derivative with respect to « are thus given by

A(a) = /Y(a+H1(y))3(%:+ l)dy i=1,2

gg;) @= [ 3a+mop (52 +1)s

+ [+ o) o (52 ) o

/ﬁz, AL are obtained analogously.

Remark 4 1n the nonlinear case, problem (11), the coefficients depend
on two parameters, (a;, ay) = (Hy(x), Po(x)). The steps are the same,
but the derivatives to evaluate are now with respect to both
parameters.

4. GLOBAL PROBLEM IN THE NONLINEAR MODEL

Once the Taylor expansion coefficients of 4* and ©* have been
calculated and stored (in a preprocessing stage), the evaluation of
homogenized coefficients at quadrature points reduces to that of
a polynomial expression. The impact on the CPU cost is evident.
Moreover, notice that all derivatives of w; and &; come out from linear
systems where just the right-hand side is different. Only one matrix
is to be assembled and factorized on the local mesh, and the calcula-
tion of an additional derivative increases the cost by a mere back-
substitution. In fact, in [5] it was shown that Taylor expansions of
fourth-order are accurate enough for practical purposes, so that the
cost of the preprocessing stage is certainly very low and it becomes
unnecessary to replace rigorous homogenization by heuristic formulae.

4.1. Newton-Raphson Iterations

Let us consider the homogenized nonlinear system (11). For its
discretization, a finite-dimensional space W,CH'() is introduced.
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We set
Wy = {pn € Wa/proa = 1}
and
W = {pn € Wi/prjon = 0}
The discrete version of (11) thus reads: Find PY, € WP such that
F(PGy,qn) =0 Vgne Wy (20)

where

FPh ) = [ " (o), PR VP, - Vi
— APG,(x)©* (Ho(x), Pg,(x)) - Vgaldx
A Newton-Raphson iteration to solve (20) thus reads
1. Let P, be given in WP
2. Find §" € W satisfying the linear system 1)
D\F(Py,qn) - 6" = —F(Py,, qn) Yan € Wy
3. Set Py’ = Py, + 6" and go back to 1

where D, F is the derivative of F with respect to a,(= Py(x)) and is
given by

DUF(Plyy )-8 = [ A°(Holo), Piy(x)) V8 - T

—A / 810" (Ho(x), Pl (x)) - Vaudx
Q

OA*
+/5"a (Ho(x), Pou(x)) VPG, - Vn
a O

00" ,
~ A [ 8 G (o) Piu(3)) Py - Vi

so that the derivatives of A* and ©* with respect to P, are needed.
At this point, if one has already constructed the Taylor expansions
of A* and ©*, one can simply differentiate them with respect to the
second variable (a; in (17) and (18)) and in that way obtain the Taylor
expansions of (04*/0P,) and (00*/0Py).
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4.2. Continuation Method

It is well known that, for Newton-Raphson’s method to converge, the
initial guess must be close enough to the solution. For that purpose,
the following continuation method is used

(1) Let Ag=0,A,As,..., Ay= A be a subdivision of the interval [0, A]

(2) Let PY, be the solution of (20) obtained for A=0

(3) For i=1 to N the solution POA,‘, of (20) is calculated by Newton-
Raphson’s iterations (21) using as initial-guess P(‘,\,‘;'.

5. NUMERICAL TESTS

In this section the numerical solution of (11) is addressed. The
proposed algorithm consists of two stages. In the first stage, the
homogenized coefficients (12) and their derivatives up to order 4 at
some parameter vector o are calculated. This amounts to the solution
of thirty problems of the type (13) (resp. (14)) to get w; (resp. x;) and
their derivatives, differing in just the right-hand side. These problems
are solved with Q, finite elements, employing 400 elements for the unit
cell. The computing cost is small since the matrix is factorized only
once. The second stage consists of solving the global problem (11)
again by finite elements. We first consider an academic problem
on a square domain to numerically assess the Taylor-expansion
approximation for several roughness shapes. Convergence of the
exact solution to the homogenized solution as ¢ tends to zero has
been proved in [6]. Then we turn to a strongly anisotropic roughness
and compare results obtained from both homogenization and film
thickness averaging methods to a full-scale solution computed on a
mesh that resolves the roughness scale and contains 2500007 degrees of
freedom. From the comparison it becomes evident that homogeniza-
tion techniques have superior modelling capabilities.

5.1. Transversal Roughness

Let
Ho(x) = + (1 — k1) xx
Hi(y) = B * (1 + sin (2my1))
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In [6] it is shown that the homogenized coefficients in this (transversal)
case are given by

1= (1/ fy (dy1/(Ho(x) + H1 (1)) (Ho(x)
+H, (yl))Po(x) + 6K))
A%y = Jo (Ho(x) + Hi(y1))*((Ho(x)
+Hy(y1))Po(x) + 6K)dy
3 6% = [y (dy/(Ho(x) + Hi(31))((Ho()
+H;(y1))Po(x) + 6K))/
Jo(dv1/ (Ho(x) + Hi(31))*((Ho(x)
+H; (yl))Po(x) + 6K))
A, = 43, =05 =0

In Figures 1 to 5 we compare the numerical solutions obtained with
these exact expressions for the coefficients (P°) to those obtained with
their Taylor expansions (17)—(18) around different points (P’). The
data are h; =10, =0.5, B=13.25, K=0.32, A=3273.

The physical constants from which the above normalized constants
are derived are: h,,=0.2pu—m, U=20m/s; /=6.1 mm, b=0.46 mm,
p=1.8110"°Pa—s and p,=1.01310">Pa,

In Figures 1, 3, 4, 6 and 9 we show contour lines of the homogenized
pressure, at the bottom left corner of each graph the bearing number A
and the extreme values of the solution can be found. The Taylor
expansion is first taken around the point o®=(5, 1.5). It can be seen

pt

.327E404, min = 1, max = 2.19912 .327E+04, min = 1, max = 2023699

FIGURE 1 Comparison of the homogenized pressure calculated with the exact coef-
ficients (P#, at right), to that obtained with their Taylor expansions (P, at left): Contour
lines. The selected value for o® is (5,1.5).
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that the contours of P’ and P° are almost identical. The pressure
profile along x, = 0.5 is shown in Figure 2. A boundary layer appears
at the exit (x; = 1), and the mesh has consequently been refined there.
The two profiles are practically indistinguishable, with a difference of
1.6% between the maximum value of p°® (2.23699) and of P* (2.19912).
We show below how to improve the accuracy increasing the number of
points around which the Taylor expansion is performed.

Taking a® = (2, 1.5) the values of P’ change, the comparison with P°
can be seen in Figure 3, it becomes quite large if o® = (1.5, 1.5) (Fig. 4).
Notice that the minimum pressure is 0.74, when the normalized
pressure should always remain above 1.

Pt Pe
22 7 2.2 7
2 2 ]
1.8 7 1.8 1
1.6 7 1.6 7
14 7 14 7
1.2 7 1.2 7
1 T T v 1 T T T
0 0.3 0.6 0.9 0 03 0.6 0.9

FIGURE 2 Same as Figure 1. Pressure profile along the central line x,=0.5.

Pt Pe

.3273E+04, min = 0.928987, max = 2.2301 .3273E+04, min = 1, max = 2.23699

FIGURE 3 Same as Figure 1 for a®=(2, 1.5).
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FIGURE 4 Same as Figure 1 for o®=(1.5,1.5).

02
—— a0=(5,1.5)
0.15 —— a0=(1.5,1.5) ‘
J——— /
- = o0=(13) //
/1
: /
v
g 0.1 7/
5 /
5 v
S/
0.05
0
0 2 ‘

FIGUER 5 Error between the exact value of A}, and its fourth order Taylor expan-
sions around several o?, as a function of o = Ho(x).

The errors that appear in Figures 3 and 4 are easily understood
looking at Figure 5. There, the error between the exact coefficient A},
and its Taylor expansions of order four around several points o° are
shown. It is clear that the difference is practically zero in a®=(5, 1.5)
and grows as o departs from this value.
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.3273E+04, min = 1, max = 2.23717 .3273E+04, min = 1, max = 2.23699

FIGURE 6 Same as Figure 1, using Taylor expansions around six points.

------

QONNNAZ 17
OO 17
S,

FIGURE 7 Randomly generated surface roughness on the unit cell.

The question thus arise as to how to select the appropriate o°. The
first component of o represents Ho(x), the air gap thickness, that
varies between known bounds H,, and H,,. The second component
is Po(x), that in practice varies between 1 and 10. The best choice con-
sists of selecting several points in the a-parameter plane within
the physically relevant region [H,,, Hy] % [0, 10]. The number of points
depends on the problem, for the cases considered we had excellent
results using 6 points: ((1, 1), (1, 2), (2, 1), (2, 2), (4, 1) and (4, 2)).
Notice that the Taylor expansions around these points can without
any difficulty be calculated in parallel, as they are indepent from
one another. Then, when a value of the coefficients is needed for some
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o———0 0=($,1.5)
---------- a0=(15,1.5) AN

Exact N\

Homogenized Coefficient: A12

1 3 - 7 9
al

FIGURE 8 Homogenized coefficient A}, compared to its Taylor expansions for several
values of ay.

Pt

.3273E+04, min = 1, max = 2.16477

FIGURE 9 Pressure contours for the roughness function of Figure 7.

value of Hy(x) and Py(x), it is evaluated from the Taylor expansion of
the point among the six that is nearest. In this way the results of
Figure 6 are obtained. The maximum is in this case 2.23717, with an
error of 0.008% with respect to that of p® (2.23699).
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5.2. Randomly Generated Surface Roughness

The diffusion coefficient intervening in film thickness averaging
methods [10] is diagonal. This is correct if the roughness is transversal,
longitudinal, or in general orthotropic with axes aligned with the
coordinate axes, but fails to be so in general roughness functions. To
illustrate this, we solve Eq. (11) with the roughness function H; of
Figure 7, corresponding to

m

m
Hi(y1,y2) = Z Z a; j sin(miy ) sin(mjy;)

i=1 j=1

where a;; is a randomly generated matrix. There exists no explicit
expression for the homogenized coefficients in this case, so that solving
local problems is unavoidable. The proposed method significantly
reduces the number of local problems to be solved, but the cost is
approximating the exact (implicit) dependence on oy = Hp and a = Py
by a polynomial expression obtained from Taylor expansion. The error
of this approximation is addressed in Figure 8, where A}, is plotted as
function of o; taking a;=2. For comparison, the polynomials
obtained by expansion around o’=(5, 1.5) and o’=(1.5, 1.5)
are also plotted. Clearly the error of the former is much smaller
than that of the latter, so that for this roughness the problem of
selecting aq persists. It is solved with the same technique as before,
and in fact using the same six points in parameter space. Another
conclusion to be drawn from Figure 8 is that the extradiagonal
component A}, is clearly different from zero, possibly leading to a
prediction that differs significantly to that of averaging methods.

In view of the complexity of H; in (5.2) a finer mesh is needed for the
local problem, in particular, for m=>5 (Fig. 7) 2500 elements are used
in the unit cell. The physical data are taken the same as in the previous
case.

The numerical tests put into evidence the ability of the method to
handle complicated roughness functions without excessive computa-
tional burden. As an example, each problem in this section needed
just 3 continuation steps to reach the final value of A =3273, each of
this steps converging in about 2 Newton-Raphson’s iterations, with
an overall computer cost of less than an hour in a RISC-based
workstation. It should be mentioned that the mesh used for the global
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problem consisted of 20000 bilinear quadrilateral finite elements (not
shown because it is a black square when printed), allowing for an
excellent resolution of internal and boundary layers.

5.3. Comparison of Homogenization
and Film Thickness Averaging Methods
for a Strongly Anisotropic Roughness

Let us now consider a more realistic slider configuration (see Fig. 10),
with the following data taken from [10]}: /=5.54 mm, 5=0.513 mm,
,=1.01mm, h,=10pm, h.,=—-0.05pm, U=20m/s, h,,=0.15pm
and §=0.2 um. The roughness is discontinuous following a diagonal
pattern shown in Figure 11. We computed three solutions to this
problem. The first one, referred to as “homogenized” solution, was
obtained applying the method proposed in the previous sections. The
second one, referred to as “averaged’ solution, was obtained applying
the Film Thickness Averaging (FTA) method as detailed in [10]. Both

T2

T

FIGURE 10 Taper flat slider configuration for magnetic disk use.
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FIGURE 11 Slider with anisotropic roughness.

were calculated on the same mesh, consisting of 34911 nodes. To allow
for comparison, a third solution was computed without averaging or
homogenizing the roughness, considering n, =20 roughness wave-
lengths in the longitudinal direction and n, =2 roughness wavelengths
in the transverse direction. The mesh for this computation must
resolve the roughness scale, so that 64881 nodes are used. This latter
solution is refered to as “exact” one.

For the selected conditions, especially due to the high anisotropy of
the roughness shape that is not aligned with the flow, the homogenized
and averaged solutions are very different, as can be observed in
Figures 12 and 13. These are to be compared to the exact solution, of
which a detail is shown in Figure 14. By direct inspection, it is clear
that the symmetry predicted by the FTA method is not present in
the exact solution, which qualitatively agrees mucy better with the
homogenized solution. To get a more quantitative comparison,
consider the pressure profiles along the longitudinal centreline
(Fig. 15) and alone the transversal centreline (Fig. 16). Notice that
the homogenized solution correctly approximates mean values of
the exact solution, while the averaged pressure exhibits very poor
agreement. If the number of roughness wavelengths is increased to
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FIGURE 12 Homogenized pressure contours.

FIGURE 13 Averaged pressure contours.
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FIGURE 15 Exact, homogenized and averaged pressures at the middle of the rail.
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FIGURE 16 Exact, homogenized and averaged pressures at x; =0.5.

ny =120, ny=12, it becomes evident that an accurate pressure field
estimate is only provided by the homogenization technique.

We should remark, however, that in other roughness configurations
such as checkerboard patterns (for which experimental results exist in
[10]) the homogenized and averaged solutions are practically coincident
and agree well with measured values. Also notice that the roughness
shape of Figure 11 can be manufactured and that the lack of symmetry
predicted in Figure 12 can be confirmed by experiments, since it leads to
a non-vanishing torque around the longitudinal centreline.

6. FINAL REMARKS

Though the method has been described as if a® were unique, it is in
fact preferable to calculate Taylor expansions around several values
of a. This allows for the homogenized coefficients to be evaluated
on the basis of an expansion around a point “that is not too far apart™.
Moreover, the difference between the values provided by the
expansions around nearby points provides a rough estimate of the
expansion error.
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The use of several points in the a-plane connects the proposed
approach with another alternative, namely the construction of a
spline-approximation of the dependence of A4* and ©* on Hy(x) and
Py(x). Notice however that this alternative requires the evaluation of
the homogenized coefficients at many points in the a-plane, each new
point involving a new matrix, while in our approach all derivatives
are obtained from the same matrix. The best choice is probably a
combination of the two approaches, namely a Hermite or Padé approxi-
mation in the a-plane based on the information of high-order deriva-
tives at several points. Our calculations above follow a simpler
pro-cedure, from the six expansions the one corresponding to the
closest point is used.

The advantages of the proposed method based on Taylor
expansions are, to conclude,

(1) full decoupling of global problem from local ones;

(2) feasibility, due to the savings in computer cost, of treating general
type of roughness functions;

(3) and straightforward implementation of Newton-Raphson itera-
tions for the global problem.

The second point becomes especially relevant when the roughness is
strongly anisotropic and not aligned with the flow.
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