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130 M. DENCHE AND K. BESSILA
1. STATEMENT OF THE PROBLEM

Let u(x, t;€) be a solution of the problem:

r >
8";’;”) _9 L(f)(x);’t); x€10,1[,¢> 0,

u(0,1)=0, >0,

1 (1)
/ u(x,)dx =0, t>0,
0
[ u(x,0) =¢(x), 0<x<1
We suppose that £ verifies the compatibility conditions:
1
€0 =0, [ etxax=o. @

In addition, we assume other hypotheses on £, which garantee the
existence and uniqueness of the solution u of problem (1). A such
problem was formulated by Samarskii [9] and solved for the first time
by Ionkin [4]. A more general case was studied by Yurchuk [12].

Let us consider the following control problem: for 7>0 and
@eL*0,1) verifying the conditions (2), we try to minimize the
functional:

16) = /0 ju(x,T; €) — ()| dx. 3)

This problem arises, for instance, from the control problem of heat
propagation in a thin rod in which the law of variation of the total
quantity of heat in the rod as well as its left end point are kept at zero
temperature. In this case, the control is undertaken in terms of an
unknown initial heat distribution &(x).

An obvious solution to the problem (3) is to choose £ such that
I(¢)=0, ie., u(x, T; &) = p(x).

Hence, in the rectangle D7=(0,1) x (0,T), we consider u as a
solution of the following final boundary value problem:

([ Ou(x, 1) _ Qu(x, 1)
Oat :) ox? 0
) = ) 7T
u( ; 1) te0,7] @
u(x,t)dx =0, tel0,T]
0
(4t T) = o), x€[0,1]

in DT
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and we take £(x) = u(x, 0). Such problems are not well posed since even
if a unique solution exists on [0, T], it does not need to depend
continuously on the final value (.

One method for approaching such problems is quasireversibility,
introduced by Lattes and Lions [6]. The idea consists in replacing the
final boundary value problem with an approximate one which is well
posed, then, the latter is used to construct approximate solutions of
the final boundary value problem. In the original method of
quasireversibility, Lattes and Lions [6] replaced the heat operator
(8/81) — (8*/9x*) by a perturbed operator P, = (8/01)+A—eAA*, well
posed in the sense of a decreasing time, where 4 is an operator
generated by the differential expression depending on x and the
corresponding boundary conditions. Here, 4* denotes the adjoint
operator. In our case, we cannot construct the operator A* for the
simple reason that D(A) is not dense in L,(0,1). A similar problem is
considered in [2] where the authors give a certain modified quasi-
reversibility method by taking the operator P.=(8/01)—(8*/0x%)—
£(8%/0x°01).

In this paper, we study the problem (1), where we perturb the final
condition to form an approximate nonlocal problem depending on a
small parameter, as follows:

Ou(x, 1) _ 0*u(x, 1)

ot a2 mPn (5)

u(0,0) =0, 1€[0,T] (6)

/0 e Ddx =0, te[0,T] (7)
ou(x,0) + (1 — a)u(x, T) = p(x), x€[0,1], (8)

where a €10, 1[.

The same method is applied in [1] for the case where 4 is a self-
adjoint operator. Following [3] and [11], this method is called quasi-
boundary value method, and the related approximate problem is
called quasi-boundary value problem (Q.B.V.P). A similar approach
known as the method of auxilliary boundary conditions was given in
[5], where the perturbed problem is defined in the interval {0, 7'+ 7],
with 7> 0.
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Now, we give a representation of the solution of the Q.B.V.P in
the biorthogonal series with a parameter ¢t of eigenfunctions and
associated functions of the nonself-adjoint Sturm-Liouville operator
corresponding to the problem (5)—(8). Then, we establish estimates of
the solution of the Q.B.V.P. And so, we establish sufficient conditions
of the existence of the solution of the Q.B.V.P. Moreover, we show the
convergence of this method in the classical sense in the space W} (0, 1).
With additional conditions on the function £(x), we can prove stronger
results concerning the convergence of the method. Furthermore, under
some particular conditions on the function £(x) we obtain the order of
convergence of the method.

2. REPRESENTATION OF THE SOLUTION
OF THE QUASI-BOUNDARY VALUE
PROBLEM (5)-(8)

We start by giving the following definition

DeriniTION 1 We define a classical solution of (Q.B.V.P) to be a
function u,, such that

(D) it is continuous in Dr.

(2) in Dr it has a continuous first derivative with respect to ¢ and a
continuous second derivative with respect to x.

(3) it satisfies (5) with (6)—(8), in the usual classical sense.

Now, let us replace Q.B.V.P. (5)—(8) by the following equivalent
QB.V.P.:

Ou(x, t) _ *u(x, 1)

ot ox? in Dr, ©)
u(0,t) =0, t€[0,T], (10)
ux(0,7) = uy(1,1), t€(0,T), (11)

ou(x,0) + (1 — a)u(x,T) = p(x), x€l0,1]. (12)
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We assume that the function ¢ € L*(0, 1) satisfies the condition (2).
Then, expanding this function in a biorthogonal series gives:

o(x) = poXo(x) + f{‘PZk—lek—l(x) + ouXok(x)], (13)
k=1

with the respect to the formed basis of eigenfunctions and associated
functions

Xo(x) = x; Xok—1(x) = xcos (2mkx), X (x) = sin (2mkx), k> 1,
(14)

of the non-self-adjoint Sturm-Liouville problem

d’X(x)
— a2 =XX(x), 0<x<1,

X(0) =0, (15)
X'(0) = X/(1).

The latter corresponds to the problem (9)—(12). The coefficients ¢,
Y2k — 1, Pox are given by the formulae

1 1
o = /0 p(x)Yo(x)dx, a1 = /0 @(x)Yoi—1(x)dx,
1
o= [ o(¥alx)a, (16)

where the sequence {Yj}; of eigenfunctions and associated functions
for the adjoint problem of (15):

a’y(x)
=)\Y 1
e AY(x), O0<x<1,

Y'(1) =0, (17)
¥(0) = ¥(1).

is given by the formulae

Yo(x) =2; Yy 1(x) = 4cos (2mkx).
Yo (x) = 4(1 — x) sin (27wkx), k>1. (18)
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The eigenvalues of the problem (15) and those of the adjoint problem
(17) are given by:

A = (27k)?, k>0, (19)

The bases (14) and (18) form a biorthogonal system.

Since fol o(x)dx = 0, we have =0 in (13).

By analogy with the Fourier method we seek the solution of the
problem (9)—(12) in the form:

ua(x, t) = uo(t)Xo(x) + f[uzk_ﬂt)XZk_l(x) + qu(t)XZk(x)]. (20)
k=1

Now, if we can permute the sum (D) with the first partial deri-
vative (9/0f) with respect to ¢, and similarly, with the second
partial derivative (8%/0x®) with respect to x in the formula (20),
we can find

u()(t) =0,
— Mt
_ P2k-1€
k-1 (1) = a+ (1 —a)e NI’
_ o + 20/ Mo 1 (T — 1)
(1) = a+ (1 —a)eMT
_ 20/ Meoog—1T e
(a4 (1 — a)exT)?
Therefore,
—+00 ~ it
P2k-1€
t) = —_—— X0
ua(xa ) ;a+ (1 _a)e_/\kT 2k l(x)+

O + 27/ A1 (T — 1)
a+ (1 —a)eMT
20/ Mepor1 T

- [a + (] — a)e—/\kr]z e’/\lezk(x). (2])
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This yields the following:

THEOREM 1 If problem (5)—(8) admits a solution, then this can be
represented in the form (21).

3. EXISTENCE OF SOLUTION OF (Q.B.V.P) (5)—(8)

THEOREM 2 If o € W2(0, 1) is such that:

1
o0 =0, [ pldx=0, ¢0)=¢) (22)

then the function given by (21) is a classical solution of the (Q.B.V.P)
(5)—(8), where the coefficients w1 and pyy are defined by (16).

Proof The series (21) is the sum of the functions

Akt

pok—1€"
pew Xok—1(x)

a+(1-a)
ok + 2/ A1 (T — 1)
a+ (1 —a)eMT
2o/ Mo T
[+ (1 — a)e~XT)?

Ugk(x,1) =

e M X (x), (23)

and it is easily verified that u,, satisfies the Eq. (5) and the boundary
conditions (7)—(8). We shall prove that, if t>¢>0 (¢ being an
arbitrary positive number), the series Y ;25(Ouok/0f) and
S (0% Uk /0x?) (With ug as in (23)) are uniformly convergent.
Setting M = fol |p(x)|dx gives: |pax—1| < 4M and |py| < 4M. Thus, by
virtue of (23) and the relations

auak(xat)zazuak(xat)z —MeP2k—1
ot Ox? [+ (1—a)eXT]
N — Aok — 2)\53/2)9021(—1 (T—1) = 27/ Acpak-1
[a+(1—a)eMT]

204/\23/2)%% 1T
[a+ (1 —a)eMT]

e-)"‘lX2k_1 (x)

2:| ¢ «\qu(_\.)A
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we conclude that

ltta (%, 1)| < — [|gazk 1]+ ool + 4T Ml ot |] e < ML P e

<z Melpar—1] + M|kl +4T)\1(c3/2)|‘P2k—1i

Buak(xt ‘ ‘Eﬂuakxt)‘< 1[

+ 24/ )\k|902k—1 |] e M < sz\l(g/z)e_)‘ke.

Here, the constants M 1 and M, are positive and independent of k.
Hence, the series (auak /0t) and Z 1 (0%t /8x?) are bounded
by the absolutely convergent numerical serles Zk=1 Mik3e—4mke
where M3 >0 is independent of k. The Weierstrass criterion implies
that the original series converge uniformly and determine continuous
functions u,, (Qua/01) and (8%u./0x?) for t > e.

It remains to prove that the series (21) converges uniformly in Dy.
The k-th term of this series is bounded by |unk (x, #)| < (4max(1,T)/a)
(lp2-1] + l02k| + vV Aklp2x-1]), and integrations by parts show that

V2 V2
|p2k—1] = ;—k—lakl, lp2x| < ;1;(|Ck| + |dk|) and
V2
V| p2u—1| = s |bi|, (24)

where ak fo‘P(x )V2 sin(27kx)dx, cx= fo‘P(x )(1—x)V/2 cos(2mkx)dx,
di= fo V2 cos(2mkx)dx and b= fo "(x)v/2 cos(2mkx)dx, are
the Fourier coefficients of ¢'(x), ¢'(x)(1 —x) o(x) and ¢"(x) with
respect to the orthonormal trigonometric system +/2cos(2mkx),
V2 sin(2kx), k> 1.

Using the elementary inequality, Bessel inequalities for the Fourier

coefficients with respect to an orthonormal system and the relation
+29(1/k?) = (2 /6), we obtain

+2"’4max(1,T)

o (2] + loe] + vV Ml paer]) < e (25)

k=1
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Hence, the bounding series (25) is absolutely convergent; thus, the
series (21) converges uniformly in Dy and its sum u, is continuous in
Dy. |
4. SOLUTION ESTIMATES OF (Q.B.V.P)
THEOREM 3 The solution of (Q.B.V.P) satisfies

1
Nl (2, )l 20,1y < acl||‘ﬂ||w2!(o,1)v

with C1 = +/512max(1,T?).

Proof From the Theorem 1 in [4], we know that for ¢ € L*(0, 1), we
have:

+00

r”<P||L2(o,1) < Z‘Plzc < R“‘PHLZ(O,l)v (26)
k=0
+00

R_1|180”L2(0,1) < Z‘?’/zc < ’_1”90”L2(0,1)a (27)
k=0

where r=3/4, R=16 and the coefficients ¢, and @, are given
respectively by (16) and:

1 1
B0 = /0 P()Xo()dx, Gy, = /0 o (X)Xop1 (x)d,
1
Bos = /0 ()Xo (). (28)

Therefore,

32max(1 y

o2 Z[‘sz 1+ O+ M) (29)

k=0

2
Nl (2, D)l z20,1) <

Using an integration by parts, we show that:

My = 8a, (30)
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where a;, are given in (24). By using the Bessel inequality, (26) and (30),
we find:

32max(1,T?
[l (x, t)”il(o,l) < _a(__)

= (161020, + 8l1¢ Iz
Consequently,

512max(1,T?)

2
fleta (x, Ol 1201y < o2

2
||<P||w;(o,1)-

THEOREM 4 If u, is the solution of (Q.B.V.P), then
Nl (2, D)l 20,1y < o=/ Callellw 0,1,

where C; = +/512max(1,T?).

Proof This theorem is proved similarly to the preceding theorem by
using the inequality: o+ (1 — a)e™ 7|72 < e (a((-D/D)? | instead
of the inequality [a+ (1 — oz)e"‘kT]_2 < a2 Hence, (29) is replaced
by:

l[ua(x, )20,y < 32max(1, T2)(a=1/M)?

+00

2
Z[‘ngfl + oo + Moy -
k=0

THEOREM 5  The solution of (Q.B.V.P) satisfies
16 max(1,T)
llua(x, t)”c(f),) < —‘\/g—a—”‘P”w;(o,l)-
Proof (From (23), it is easily shown that

4max(1,T) [

max |t (3, 2)| < lp2n—1] + p2x| + v/ )\k|<P2k—1|]- 31)
T

Using inequalities (24), Schwartz inequality and Bessel inequality
yields the desired result. [ ]
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5. CONVERGENCE

THEOREM 6 If u,, is the solution of (Q.B.V.P), then:

(1) limg1||ua(x,0) = (x)[ 20,1 = O
() limoollua(x, T) = 9(x) w10,y = 0

Proof
(1) From (21), we have

+00
P2k—1
ua(x, 0) = ; WX&..] ()C)

_I.

P2k + 2TV Mepake—1 20T/ Aepak-1
sz(x).

at(l—a)e™ (o4 (1 - a)e M)

)\kT)

ua( ) (x) Z (1 - Q)Si(’ik—l ((Xl) —)iT Xok—1 (X)
=1

(1 - a)pu (1 — e
+ [ a+ (1 —a)eMT

2(1 — )T/ Aeprr—1
+ o+ (1— a)e"\kT]z ]X2k(x)

By using the inequality (26) and an elementary transformation, we
obtain:

5 32( )2 +00
llta (x,0) = o(x)l720,1) £ —’——Z[‘sz L O3+ TP Ny
k=1
(32)
On the other hand, (30), (26) and Bessel inequality give:
= 2 2 2
Z[‘ng‘l + ¢y + Tz)\k<P%k_|] <16max(1,T )”‘P||w2'(o,|)~ (33)

k=1

Finally, (32) and (33) imply: lim,—; {|ua(x,0) — @(x)|[,2(0.4) = 0
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(2) It is easy to show that the series

+00 -—)\kT
Pok—1€
(X, T) =Y ——F——————— X
ol T) = ;a+ (- a)e—'\kTXZk 1(x)
20/ M1 T
o+ (1 —a)e M o+ (1— a)eM]
(34)
converges pointwise to ¢ as « tends to zero.
Let us prove that the convergence holds in W, (0, 1) norm.
(From (34) and (13), we have:
+00
(%) = ua(x,T) = Y [Sak-1Xok-1(%) + S Xawe (%)), (35)
k=1
where
T
apy-1e
= 36
Sok—1 ot (l=a)e (36)
a<p2k(1 — e_’\"T) 2aT+/ )\k(py(_]e‘)""r
Sox = v L (37)
a+(l—a)e ™ o+ (1 — a)eMT]
Using inequality (26) and the inequalities:
203y
82 < 38
e S e (38)
2 < 2020Y, + 82T Nopd (39)

T a4 (- a)eT

we find that:

2R P[5 1 + P + TPy 1]
uo(x, T <= —~ —. (40
a6 ) = e (Mon < =m0
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Hence, by virtue of (33), for fixed € >0 a positive integer N can be
chosen such that

X 2 2y 2 3e
Z o1 + ook + T M) < & (41)
k=N+1

Therefore, from (40) and (41) we have:

2
llu (x, T) — (x)”L2(0,1)
32a
Z[‘sz 1+ O3 + T2 ]eMT +
It remains to take o such that:

36 /N -1
of < 64 (Z[Sogk—l + o + Tz)‘k<P§k—1]ez>"‘T> ,
k=1

to get lim,_g [|ua(x,T) — SD(X)”LZ(OJ) =0.
On the other hand, from (35) we have:

Oua(x,T) — p(x)]
Ox

= @ (x) + ®2(x),

where
4Z[SZk 1+ VNS Yak-1 (%) + v/ NeSak—1Yak (%),
Dy(x) = — Z V MeSak—1 X2k (X)
=1

(27), (38) and (39) yield:

@ (x)lii2(0,1)

< faz 2031 + 4Ny + 16T X031 + My ]
- [+ (1 — a)enT]?

)

whereas (26), (38) and (39) give:

&, ( = § - :
[2a(x ”Lz o =3 = [a + (1 — a)e T}




142 M. DENCHE AND K. BESSILA

Since
uta(x,T) — p(x)]
‘ Ox ( ) 12(0,1)
2[00y + 12290
we have:
‘ Aua(x,T) — p(x)) ||
Ox L2(0,1)

< 32+2.o o2 [03k_1 + Me(0% 1 + 03) + Zz)v%‘»”%kq] . ()
[+ (1 — a)e=MT]

Furthermore, using integration by parts, conditions (22) and Bessel
inequality, we show that:

Z[‘sz L M (P51 + o) + T Mooy ] < 24max(1, T2)“@”€V§(O,l)'
s

Hence, for fixed € > 0 a positive integer N can be chosen such that

Z [3k1 + M0y +05) + TN _4] < (43)
k=N+1 64

From (42) and (43), we find:

N
<3202 ) [kt + M@y + 0%

L2(0,1) k=1

” 0(ua (x, gl— p(x)) ||’

T T +5.

Now, if we take « such that:

N -1
€
o’ < 64 (Z[‘ng-l + Mgy + ) + Tz)\zzc‘P%k—x]ez'\"T> ;
k=1

we get limg [[(O(ua(x, T) = ¢(x))/0x) 20,1y = 0.
This ends the proof of convergence in W2( 1) norm. [ |
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TueoreMm 7 If o € W3(0, 1) verifies condition (22) and the condition:

9011(0) — 0’ (44)
then,
NP uax, T) =N P
ilf(l) Ox? =0,

12(0,1)
where u,, is the solution of Q.B.V.P (5)—(8).
Proof Let ¢ € W;(0,1), verifying conditions (22) and (44). From (35),

we have:

0% (ua(x, T) — (x))

Ox2
+00

=— Z[)\kSZk—IXZk—l (%) + (MeS2k=1 + 24/ MeSk—1) X2k (x)],
=1

where the coefficients So;_; and Sy, are given by (36) and (37)
respectively. From (26), (38) and (39), we get:

2 64 <=2
< =Y o+t (1—a)e ™

L2(0,1) 3 k=1
[NepBie_t + X (0 + 05)
+ T2 X0 1] (45)

‘ & (ua(x, T) = p(x))
0x?

Now, using integrations by parts, condition (22), and Bessel inequal-
ity, we show that:

+o0
Z[)‘k‘ng—l + N (P51 + o) + TN o 1]
k=1

< 72max(1, T2)||80|||2/vg(0,1)'

Hence, for fixed € > 0 a positive integer N can be chosen such that:

o~ 2 2/ 2 2 73 2 3¢
D b + X (5t +93) + TP N3 ] < T (40)
k=1
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(From (45) and (46), we find:

P (ua(x,T) — p(x)) |

8X2 12(0,1)
64 , X 2 2/ 2 2 243 2 T | €
S 3o D Pt + N (@i + @) + TP N3y Je t5
k=1

Now, if we take « such that:

3 (& -1
o’ < 132 (Z[f\w%k_l + A (W3 + o) + T%\,igogk_l]euﬂ) ,
k=1

we get limao [|(6%(ua(x, T) — ¢(x))/0x) |20,y = 0. u

TueorReM 8 If ¢ € W3(0,1) satisfies (22) and there exists €€ (0,2)
such that: Y [N [@3_y + 0 + T?A20%_(1eMT  converges,  then

fol |ta(x, T) — 0(x)|*dx converges to zero with order ofe 2.

Proof Lete bein (0,2) such that 372903, | + @3 + T2A 0%, JeMT
converges, and let 5 be in (0,2). Fix a natural integer £ and define
gr(a) = (@®/Ja+ (1 — a)e 7). It can be shown that:

8\’ (-ANT
) < o 25 ) @)

where Cy = (1 — e""’ZT)_2 . Furthermore from (40), we have

32 P [3e s + 0o + TP ey i
3 et (l—a)en)P

lta(x, T) = ()17, 0,1 <
Therefore,
l|ua(x,T) — <P(x)”iz(0,1)
< Tt otk k). @
Hence, from (47) and (48) we get
lta(x, T) = (*)lI7, 0,1

32 J¢] B )
S —3_C0(2 — ﬁ) Z[‘pgk—] + <P%k + Tz)\kso%k_l]e(z B)MT
k=1
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If we choose 8=2—¢, we obtain

e (6, T) = @()||Z,0,1) < Ca'e™

where C = (128(1 = e™"T)2/3) 5%, [gh, | + @y + TNy Je.
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