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In this paper, we analyze a production system with a finite feedback buffer and
dispatching time. Parts enter a “main buffer” before they are processed. Processed
parts leave the system with probability 1 —p or are fed back to a “feedback buffer”
with probability p. As soon as the feedback buffer becomes full, the parts in the
feedback buffer are dispatched, all at once, to the main buffer by the server for
reprocessing. The dispatching time follows a general distribution. Thus the server is
engaged either in one of the following states: idle, processing, dispatching.

We derive various performance measures such as the mean number of parts in each
buffer, the mean system sojourn time and the dispatching rate. We also discuss the
effects of the dispatching time on the performance measures. We finally derive the
procedure to obtain the optimal buffer size that minimizes the overall operating cost.

Keywords: M|G/1 feedback queue; Dispatching; Production system

1 INTRODUCTION

We consider a production system in which processed parts may need
to be fed back for reprocessing. Studies on feedback systems include
Takacs [8], Disney et al. [3], Disney [2], Foley and Disney [4],
Pourbabai [6], D’avignon and Disney [1], Schrage [7], Takine et al. [9],
and Wortman et al. [10], to name a few. But these studies assume that
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the feedback parts are returned to the waiting buffer instantaneously
or after a random time. Recently, Lee and Seo [5] studied a feedback
system in which fedback parts wait in an intermediate feedback buffer
until they are dispatched to the main buffer. In their system, new
arrivals enter the main buffer before processing. Defective items are
fed back into an intermediate buffer. As soon as the feedback buffer is
fully occupied, the parts in the feedback buffer are dispatched
instantaneously to the main buffer, all at once, for reprocessing. This
paper extends their model such that non-zero random dispatching time
is incorporated into the model. As far as mathematical analysis is
concerned, the non-zero dispatching time adds a dimension to the
model and increases the complexity of the solution procedure.

We, first, develop the system equations, then, we derive the joint
transform of the number of parts in the main buffer, the number of
parts in the feedback buffer and the remaining times. Various
performance measures such as the mean number of parts in each
buffer, system sojourn time, dispatching rate, and idle/busy probabil-
ities are obtained. Finally a procedure to compute the optimal size of
the feedback buffer is presented.

2 THE SYSTEM, MODEL AND SYSTEM EQUATIONS

We consider a production system which operates as follows (Fig. 1):

(1) New parts arrive according to a Poisson process with rate A.

(2) The system has two buffers: a main buffer and a feedback buffer.
(3) New parts enter the main buffer to be processed by a server.

(4) Processing times are iid general random variables.

Dispatching
1]2 T|¢
Dix) Feedback Buffer Feedback
P
2 .
—_— .. S(x) I-p
Main Buffer

FIGURE 1 The system.
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(5) The system has the Bernoulli scheduling. That is, a processed part
is instantaneously merged into the feedback buffer with prob-
ability p or leaves the system with probability 1 — p.

(6) The capacity of the main buffer is co. The capacity of the
feedback bufferis 7.

(7) As soon as the feedback buffer becomes full, all parts are
dispatched to the main buffer.

(8) The server pauses processing while engaged in dispatching. Thus,
the server is either in a processing state, in a dispatching state, or
in an idle state.

(9) The dispatching time, i.e., the time that it takes for the server to
dispatch the parts from the feedback buffer to the main buffer is
a continuous random variable that follows a general distribution.
As soon as the dispatching job is finished, the server resumes
processing the parts.

(10) The processing times and the dispatching times are independent.

Let us define the following notations:

Nm(2) Number of parts in the main buffer at time ¢,
including the one being processed

Ng(?) number of parts in the feedback buffer at
time ¢

Np(?) number of parts being dispatched at time ¢

T dispatching threshold (capacity of the
feedback buffer)

S processing time, a random variable

s(x) probability density function (pdf) of the
processing time

S(x) distribution function (DF) of the
processing time

Sr(?) remaining processing time at ¢

D dispatching time, a random variable

d(x) pdf of D

D(x) DF of D

Dgr(?) remaining dispatching time at ¢

EWV) mean of random variable V'

EWV? second moment of V'
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V*(6) Laplace transform of the pdf of V'

Var(V) variance of V

Ly =1lim, o, E[Nm(f)] steady-state mean number of parts in the main
buffer (including the one in processing).

Lg=lim,_, E[Ng(f)] steady-state mean number of parts in the

feedback buffer
Lp=lim,_ . E[Np(?)] steady-state mean number of parts being
dispatched
L=Ly+Lg+Lp
w mean sojourn time of a part in the system
o(T) dispatching rate as a function of T'

1, operator is processing
2, operator is dispatching
U;j(0) = PriNm(1) =0, Ne(t)=j, Y(1)=0] (0<j<T-1)
U;=lim,_, U(?)
P; j(x,t) = Pr[Nm(t) = i, Np(t) =, Sr(f) € (x, x +dx),Y(r) = 1]
(i>1,0<<T~1)
Py(x)=lim,_, o Py(x, 1)
Q,«(y, t) = Pr[NM(t) =1, ND(I) = T,DR(I) € (y,y +dy), Y(t) = 2]
(i>0)
Q:(y)=lim,_, xQ:i(y,1)

0, operator is idle
Y(1) =

21 System Equations
It is not difficult to derive the following steady-state system equations:

0=-\Uy + (1 —p)PL()(O), (2.1)
0= =AU+ (1= p)P1(0) +pP1r(0) (1<j<T—1), (22)

_ ad;Pm(x) = CAPLo(x) + Uohs(x) + (1= p)Pao(0)s(x),  (2.3)

- HdE Pio(x) = =AP;io(x) + Pi10(x)A + (1 — p)Piy1,0(0)s(x)

2<i<T-1), (2.4)
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—iPi,o(x) = —/\P,-,o(x) + Pi_1,0(x))\ -+ (1 —p)P,-H,o(O)S(x)

dx
+ Qi-1(0)s(x) (i>T), (2.5)

— L pyjx) = APy (x) + UAs(x) + (1 = p)Pa(0)s(x)

dx
+pP2j-1(0)s(x) (1<j<T-1), (2.6)
d
=gy Fii(¥) = =APi(x) + Pioy, j(x)X
+ (1 = p)Pis1,j(0)s(x) + pPit1,;-1(0)s(x)
(i>22,1<j<T-1), (2.7)
- 5 20(0) = =AQu(3) + pP1.r-1(0) (), (2.8)
- %Qi(J’) = =A0i(y) + Qi1(¥)A+pPi1r1(0)d(y) (i>1).
(2.9)

Let us define the Laplace transforms as follows:
P;(0) = / e %P (x)dx (i>1,0<<T-1),
0
oo
0:0)= [ "0y (20)

By taking the Laplace transform of the Egs. (2.3)-(2.9), we get the
following transform equations:

(A=0)P{o(0) = AUsS™(0) + (1 — p)P2,0(0)S™(0) — P10(0), (2.10)

(A= 0)P3(8) = APL (8) + (1 — p)Pi41,0(0)S™ (8) — Pio(0)
Q<i<T-1), (2.11)
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(A= 0)Py(6) = AP 4(8) + (1 = P)Pi1,0(0)S™(6)
+Qi-1(0)S™(0) — Pip(0) (i>T), (212

(A= 0)P} ;(0) = AU;S™(8) + (1 — p) P,;(0)S™(6)
+pP,j1(0)87(6) — P1;(0) (1<j<T-1),
(2.13)

(A—0)P{;(6) = AP, ;(6) + (1 — p)Pis1,;(0)S™(6)
+pPii1j1(0)8*(6) — P ;(0) (i>2, 1<j<T—1),
(2.14)

(A= 0)Q5(6) = pP1,r-1(0)D"(6) — Q0(0), (2.15)

(A= 0)0;(0) = AQ;_(6) + pPis1,7-1(0)D*(8) — Qi(0) (i > 1).
(2.16)

2.2 Analysis

Let us define the following generating functions with respect to z,, for
|22' < 1:

T-1
U(z) = zsz{, 1(0,22) = ZP

Jj=0 Jj=0

T-1
P,'Y,(O, 22) = z P,'J(O)Z{.

j=0
From Egs. (2.1) and (2.2), we get

AU = (1 —p)P1,(0),

T-1 T-1 T-1
A Uz =(1-p)Y P1j(0)z5+p>_ P1;-1(0)z],
j=1 j=1 =1
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which are simplified to
AU(z2) = (1 — p+ pz2) P1,.(0,22) — pz3 P1,7-1(0). (2.17)
Similarly, from Eq. (2.10) and (2.13), we get

(A= 6)P; (0,22) = AS*(0)U(22) + (1 — p + pz2)S*(6) P2,.(0, 22)
— pS*(8)z2 Py,7_1(0) — P1.(0, 22). (2.18)

From Egs. (2.11) and (2.14), we get

(A= O)P{ (0,22) = AP, (6,22) + (1 = p + pz2)S™(0) Pi11,.(0, 22)
"PS*(G)Z;PHI,T—I(O) — P,-,.(O, 22)
2<i<T-1). (2.19)

From Egs. (2.12) and (2.14), we get

(A= 0)Py.(6,22) = AP, (6,22) + (1 — p+ p22)S™(8) Piv1,.(0, 22)

)

— pS*(0)22 Piy1,7-1(0)
+ Qi-1(0)S*(0) — P;.(0,22) (i>T). (2.20)

For z; on |z;| <1, we define the following generating functions:

P*(0,21,22) = Y _ Pi(0,22)z1, P(0,21,2) = Y P;.(0,2)7},
i=1 i=1

Pra(0,21) =Y Pira(0)z, Q°(6,21) =) Qi ()7,
i=1 =0

000,2) = 3 0:0)2)

i=0
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From Egs. (2.18)—(2.20), after using Eq. (2.17), we get

()\ - )\Z] - O)P*(b', 21,22)

= Az = 1)S*(B)U(zy) + 122 “’222])5 ") =21 p0, 2, 22)

0% b 1 (0,21) + 5°(6)0(0, )2 (2.21)

_pS 0z
)

From Egs. (2.15) and (2.16), we get

Oz -00 (0,2 =22 O p | 0.2)-00,7). (222

21

Let 6=\ — A\z; in Eq. (2.22) to eliminate Q*(6, z;) and get

D*(A— A
Q(o,zl)zﬁ_(.Zl_Z‘l

P.7T_1 (0, 21). (223)
Use Eq. (2.23) in (2.21) and (2.22) to get
()\ - )\Z] - 9)P*(9,21,22)

— Azt = S (O)Ulzy) + L2 PRI O =21 gy oy

71
+pS*(9)[leD*(Z):- Azy) —ZZT]P.,T_l(O,zl), (2.24)
(A= Az = 0)Q(6,z) < PO =D A=Azl 62y (225

21

Let 6 = X — Az in Eq. (2.24) to eliminate P*(0, z1, z5) and get

e = (1 =p+p22)S" (A = A20)1P(0,21, 22)
= Azi(z1 — )S* (A — Az1) U(22)
+pS*(A = Az1)[z2T D*(\ = Az1) — 2T |P.71(0, z1). (2.26)
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Use z;=®(z)) =(z; — (1 = p)S* A\ — Az)/(pS* (A — Azy)) in Eq. (2.26)
to eliminate P(0, z, z5) and get

)\Zl(l - Zl)U[‘I)(Zl)]

P.r_1(0,z1) = . 2.27
= Re e ey B ey M
z1 — (1 =p)S*(A = Azy)
d(1)=o = =1. .
( ) (Zl)|z|=l pS*()\ _ /\21) =l (2 28)
We reserve the following quantities for later use:
s0(1) =L o) =122 (h=rms), (229)
dZ] z1=1 P
2 _ 25( Q2
s0(1) = 3oz =220 Zp L NES) (2.30)
dzj =1 p

Using Eq. (2.27) in (2.26), we obtain

P(0,z1,27)
= )\21(1 - Z])S*()\ - )\21)

{[@7(z1) — 2{ D*(A = Az1)]U(z2) + [2{ D*(A = Az1) — 2] |U[®(z1)]}
21 = (1 —p+pz)S*(A— Azl)][Z{D*()\ —Az;) — ®7(z)] ’

(2.31)

Using Eqgs. (2.27) and (2.31) in (2.24) and (2.25), we get

P*(0,z1, 22)
= a1l = 2)[S°(6) = S*(A = Aay)]

x{ U(z2)[z] D*(A = Xz1) — @7 (21)] + U[@(21)][z] — 2/ D*(A = Az1)] }
(0 — A+ /\Z])[Z] - (1 -p +p22)S*(/\ - )\Z])][Z]T *()\ - )\Z]) - @T(Zl)]

(232)
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and

_ A= 2)U[@(z)][D*(0) — D*(A — Az1)]

OO = X T - DT )]

(2.33)

Note that P*(6,z,z;) is the triple joint transform of the number of
parts in the main buffer, the number of parts in the feedback buffer,
the remaining processing time and the probability that the operator is
processing. Q*(0,z;) is the joint transform of the number of parts in
the main buffer, the remaining dispatching time and the probability
that the operator is dispatching. We define P(z;, z,) as follows:

P(z1,22) = U(z2) + P*(0,21,22) + ng*(O, z1).

Then, we get

P(Zl,Zz)
= U(z2) + P*(0,21,22) + 23 0% (0, z1)
_ U)S = 22D O = dar) — 7)1 — 1) = plas — 1)
(21 = (1 = p+ pz2)S*(X = Az1)]|[zT D*(X = Az1) — ®7(z1)]
VBl — 1) — plza — DIS* (A= da)
[21 = (1 = p + pz2) S* (X = Az1)][z{ D* (A — Az1) — @7 (z1)]
4 Ul@(z1)]z1 (2] — 2)D* (A = Xz1)

[z21 = (1 = p+ pz2)S*(A = Az1)|[2T D*(X = Az1) — BT (z)]

U[@(2)][22 (1 — p + pz2) — 27 *1)S*(A — Az1) D* (A — Az1)
(21 — (1 = p+ pz2)S*(A — Az))|[z2T D*(A = Azy) — ®T(21)]

(2.34)

We note that z, in P(z;, z,) represents not only the number of parts in the
feedback buffer but also the parts being dispatched.

3 PERFORMANCE MEASURES

In this section, we develop various performance measures.

3.1 State Probabilities

Let §=0and z; =z, =1 in Eq. (2.32) to obtain the probability that the
operator is processing
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p-T-U()
[(1 —p—p)T — AE(D)]’
Let 6=0 and z; =1 in Eq. (2.33) to obtain the probability that the
operator is dispatching

Poroc = P*(0,1,1) =

APE(D)U(1)
[(1-=p—p)T—NE(D)]

From Pigie + Pproc + Paisp = 1, we get

Pgisy = 07(0,1) =

o (=p=p)T—NpE(D) _ . (pT+\pE(D)
Pae =0 =" ~'"a-nr
(3.1)
Thus, we have
Pproc = 1%, (32)
ME(D)
isp = . 3.
Pdlsp (1 —p)T ( 3)
From Eq. (3.1), the stability condition becomes
pT + \pE(D)
———< 1. 3.4
-7 G4

3.2 Mean Number of Parts

The steady-state mean number of parts in the main buffer becomes

d
Ly = E(Num) =d—21P(21, 1)

z1=1
= {¥(1-p)(1 -p)T?E(S?)
+ NpE(D*)[(1 - p)T + p(1 — NE(D) + pT - (E(S) — 1)]
+ (1= p)TAED)((1 — T)(1 — p* — p) + 2A\p*E(D) + 2ppT)
+pT-(3-T)(1~p)+p(2p+T-3))]
+2(1—p)(1 = p)T- AE(D) + pT|UN (1)}
/{2(1 =p)(1 = p)T-[(1 = p — p)T — A\pE(D)]}. (3.5)
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The steady-state mean number of parts being dispatched is simply

Lp =T Pagy = %’1—’?%). (3.6)

We notice the following identity:

d
Lg+Lp = E(NF -+ ND) = d—Z2P(1,22)

z3=1

2MApE(D)+ (T —-1)p
=uW(1) + . 3.7
M+ (37)
Thus, we get the mean number of parts in the feedback buffer,
T—1)p
—ymay+ L= De, .
Ly=U ()+2(1_p) (3-8)

Computation of UV(1) in Egs. (3.5), (3.7) and (3.8) can be found in
the Appendix.

3.3 Mean System Sojourn Time

Steady-state mean total number of parts in the system becomes

L=Ly+Lr+Lp

_ (1=p—p)T2pT- (1 - p) + N*pE(D*) + N*T - E(S5?)]

a 2(1-p-p)(1-p)UM)T?

+ AP (L= NEDH+(1—p - p)(1+p—p)T— (1 - p — p)’T}|E(D)
2(1—p—-p)(1 = p)U)T?

420 =pT-[(1 =p)T-UQ) + A0 = P)ED)UO(1)

2(1-p-p)(1 -pUM)T? '
From Little’s law, the mean system sojourn time becomes

L
=3
_(1=p—=p)T[2pT- (1 - p) + N°pE(D?) + N°T - E(S?)]
B 2X(1-p-p)(1-pUQ)T?
L ANPA=NED)+(1—p = p)(L+p = )T (1 —p— p)’T}|E(D)
221 —p—p)(1-p)U)T?
2(1-p)T-[(1 = p)T-UQ) + (1 — p)ED)UD(1)
M 221 —p - —p)U)T? '

(3.9)

(3.10)



PRODUCTION SYSTEM WITH FEEDBACK BUFFER 433

TABLE I Comparison of our analytical results and the simulation
estimates (p=0.8, p=0.01, T=5). Processing time: s(x) = ue™"*, E(S)=
1/p=1.0. Dispatching time: d(x)=8e?*, E(D)=1/8=0.1

Simulation Our results Relative error (%)
Ly 4.27429 4.28944 0.35319
Ly 2.02372 2.01712 —0.32720
Lp —0.00080 0.00081 1.23457
w 7.88093 7.88419 0.04135
Dispatching rate 0.00160 0.00162 1.23457
Uy 0.0329918 0.0323645 —1.93824
U, 0.0390427 0.0387689 —0.70624
U, 0.0399761 0.0400044 0.07074
Us 0.0401166 0.0403028 0.46200
U, 0.0407969 0.0403175 —1.18906

3.4 Dispatching Rate

A dispatching occurs as soon as a finished part is fed back when there
are T — 1 parts in the feedback buffer. Thus the dispatching rate, o(T),
which is defined as the mean number of dispatching per unit time, can
be obtained as

o(T) = pP.r1(0,1) = =22 (3.11)

(1 -p)’

or, it can be obtained from Pgisp/ E(D).

3.5 Model Verification

We compare our results with simulation estimates. Table I shows a
comparison between our analytical performance measures and the
simulation estimates. In almost all of our extensive computer experi-
ments, the relative errors were within 1%.

4 EFFECTS OF THE DISPATCHING TIME

In this section, we evaluate the effects of the dispatching time on the
system performance.
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41 Effectsonthe Server Utilization and Dispatching Rate

First, it is easily seen that the operator utilization pp = Pproc + Paisp 18
greater than po, the utilization under zero dispatching time (E(D) = 0).
It tells us that if we do not incorporate the dispatching time into the
modeling process, it is likely that the operator utilization is under-
estimated by the amount

APE(D)
pp — po = Paisp = E(D) - o(T) 0-pT (4.1)
The existence of the dispatching time does not alter the dispatching
rate. This is because the operator has to process A parts per unit time
in the long run, regardless of the dispatching time.

4.2 Effects of the Mean and Variance of the Dispatching Time

Figures 2 and 3 show the change of the mean number of parts in each
buffer as mean dispatching time varies for two different values of
p=AE(S). It is seen that E(D) increases Ly, which is obvious from the
fact that longer dispatching time increases the number of new parts
that enter the main buffer and wait. E(D) also increases Lp. This is
due to the fact that larger E(D) increases the time proportion taken by
the dispatching time.

Figures 4 and 5 show the change of the mean number of parts in
each buffer as the variance of the dispatching time changes with fixed

x
16 L o
2 14 / o
L3P el
s
gor  _— P
§ 8 e ﬁ
g 6 >'—__— ,//
® Ly Ly
g Ly
: /
IS N —_— s
0 - -
0 0.5 1 1.5 2

mean dispatching time (E(D))

FIGURE 2 Mean number of parts as a function of E(D) (p=0.8, p=0.1, T=3).
Processing time: s(x)=p?xe ¥, E(S)=(2.0/u)=1.0. Dispatching time: d(x)=8e "%,
E(D)=1/8.
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FIGURE 3 Mean number of parts as a function of E(D) (p=04, p=0.1, T=3).
Processing time: s(x) = u?xe ™, E(S)=(2.0/u)=1.0. Dispatching time: d(x)= e "%,
ED)=1/8.

mean number of parts
o

1/5 1/4 1/3 1/2 1
variance of dispatching time (Var (D))

FIGURE 4 Mean number of parts as a function of Var(D) (p=0.8, p=0.1, T=3).
Processing time: s(x)=pu’xe ™, E(S)=(2.0/u)=1.0. Dispatching time: d(x)=
(B 'e )k — 1), E(D)=(k/B)=1.0.

—
2 /
£ L
8 15 L.
- F
o /
o
g R @ mrmrmemamas e B P !
c @ mmimim i Wi g PP, Wi p
:
L
0.5 M Ly
N e a
1/5 1/4 1/3 1/2 1

variance of dispatching time (Var (D))

FIGURE 5 Mean number of parts as a function of Var(D) (p=0.4, p=0.1, T=3).
Processing time: s(x)=pu’xe ", E(S)=(2.0/u)=1.0. Dispatching time: d(x)=
(81— 1), ED)=(k/B)=1.0.
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mean dispatching time. For all cases, the variance is not significant.
This may give us a guideline in controlling the dispatching time. The
operator, to reduce the work-in-process inventory, has to reduce the
mean dispatching time regardless of the variability of the dispatch-
ing time.

5 DETERMINING THE OPTIMAL SIZE OF THE
FEEDBACK BUFFER

In this section, we determine T*, the optimal size of the feedback
buffer under a cost structure. Let us consider the following costs:

Cw: cost of holding a part in the system for a unit time,
Cp: dispatching cost.

The overall average cost per unit time becomes

AC(T)=Cw-L+Cp-«a(T)

_c _{(1 —p—p)T2pT - (1 — p) + N’pE(D?) + N'T - E(S?)]
v 2(0—p—p)(1 - p)U(1)T?

AP = NED)+(1—p—p)(1+p—p)T—(1—p- p)*T?E(D)
2(1-p-p)(1-p)U)T?

L2 =T [ =p)T- U() +2(1 —p)E(D)]U(‘)(l)}
21-p-p)(1-pU)T?
Ap
O gy -1

U™(1) in the above equation is dependent on 7 (calculation of UM(1)
can be found in the Appendix). Thus it is extremely difficult to see
whether AC(T) is convex or unimodal. But our comprehensive com-
puter experiments convinced us that it is convex and unimodal.

Figure 6 shows the value of AC(T) as T varies for a particular set
of parameters. In this example, T*=4 is the optimal size of the
feedback buffer.
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FIGURE 6 Average cost of T varies (p=0.7, p=0.1, Cw=1, Cp=100). Processing
time: s(x) = p?xe™*, E(S)=(2.0/p) = 1.0; Dispatching time: d(x) = 8e~?*, E(D)=1/8.

6 RESEARCH SUMMARY

In this research, we analyzed a production system with an intermediate
feedback buffer and positive dispatching time. Various performance
measures were derived using transform methods. We found the
optimal buffer size that minimizes the overall average operating cost.

The effects of the dispatching time on performance measures were
discussed. It was that variance of the dispatching time does not play a
significant role in the operational behavior of the system. Thus, if one
wants to reduce the work-in-process inventory, he has to reduce the
mean dispatching time rather than paying attention to the variability
of the dispatching time. It was also found that dispatching time must
be incorporated into the modeling of the system. Otherwise, work-in-
process inventory would be severely underestimated.
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APPENDIX

Computing U, (k=0,1,...,T—1)

Performance measures contain U”(1) which is an unknown quantity.
U"(1) is determined once {Uy, Uy, ..., Ur_,} are found. We apply the
well-known Rouche’s theorem for this purpose.

We use Eq. (2.34) to obtain {Uy, Uy, ..., Ur_1}. z1 — S*(A — A\z;) has
a zero z;=1. Also, one of the zeros of zID*(A — Az;) — ®7(z) is
z; = 1. Thus, we consider only z7 D*(\ — Az;) — ®7(z). Let us define

Ci(z) = S*(A = X2)(z = D[z2"D*(A = \z) — ®7(2)]
and

Co(z) = (z—=1)S* (A = Az) + T = 2)D* (A = X2)
+ (1 =2z S* (A = A2)D* (A — X2).

From U(z) = Z}.T;Ol Uizl = Upz® + Uyz' + -+ -+ Ur—1z71, we get
U(1)= U+ Uy +---4+ Ur-.

Let the 7T zeros of z'D*(\—Az2)—®7(z) on |z|<1 be
Z(1y, 22)» - - - » Z(7—1) and zy= 1. The numerator of Eq. (2.34) evaluated
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at these zeros must vanish. Thus we can set up 7 simultaneous
equations as follows:

(1 —p—p)T— ApE(D)]
(1-pT ’
C](Z(j))U(l) 4 Cz(Z(j))U[‘I)(Z(j))] =0, j=12,...,T—1.

U(l) =

Arranging terms yield

_ [ =p—p)T— NpE(D)]
Up+ Ui+ +Upy = T :

[Ci(z())) + Calz(j)1Uo + [Ci(z()) + Ca(2()@(2( )] Us

+[Ci(z(y) + Calz()®(z()) U
+ -+ [Ch (Z(j)) + Cz(Z(j))‘I)(Z(j))T_l]UT—l =0

(j=1,2,...,T—1).

We can obtain {U,y, U;,...,Ur_;} by solving the above equations.
Then UP() is completely determined.



