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We introduce the notion of similar Markovian Arrival Processes (MAPs) and show
that the event stationary point processes related to two similar MAPs are stochasti-
cally equivalent. This holds true for the time stationary point processes too. We show
that several well known stochastical equivalences as e.g. that between the H, renewal
process and the Interrupted Poisson Process (IPP) can be expressed by the similarity
transformations of MAPs. In the appendix the valid region of similarity transforma-
tions for two-state MAPs is characterized.
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1 INTRODUCTION

In this paper we consider similarity transformations of the matrices
(Dy, D) which describe the Markovian Arrival Process (MAP). The
MAP has the generator D= (D, + D;) which has stationary probabi-
lity vector «. The state transitions in D, are associated with arrivals
while those in Dy are not. The interval stationary probability vector is
given by 6= (wDy e )"ﬁDl. For general literature on MAPs see e.g.
[4,5]. The notion of Stochastical Equivalence (SE) is an important one
when considering point processes generated by different MAPs. Two
different MAPs will in general not be identical in any reasonable
probabilistic sense with respect to an arbitrary initial state. However,
for certain combinations of initial conditions the point processes of

* Corresponding author. E-mail: bfn@imm.dtu.dk.

349



350 A.T. ANDERSEN et al.

several MAPs might very well have identical probabilistic behavior. It
is most relevant to consider the time and interval stationary behavior.
In the MAP setting the equivalence of the Interrupted Poisson Process
(IPP) and the renewal process with an interarrival time distribution
according to a two-phased hyper-exponential, H,, is the classical
example of this construction.

2 STOCHASTICAL EQUIVALENCE

We give an important definition following the lines of [3].

DEFINITION 2.1 Two point processes are stochastically equivalent if
for any n> 1 the joint distributions of the first n intervals agree.

The joint Laplace—Stieltjes transformation Wi(sy, ... ,s,) of the first
n intervals in the interval stationary version of the MAP (Dy, D)) is
given as

i(sy,...,8,) = (RD1&)'&Dy (511 — Do) ' Dy - - - (s, — Do) ™' Dyé.

DEFINITION 2.2 Two MAPs with parameter matrices (Do, Dy) and

(S0, S1) are similar if there exist similarity transformations Sy=
PDyP ' and S, = PD,P~", for the same matrix P, where P& = €.

LEMMA 2.3 Two similar M APs have stochastically equivalent interval
Stationary processes.

Proof Consider two similar MAPs (Dy, D;) and (So,S;) with the
similarity transformation matrix P. The invariant probability vector
for the time stationary process 7, is given by #pP~!, and that for the
interval stationary version is given by ¢, = @pP~'. Using the similarity
transformations in Definition 2.2, the requirements for SE are readily
seen to be fulfilled.

3 EXAMPLES

We now give some examples of stochastically equivalent point
processes derived from similar two-state MAPs. In the examples we
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draw upon the results derived in the Appendix concerning the valid
region for similarity transformations of a given two-state MAP.

Example 3.1 The stochastical equivalence of the H, renewal process
and the IPP is well known. In an MAP context we can express this by
the similarity of the MAP representations of the H, renewal process:

Do:[—l‘l 0 ] D1=[“1p Ml(l—l’)},

0 —m p2p  p2(1 —p)
and the IPP,
(22 + (1 =p)d) p(1 = p)(m — )’
S mp+pm(l—p)  wmp+p(l—p)
0 = )
K12 _ o)
mp + (1 = p) pip + p2(1 — p)
[pp+m(l—p) 0
S = ,
L 0 0

which are related through S;=PD,P~ 1i=0,1 with

P 1-p
P=1 —pu |
LML — M2 M1 — U2
[ w (p2 — m)(1 —p)
o mp+pa(l—p)  mp+ pa(l —p)
M2 —(Mz - #1)1)
Lump+ (1 —p)  mp+ (1 —p)

Another similarity transformation transforms the H, renewal process
into a renewal process of a mixture of Generalized Erlang (GE)-
distributions. The MAP representing the GE renewal process

T":[—gl (”1"12,151_p)]= T1=[“1p+‘;22(1_1’) g],
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is related to (Do, D;) through T;=Q0D;0~ 1i=0,1 with
1 -(1-p
p 1-p I g )
Q - s Q - p p
0 1
0 1
Example 3.2 1In [3] it was shown that for every two-state MMPP (or
SPP) point process there exists a stochastically equivalent Markov

Switched Poisson Process (MSPP) point process. The MSPP can be
parameterized as follows:

- 0 mpr (1 —=p1)
Dy = , D= .
0 [ 0 —uz] ! [szz p2(1 —p2)

Also here SE can be expressed as a similarity transformation. Let the
SPP be parameterized by

_ —rl—)\l r _ A] 0
SO_[ r —rz—Az]’ s'_[O )\21|’

where

i+ (1 —p)us + \/(plm — (1= p2)u2)’ + 4 pa(1 — p1)ps

)\1 2 )
N + (1 =p2)p2 — \/(Plul — (1= p2)ma)* + 4ppa(1 — pr)pa
2 = s
2
v = (=P +pa) i — (L= p1) + p2)inpia
! M= X ’
(M =p1) +p2)papz = (1 = p1)p1 + papa) X
r= S )

Then S;=QD;Q "', i=0,1 with

1- _ 1 1-— —(1 -
Qz[ql 1_q1:|, 0 = [ﬁqz (I—q) ’
92 92 9 —q2 9 Q1

where

(I +p)pa —prm + \/(plm = (1=p2)w2)” +4ppa(1 = pr)p2
n 2(p2 — ) ’

_ (T+p)pa = prpm — \/(le — (1= p2)p2)” + Aprpa(1 = p1)p2
2(p2 — p1) '

q2
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Remarks

e As noted in [3], a stochastically equivalent MSPP point process for
a given SPP point process can always be found, while the converse
is true only when the MSPP satisfies the condition p(1 —p,) >
(1=p1)p2.

e With the parameterization used in this example, the stochastical
equivalence of the MSPP and SPP point processes can be seen as a
generalization of the SE of the IPP and H, renewal process in the
previous example. This is seen by setting p; =p, =p.

4 FINAL REMARKS

Similarity is an attractive property since it is relatively easy to check
whether two matrices are similar by solving the Sylvester equation ([2],
p- 310). However, it is clear that similarity is not a necessary condition
for the SE of the interval stationary point processes induced by MAPs.
Even for non-trivial two-state MAPs, similarity is not a necessary
condition for SE, as the next example demonstrates. The similarity of
the H, renewal process and the IPP and that of the MSPP and the SPP
are thus by no means automatic.

Example 4.1 We consider the following two MAPs with stochasti-
cally equivalent stationary point processes (the SE can readily be
verified using results from [1]):

~26.001600  2.159218 16.001600  7.840782
Do= [ 0.919591 —16.998400]’ b= l4.080409 11.998400],
—10.000000  10.000000
P= [ 5.000000 —5.000000]’
—26.000000  2.000000 16.000000  8.000000
So= l 1.000000 —17.000000]’ l4.000000 12.000000]’
l—w.oooooo 10.000000}

5.000000  —5.000000
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The two MAPs are not similar since

S= QDQ_ls SO = QODOQ(;la sl = Q]DI 1—-]

with
_ [1.000000 0.000000 _ [0.000000 0.222183
~ 10.000000 1.000000|" <° |0.102158 1.000000 |’
[ 0.000000 —1.999200
P71 21.019694  1.000000 |
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APPENDIX

Similarity Transformations of Two-State MAPs

In this appendix we identify classes of two-state MAPs which arise by
similarity transformations. We are only interested in MAPs where the
two-state description is minimal (i.e., MAPs that cannot be reduced to
a Poisson process). As shown in Section 2, similar MAPs are
stochastically equivalent.

Given an MAP minimally represented by Dy and D, where D, is
a sub-generator and D=(Dy+ D;) is a generator, the goal is to
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find all Sy=PDyP~ " and S; = PD;P~ " such that S, and S; represent
a MAP.

Let 7 be the time stationary probability vector for D. Then it is easy
to see that the counting processes of the MAPs given by Dy, D; and
So, 81 are identical:

wtexp((Do + zDy)t)é = #P~ ' exp((So + z8))1) Pe,

where P¢ = é.

For the two-state MAP, the fact that §=.S,-+ S is a generator can
readily be seen to limit P to the structure below when p, # p;:

P [m I ~p1] pi_ | [1 - (1 —Pl)]_
p 1-pf p—p| —p2 D

Without loss of generality we restrict ourselves to the case p; > p, since
the case p, > p; corresponds only to a relabeling of the two states in Sy
and S; with D1>Ppa.

In the following we parameterize Dy and D as

-1 h(1— 1—h)(1 -
D0=d[ q ]’ D1=d[ 1(L=q1) ( 1)( 41)],
cq2 —c chy(1 —q2) c(1=h)(1—qa)
where d>0, 0<c<1, 0<q1<1, 0<g<1, 0<h <1, 0<hr <1,

q1+ (1 —hy) >0 and g, + hy > 0. Straightforward, but tedious, calcula-
tions lead to the expressions

Sy = [Soll ‘5’012}’ S = [Slu Sll2]’

SOZI Sozz S121 Slzz
where
S0 = —2—(=papr(c(1 — @) — (1 — 1))
UM 7 —p» P2p1 92 q1

+c(1 — g2)p2 — (1 + g2c)p1 + qac),

So,, = (Pi(c(1 = g2) — (1 — q)) + (1 — ¢ + 2g2¢)p1 — gac),
P —p2

Soy = (—p3(c(1 = q2) — (1 — q1)) — (1 — ¢ + 2q2¢)p2 + g2c),
D1 — D2

Soy, = (p2p1(c(1 = q2) — (1 —q1)) — c(1 — q2)p

P —p2
+ (1 + q2¢)p2 — q2c)
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and

(p2p1(c(1 = q2) = (1 = q1)) — ¢(1 — q2)p2

Sy =

p1—p2
+ (1 =g — c(1 = g2)h2)p1 + c(1 — g2)h2),

= ——(-pi(c(1 = q2) — (1 = q1)) + (c(1 — g2)
b1 — P2
+c(1—=g2)h — (1 = q1)h)p1 — c(1 — q2)h2),

— (A1~ )~ (1~ @) - (cl1 - 2
+c(1—g2)hy — (1 = q1)h)p2 + c(1 — q2)ha),
7 (=p2p1(c(1 — q2) — (1 —q1)) + c(1 — @2)p1
— (1= g1)h — c(1 = q2)h2)p2 — (1 — q2)2).

The valid similarity transformations are those that make Sy, <0,
So,, <0, So,, >0, Sp,, >0 and all elements in S; non-negative with
at least one non-zero element. Recall that S= S+ S; and S¢& = 0.

The following quadratic expressions are important for sign
behavior:

1z

121

Slzz =

(%), =X (c(1 = g2) = (1 — 1)) + (1 — ¢ + 2920)x — gac,
fx)s, = =2 (c(1 =) = (1= q1)) + (c(1 — 92)
+c(1=q)h— (1 — q1)h)x — c(1 — q2)h2).
The roots of f(x) 5, are found to be

Pl - qz)l— =) (C 1= 2ge+4/(1- o +4q1qzc),

= =g =t =ay (¢ e VU= )

The roots of f(x) 5, are
L= @)(1+h) = (1= gy
T - ) - (T —a)

el = a2)(1 1) — (1= g)? +-4el1 —g0)(1 ~ g2)ba(1 — )
20e(i — ) — (L —q1) ’
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oy = L@+ k) — (1= q1)h
2e(1=q2) = (1 = q))

Vet = g2)(1 = k) — (1 = q))? +4e(1 — 1) (1 — g2)la(1 — )
2(c(1 = q2) = (1 —q1)) .

From the roots and signs of f(x)s, and f(x)s, one can find the
parameter values (p;, p;) that make the off-diagonal elements of S
and ) non-negative.

The restrictions on (py,p;) imposed by the requirements on the
diagonal elements of §; can be found from the elementwise inequality
So@ < 0 which implies

c(1—q)
c(l-=q)—(1-q1)

These restrictions are imposed by the non-negativity of the diagonal
elements of §;. Unlike the restrictions found above, valid values of p;
and p, in the present case are not mutually independent. From the
above it can be seen that S;,, > 0 implies

pi
ka

<1 (i=1,2) where k;=

p2(p1(c(1 = q2) = (1 —q1)) — c(1 — q2))
> (c(1 = gq2)h2 — (1 = q1)h)p1 — c(1 — @2)ha.

This inequality has the form p,g;(p1) > g2(p1). Let
bi(p1) = 2(p1)

gi(p)
_ (el = g)hy = (1 = qi)m)p1 — c(1 — @)y
plcl—g@)—(1-q))—c(l-q)
It can be seen that Sy,, > 0 implies
—p2(pi(e(l = q2) = (1 = q1)) + (1 = 1) — (1 — @2)h2)
> c(l = g2)hy — c(1 — q2)ps.

This inequality has the form pye;(p;) <ex(p1). Let

_ ex(p1)
b2(p1) - el(Pl)
c(1—q2)pr —c(1 — q2)ha

"o —q2) — (1 —q1) + (1 —q1)h1 — c(1 — g2)h2
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Clearly the similarity transformations we are looking for are those with
parameter values (p;, p») that obey all the restrictions listed above.

To summarize, we have the following bounds on p; and p,. If for
any of the intervals below a > b, then [a, b] € 0.

The case ¢(1 — g5) — (1 —¢1) > 0:

p1 € [max(pi, 02), min(o1, ky)]

(1 —g)hy — (1 —q1)h
c(l-g)-(1-q) °

p2 € [max(p2, b2(p1)), min(p1, 02, b1(p1))]

else

JZAS [P2, min(plsaZ,bl(pl)’bZ(Pl))]'

if py <

The case ¢(1 —g3) — (1 — ¢1) <0:

p1 € [max(p1,02), po
c(1—q)hy — (1 = q1)ly
c(l-q)—(1-q) °
p2 € [max(kqg, 1), min(p1, 02, b1(p1), b2(p1))]
else

p2 € [max(kg, 01, b2(p1)), min(p1, 02, b1(p1))]-

ifpr <

Example A.1 In the case h; =h, the MAP is readily identified as a
two-state PH — renewal process. Letting 4= h; = h,, we find that

c(1—¢q)
c(l-gq)—(1-q1)’
oy =h, bi(p1) =h,

c(l —go)
(1-q)—(1—q1)

This yields substantial simplifications of the valid region for p; and p,.

o1=ks=

by(p1) =ka= p

The case ¢(1 — ¢g5) — (1 —¢1) >0:

p1 € [max(p1,h),kg] and p; € [ p2, min(py, A)).
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The case ¢c(1 —g2) — (1 —¢1)<0:

JANS] [max(pl,h),pz] and p, € [kd, min(pl,h)].
Example A.2 1Inthecase hy =1 and hy =0 the MAP (Do, D) is readily
identified as the two-state MMPP (or SPP). In this case we have:

thecasec(l —g2)—(1—¢1)>0:01=1,0,=0,
thecase c(1 —¢q2) — (1 —¢1)<0: 01=0,0,=1,

B —(1—q1)p
bi(p1) Tl —g) -0 —=q))—c(1—q)’
by(p) = L

pi(cl—gq2) = (1=gq))+(1—q1)°



