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Usually the coefficients in a stochastic time series model are partially or entirely
unknown when the realization of the time series is observed. Sometimes the unknown
coefficients can be estimated from the realization with the required accuracy. That will
eventually allow optimizing the data handling of the stochastic time series.

Here it is shown that the recurrent least-squares (LS) procedure provides strongly
consistent estimates for a linear autoregressive (AR) equation of infinite order obtained
from a minimal phase regressive (ARMA) equation. The LS identification algorithm is
accomplished by the Padé approximation used for the estimation of the unknown
ARMA parameters.
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1. INTRODUCTION

Usually in applications parameters of the mathematical model of
a stochastic time series are partially or entirely unknown when
the realization is observed. Sometimes unknown coefficients can be
estimated from the realization with the required accuracy, which
eventually allows optimizing the data handling of stochastic time
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series. Problems arising from the identification of an autoregressive
(AR) equation form a standard topic in mathematical statistics and
are covered by many research works. We dwell on some well known
results.

In the standard literature, most attention is devoted to stable AR
equation (when the polynomial a(-) has no roots inside the closed unit
disk D;={A:|\ <1}). In this case a time series is assumed to be
stationary, and for the reconstruction of the AR coefficients spectral
methods are widely used. However, the problem of the spectral density
reconstruction is comparable in difficulty to the problem of the
identification of the AR coefficients. Therefore, methods that are not
connected with such a reconstruction have received wide acceptance.
Among them are, for example, the Yule—Walker method of
identification of the stable AR model of a stationary time series with
the rational spectral density, or the least-squares (LS) recurrent
procedure, and the stochastic approximation method. For modeling a
weakly stationary time series the AR equation is widely used, where
the polynomial a(-) has roots on the unit circle (see [1]). Convergence
proofs for the LS identification of weakly stationary processes have
been published by several researchers. In [12] convergence in
probability is proved for the system with an independent and
identically distributed input. A proof in the almost sure sense given
in [9] contains some incorrect computations (see [2]). The LS
foundation for an unstable AR equation (when the polynomial a(-)
may have roots inside but not on the unit D,) is given in [2]. However,
there is no theoretical proof of the consistency of the LS estimates
derived regardless of stability of the process. The reason, probably, is
that realizations of an unstable time series increase indefinitely.

For the regressive (ARMA) equation the LS estimates turn out to be
shifted. Then for the identification of the AR coefficients, variations of
the instrumental variable method are employed. They are based on
the finite correlativity of the righthand side of the ARMA model.
In [3,4,10,11] convergence of the extended LS method for a stable
ARMA equation is proved when the positive realness of the transfer
function is assumed. It ensures strictly consistent estimates of the
unknown coefficients. In [5, 6] this method is extended to the case of a
weakly stable ARMA equation with the above-mentioned positive-
real property. In [7,8] is proposed and theoretically proved an
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identification method related to the transformation of a stable ARMA
equation into an AR equation of infinite order. To this end the method
of truncation of the infinite Yule—Walker system and the Padé
method are used.

In this paper it is shown that the recurrent LS procedure provides
consistent estimates for an AR equation of general form (when roots
of the polynomial a(-) are located arbitrarily in the complex plane).
Furthermore, the study directs the way to the transformation of the
identification problem of a regressive equation into the identification
problem of an AR equation of infinite order. To this end an algorithm
based on the recurrent LS procedure is developed. From these
considerations it follows that if coefficients of the original ARMA
equation should be reconstructed then it is sufficient to know some
finite number of coefficients of the above-mentioned infinite AR
equation. To this end the recurrent LS procedure is taken, followed by
the Padé approximation. Such an identification procedure is free from
assumptions of stability or weak stability, except that the polynomial
b(-) must have no roots inside D;.

2. THE EMPIRICAL FUNCTIONAL METHOD

The ARMA model under study is
a(V)y: = *b(V)v, teT, (1)

where a(-) is a polynomial of the backward shift operator
V (Vyi=y-1,Vv=v,_1), a(A) =141+ -+ Nap, b)) =1+
Aby+ -4+ Xby, B(N)#0, |A< 1,0 is a positive constant, v=
{v,teT} is a standard discrete white noise process (Ev; =0,
Evvy = 6y).

We rewrite (1) in the form of the AR equation

a(v)yl = 0'2Vt, te Na (2)

where a(-) is the Taylor expansion of the rational function

a(\) = %8—; =1+ g Na,. 3)
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If (3) does not degenerate to a polynomial, then (2) is of infinite order.
Recall that y=col(y,y,_1,...) €L,(N) is finite (y, =0 for £ < —p).
The quantities yo, y_1,...,Y—_, play the role of initial conditions for
).

Loosely speaking, the correlation operator of y is not stationary.
Hence, the identification method presented in [7, 8], which exploits the
stationarity of the correlation operator, needs to be revised. The
empirical functional method can be used for approximate but as
accurate as desired reconstruction of the vector 7, of unknown coeffi-
cients of such equations. It is based on a predicting model of y.
The sequence 7[f]=col(rV[#],7®[1],...) e(N) of estimates of the
coeflicients

7. = col(TM, 7 ..} = col(ay, @, . ..) €L (N) 4)
is determined from the minimum condition for the functional

1 & 1 . u
JT(T) = ?Z(y, —+ @:_17')2 = 7 (T*RTT + 27%rr + Zytz)

t=1 =1

((T* - T)*RT(T* - 7') - 2(7-* - T)*;T + U4 Z |V;|2), (5)
t=1

NI —

where
T T-1
Rr=>) &_,9; = Z 3,87,
=1 =0

T T
rr = Z"I’t~1}’t, fr = Z‘I’z—lvt,
t=1 t=1
r=col(T0, 7@ ), & = (ie1,Y1-2,- - ) (6)

In (5) it was taken into account that (2) can be rewritten in terms of
(6) as

Ve + q);_lT* = U2Vt~ (7)

If (3) does not degenerate to a polynomial, (i.e. (2) is not an AR
equation of finite order), then the operator Ry in (6) is considered as
a linear operator in the Hilbert space 1,(N). Here ®,, t < T—1, are
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elements (vectors) of this space:
@1 =col(Y—1,Y1-2,- - Y0, Y15+ -+, Y—p,0,0,...).

Here the range of the operator Ry coincides with a linear span of the
elements ®,_;, t < 7. It implies, in particular, that for each T'< oo
the spectrum of the operator Ry consists of one zero eigenvalue of
infinite multiplicity and just a finite number of nonzero eigenvalues.
The number of nonzero eigenvalues of the nonnegative operator Ry
(with regard to multiplicity) coincides with the number of linearly
independent vectors in ®,, < T—1. In L,(N), owing to the finiteness of
the vectors ®,_;, t < T, the matrix of infinite order corresponding
to the operator Ry has only a finite number of nonzero elements for
every T.

3. THE LEAST SQUARES ESTIMATES

The minimum in 7 of the functional (5) is attained on the stochastic
vector

%[T] = argminJT(T) = —R;rT =Ty — R;;‘T (8)
T

This value is equal to
: 1 L
infr(r) = 1 (= I Rirr + 302
=1

= .lT_ ( — [Fr]*Ri#r + o ,2:1: v,2>. 9)

Here R} denotes pseudoinversion of the operator Rr:L(N)—L(N):
R} = PrrR; 'Prr + (I, — Prr), where Pry is the orthoprojector onto
the subspace of the range of the operator Ry and PrrR;!'Prr is
the inversion of the operator PrrR;Prr in the invariant subspace
Prd, (N). (It is assumed that PryRPry > ePry for some € > 0.) Note
that the operator Rf is unambiguously defined by the relation
RfRr = RrR} = Prr. If the operator Ry is invertible (Pry = I,), then
obviously R} = R;!.
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The vector #[T] is called the estimate of the least squares method
(the LS estimate) of the vector of coefficients of (7).

If 7, has a finite number of nonzero elements, ie., a(-) is a
polynomial, then it can be shown that the sequence R 7y converges to
zero with probability one as T'— oco. Thus, (9) implies that the vectors
(8) converge to the vector 7, with probability one as 7— oco. In other
words, the LS estimates are strongly consistent. If 7, has an infinite
number of nonzero elements, i.e., b(\) has nonzero degree, then it
is not hard to see that (9) takes the form inf, J{7)=0 for arbitrary
T. Thus, LS estimates cannot be consistent. However, LS estimates
that are regularized in a special way are found to be strongly
consistent.

4. REGULARIZED LS ESTIMATES

To avoid the pseudo-inversion of the operators Ry, instead of (8) we
consider the estimates

#[T) = —(Rr +€R)'rr, (10)

where ¢ is a fixed positive number and R is a positive definite operator
in the Hilbert space I, under the inner product (-, -}).

The operator R is called the regularizator. If the number of
coefficients in (2) is infinite then the Hilbert space is infinite-
dimensional, 1, =1,(N). Then we additionally assume that R~ is an
operator of trace class for arbitrary small § > 0. (For example, for R
we can take any operator to which a diagonal matrix with eigenvalues,
= exp{ak}, a > 0 corresponds in 1(N).)

The estimates (10) are said to be e-regularized LS estimates.

5. THE RECURRENT FORM OF THE LS ESTIMATES

The LS estimates satisfy the recurrent relations representing the special
variant of the Kalman-Bucy filter. The latter are convenient for
practical implementation.
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LemMA 1 The estimates (10) satisfy

Vi1 + P[]
1 4+ ®:T.[£]D, (11)
L [f]®,®;T[1] teN

14+ ®:T.[®,’ ’

T+ 1] =7t - L.[{]%;,

Fs[t+ 1] = Fe[t] -

and are defined by these relations under the initial conditions
7[1]=0, Te[l]=(Ri+eR)™". (12)
Proof of Lemma 1 Using the familiar matrix identity

(R +eR+®®) "' = (R +¢R)™"
— (R +eR)'®,(1+ ®(R,+eR) )®,) 'R +eR)™", (13)

we obtain the second formula of (11) for I'.[f]=(R,+&R)~'. With
formulas (10), (13) and using some elementary operations we arrive at
the first formula of (11). [ ]

Note that the estimates 7..[f] obtained by (11) under the initial
conditions 7.[1] = 7, I'[1] = (R, +&R) ! (7 is an arbitrary vector in 1,)
are related to the estimates (11), (12) by the formula

Ferlt] = T[T 1) 77 + (I, — eT[AR) T + 2:[1].

Usually I',[f] =0 as t— oo (with probability one). Therefore, the
consistency of the estimates 7. [f] implies the consistency of 7. [f] (and
vice versa).

6. CONVERGENCE OF THE LS ESTIMATES

Let us begin justification of the consistency of the regularized LS
estimates by establishing the following assertion. This assertion is valid
for the ARMA equation of general form (1) (regardless of stability of
the process).
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THEOREM 1  Consider the ARM A equation (1) with the standard white
noise v={v,,t€ T} as a disturbance. Then for any § >0,

lim (1, — .[1], (R + €R)' ™ (r, — #[]) = 0 (14)
with probability one and in the mean square sense. (Here the matrix Ry
is defined in (6).)

The proof of Theorem 1 is essentially based on the following
assertion, which is of interest in itself.

LemMMA 2 For the operators Ry : L(N)— L(N) and elements ®,_, €
L(N), te N related by

T
Rr=> 2,,%, (15)
t=1

the following inequality is satisfied for any 6§ > 0:

00 RS
Z<q)ta (R + ER)_I—éq’t) < Spié(g }

1=1

. (16)

The proof of Lemma 2 is given in Appendix A.

Proof of Theorem 1 Let § be an arbitrary positive number from (0, 1).
Consider a stochastic variable
Vr = (1 = 2T (Te[T]) ™ (ra — 7:[T))
= (1 — %[T)(Rr +eR)' (7. — #[T)).
The first relation of (11) can be rewritten as
Telt +1] =7 = %) — 7 + ((®1), 7 — 7 [f]) — i1 )Te[t + 1],
= (h, — Tc[t + 1]9,®))(7:[f] — 7)

- Uzvt+1FE[t + l]@l (17)

Here we used the equality

T [f]®,

_—el® _p e
(F o, me, e e

which is satisfied by virtue of the second relation of (11).
Considering (17) and the measurability of {®, 1<:< T} with
respect to the o-algebra generated by v/ ={v, 1<t< T}, we obtain
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the conditional mathematical expectation

MV VT) = (7e[T] — 7)* (B, — Te[T + 1]®7®})*
x (T[T + 1))
X (h, — T[T + 11@70%) (7[T] — 7
+0*(@r, (T[T + 1) ®7)
= Vr + (%[T] = 7.)*
x ((h, = Te[T + 1)@7®5)* (T[T + 1))
X (b, — T[T +1]@7®5) — (T[1]) ')
X (%[T] = 7.) + 0*(@r, (T[T + 1)) ®r)
= Vr + (7e[T] = )"
X ((Rr+1 + R — ®7®})(Rr41 + eR) ™' °
X (Rr+1+ R — ®r®%) — (Rr +eR)' ™)
X (#[T] — 7.) + (@1, Rr11 +€R) ™' °®7)
= Vr + (7[T] = 7.)"(Rr + €R)(Rry1 +¢R) ™'
X (Rr + €R) — (Rr +€R)' ™)
x (%[T] = 7) + 0*(®r, (Rr41 + eR) ' °®7)
=V + (7[T] = )"
X (Rr + ER)((RT+1 + eR)’l"s — (Rr + sR)_HS)
X (Rr + €R)(%[T] — 1)
+ " (@7, (Rr41 + eR) " 7). (18)

Because Rr; > Ry, from (18) follows
M (V7 V") < Vr + 0%(@r, (Rps1 + eR) ™0 p).

By virtue of (16) the corollary to the Doob theorem can be used, by
which the finite limit

fim Vr = Jim (. = &) (CL(T) ™ (. = 217 = V.

T—00

exists with probability one and in the mean square sense. Here V, is
some non-negative stochastic process, MV, <oo. Therefore, the
stochastic variables

(7 = AT Te[T]) ™ (re = 2[T])
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converge for all 6 >0 with probability one and in the mean square
sense. This implies that their limit is equal to zero:

mnw=£%m—@mxmrmm”@fﬁvp=o (19)

T—o00
|
CoroLLARY 1  With probability one and in the mean square sense,
lim |, — [f]* = 0. (20)
t—00

Indeed, from the positive definiteness of the operator Rr+eR, the
limit relation (20) obviously follows from (19).

7. SIMULATION EXAMPLE

Example 1 Consider the stable ARMA model

y: + 0.7}7;_1 + 0.1y1__2 =V — Vi1 + 0.21‘71_2.

y‘¢0.7y‘_‘ +0.1 Y™ Vit +0.21 Vo

2 —T T T T T T T

i 1 i s L .
0 500 1000 1500 2000 2500 3000 3500 4000
samples

FIGURE 1 Stable ARMA model.
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The initial conditions for the LS procedure are 1 =0,
T'o=1000000. The Padé approximation is chosen of order (2,2). In
Figure 1 the estimation error for the ARMA parameters is plotted
with respect to the number of samples. Here 7, =col(1 0.7 0.1 1 —1
0.21); 7, is the estimate derived at step ¢ by the following procedure:
obtaining the estimate 7}, of the parameters of the infinite AR model is
combined with the Padé approximation for the identification of the
original ARMA parameters.

Notice that the model does not satisfy the above-mentioned
condition of positive realness.

Example 2 Consider now the weakly stable ARMA model
i + 1.5)’1-1 + 0.5)71_2 =V — 0.3Vt_1 + 0.03v,_2 - 0.001vt_3.

By analogy with the first example, 7};; = 0, I'o=1000000 are the
initial conditions; 7, =col(1 1.5 0.5 1 —0.3 0.03 —0.001). The Padé
approximation is sought of the order (2, 3). Figure 2 shows a graph of
convergence of the estimated ARMA parameters.

yg+1.5y,_,+0.5y,_,=v,~0.3v, ,+0.03v, ,-0.001v, ,

2 T T T T T T T

. s 1 1
°0 500 1000 1500 2000 2500 3000 3500 4000

samples

FIGURE 2 Weakly stable model.
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The obtained estimates are of relatively high accuracy. This allows
us to say that the identification method, which is based on the LS
procedure followed by the Padé approximation, is effective for the
estimation of the ARMA parameters.

8. CONCLUSION

In Section 6 we proved that the LS estimates of the infinite AR model
converges almost surely to the true parameters, regardless of the
location of the roots of the autoregressive equation, i.e., regardless of
stability of the process. The identification problem of the ARMA-
model is transformed to the identification problem of the infinite AR-
model. It allows us to propose a new identification algorithm based on
the LS method by the Padé approximation. This identification method
is free from the assumption of positive realness of the transfer function
of the linear formative filter.
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APPENDIX PROOF OF LEMMA 2

Lemma 2 was formulated and proved in [3] for finite-dimensional
vectors ®,, t=1,2,...,T. Below the proof is modified for the more
general case.

Let ®;_,, k€N, be an arbitrary sequence of elements (vectors) in
the Hilbert space 1,(N) under the inner product (-,-). Given the
operator function R(?), t €0, 00),

R(t) =RE + (1 — 19,19},
=R —(1-1),®;_,, I-1<t<l leN, (21)
where R(0)=ceR:L(N)—L(N) is a regularizator (see (10)) and @;
is a linear functional generated by element ®;: ®; = (®;,-) in L(N).

Obviously, in terms of (6), Rfs) = R; + €R.
First we prove some lemmas.

LemmA 3 Let r(-) be a differentiable function defined on the semiaxis
[0, 00), the derivative r'(-) of which is bounded on the spectrum of the
operator R(?).

Then

sp{ SR} = o RO)®13

+ @197,/ (R(1))) },

I-1<t<l, Y(R) =%r(t) . (22)

t=R

Proof of Lemma 3 By virtue of (21) for / <t < [/+1 and small enough
At we have R(t + At) — R(f) = At®;_1®}_,. Hence,

r(R(t + At)) = r(R(¢) + At®11D]_,). (23)
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Denoting A= R(t), €B = At®;_;®;_,, we arrive at the problem of
computing

ad;r(A + EB)|€=0'
Assume that C is an arbitrary smooth contour enclosing the spectrum
of the operator 4 and such that for a small enough ¢ the spectrum of
the operator 4+¢B is enclosed by it as well.

The operator function r(4+eB) can be represented in terms of
contour integrals:

r(A+eB) = %mjir(u) (uh, — (A+ eB))_ldu. (24)

For a small enough ¢ the formula (24) may be rewritten as

r(A +€eB) = 5%%6 r(p)(uh, —A) ™" (b, — eB(ub, — A)—l)—ldu
= -2Lm- b (1), —A)"'dp

1 - -
+ 52—.‘% r(u)(uh, — A) "' B(uh, — A)"'dp + 0(e%),
ni Jo
which implies

1

dr(A + eB) _
=0 2mi ol

% r(u)(uh, — A) ' B(uh, — A)"'dp. (25)

Computing the trace of both sides of (25) and using the relations

Sp{AB} = Sp{BAY, 5 b rl)(uhy —4)du =/ (4),

we arrive at (22). [ |

LemMA 4  Assume p(-) is defined on the positive semiaxis and is a
measurable scalar real function. Assume the function

r(t) = /0 t p()dt
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is defined and bounded on the spectrum of the operator R. Then

Sp{r(RY)} - Sp{r(eR)}

k-1 I @ (26)
= (@14,/{ p(Rl — (l - t)q)l_]@?_l)dtq)/_]).
=1 -1
Proof of Lemma 4 From 22, we have
k d k !
— = v 19}
/0 Sp{ dtr(R(t))dt} ;Sp{(/z_1 (R(2))dt, 1@,_1)}
kgl
-y / (@11, 7 (R(1))) 11,
=1 /-1
which clearly concludes the proof of Lemma 4. |

LeEMMA 5 Assume that R is a linear positive definite operator in the
Hilbert space H and p(-) is a monotonically non-increasing scalar func-
tion bounded on the spectrum of the operator R. Then for an arbitrary
element ® € H the following inequality is satisfied.

@*p(R — 22%)2 > ¥*p(R)2,
where ®* is a linear functional generated by ®.

Proof of Lemma 5 By virtue of the obvious inequality R—®®* < R
and the monotonic non-increase of the function p(-) we have
p(R—®®*) > p(R), which immediately proves Lemma 5. |

LEMMA 6 Assume that under the conditions of Lemma 4 the function
p(+) is non-negative, monotonically non-increasing, and bounded on the
spectrum of the operator R. Then

k-1
> (@1, p(RY))®1) < Sp{r(R) — r(R)}.
1=0

Proof of Lemma 6 Owing to Lemma 5, the following inequality is
satisfied:

PR — (- @118} 1) > p(R).

With (26) this proves Lemma 6. |
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We now turn to the proof of Lemma 2. We choose the function
p()=1(t—1o)t ' 7% as p(-) in Lemma 4. Here ¢, is an arbitrary posi-
tive number satisfying o, <R (see (10)) and 1() is the Heaviside
function. In accordance with Lemma 6 the corresponding function r(-)
is expressed as

r(f) = /0 t(z’)-‘—édz' =%(z56 — 9.

This function is monotonically non-increasing and bounded on the
spectrum of the operator R. The inequality (16) has the form

x>

(@11, (R) 001 < $5p{(eR) — (RE) ™)
1

I
o

< $9{(R)),

which proves Lemma 2.



