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We model the error control of the partial buffer sharing of ATM by a queueing
system M, M,/G/1/K+1 with threshold and instantaneous Bernoulli feedback. We
first derive the system equations and develop a recursive method to compute the loss
probabilities at an arbitrary time epoch. We then build an approximation scheme to
compute the mean waiting time of each class of cells. An algorithm is developed for
finding the optimal threshold and queue capacity for a given quality of service.
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1. INTRODUCTION

Asynchronous Transfer Mode (ATM) is considered as the basis of the
packet-switching technologies of the next generation [3]. ATM is a
packet transfer mode using fixed size information cells. ATM cells
have a cell loss priority bit in the header such that high- and low-
priority classes can be distinguished. Numerous researchers have
focused on developing priority control scheme for efficient buffer utili-
zation (Bae and Suda [2]). Those works show that it is primarily
important to design a buffer control scheme such that the control policy
satisfies the quality of service (QoS) for different priority classes.
Usually the delay-sensitive data are given low priority and the loss-
sensitive data are classified as high-priority class.
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Loss priority control is concerned with reducing the cell loss pro-
bability of the loss-sensitive data. Studies on loss priority control can be
found in Garcia and Casals [5], Kroner [10], Hebuterne and Gravey [8],
Petr and Frost [13], Suri et al. [14], Chang and Tan [4], and Akyildiz
and Cheng [1]. Kroner [10] proposed two mechanisms for controlling
the loss priority: “push-out mechanism” and “partial buffer sharing
mechanism”.

In the push-out mechanism, if the buffer is full and a high-priority
cell (type-1 customer) arrives, a cell with low priority (type-2 customer)
is pushed out and lost. In the partial buffer sharing mechanism, low-
priority cells can only access the buffer if the buffer occupancy is less
than a given integral value 7. Kroner [10] showed that the system
performance can be improved by using priorities and that the partial
buffer sharing mechanism is a good compromise between performance
and implementation.

In order to achieve a reliable data transmission in ATM networks,
each terminal should have some error recovery scheme. There are two
methods for the error recovery: “retransmission method” and “for-
ward error correction method” [12]. In retransmission method, if the
receiver receives a correct cell, it returns an ACKnowledgment (ACK)
to the sender. Otherwise, it discards the incorrect cell and returns a
Negative ACKnowledgment (NACK). The sender upon receipt of
NACK retransmits the cell. In foward error correction method, the
receivers recovers the lost cells by using a coding technique [18].

In this paper, we build an M;, M,/G/1/K+ 1 queueing system
with threshold and instantaneous Bernoulli feedback for the optimal
control of the partial buffer sharing in ATM. As an error recovery
scheme, we assume the retransmission method. We use a recursive
method [6,7,11,20] to compute the state probabilities and performance
measures.

2. THE MODEL

21. The System
We consider the queueing system with following specifications (Fig. 1):

(1) High-priority cells (type-1 cells) and low-priority cells (type-2 cells)
arrive singly according to independent Poisson processes with rates
)\1 and )\2.
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FIGURE 1 The system.

(2) The system has a single processor and K waiting spaces (therefore
there can be K+ 1 cells in the system including the one in
processing).

(3) Processing times are assumed to be identically and generally
distributed.

(4) Queue disciplines are as follows:

(i) If the queue length (i.e., the number of cells in the queue
excluding the one under processing) is less than the threshold
T, all arriving cells enter the system.
(ii) If the queue length is greater than or equal 7, only type-1 cells
are allowed to enter the system.
(iii) If the buffer is full, all arriving cells are lost.

(5) After being served, a cell leaves the system with probability 1 —p

or rejoins the server instantaneously with probability p.

2.2. System Equations

Let us define the following notations and probabilities:

A1 arrival rate of high-priority (type-1) cells,
A2 arrival rate of low-priority (type-2) cells,
A total arrival rate of cells (= A1 + \y),

p feedback probability of a cell,

T threshold,

K queue capacity,

S(x) processing time distribution function,

s(x) processing time probability density function,
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S*(6) Laplace transform of s(x),

E(S) mean processing time,

Var(S) variance of S,

Py oss1 loss probability of type-1 cell,

Py oss2 loss probability of type-2 cell,

a offered load (= (A + \2) E(S)),

a carried load (=[A1(1 — Pross1) + A2(1 — PLoss2)] E(S)),

R(?) remaining processing time of the cell under processing at
time ¢,

N(1) total number of cells in the system (including the one in

processing) at time ¢,

Po(2) = Pr[N(1) = 0],
P,(x,t)Ax = Pr[N(t) =n, x < R(t) <x+Ax], (n=1,...,K+1),
Py(t) = Pr[N(t) = n] = [[° Pu(x,0)dx,(n=1,...,K+1).

It is not difficult to derive the following steady-state system equations:
0 =—APy+ (1 —p)P:1(0), 2.1

L Pi() = AP (3) + p5(x)P1(0) + (1 = p)s(x)P2(0) + APos(),

(2.2)
- %P,, (%) = —AP (%) + ps(x) P (0)
+ (1 = p)s(x)Pps1(0) + APp_1(x), (2<n<T),
(2.3)
- Ed;PTH (x) = —=A1Pry1(x) + ps(x) Pr+1(0)
+ (1 = p)s(x)Pr4+2(0) + APr(x), (2.4)
L Pulx) = ~APa(x) + p5(0)Pa(0) + (1 = p)s(x) P 0)
FAP(X), (T+2<n<K), (2.5)
— L Pr1(x) = 53 Pri1(0) + M Pr(). (2.6)

dx
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Let us define the following Laplace transform:
oo
PiO)= [ TR, (1<n<K+D)
0

Taking the Laplace transforms of both sides of (2.2)—(2.6), we obtain
the following transform equations:

(A= 0)P}(8) = S*(8)[\Po +pP1(0) + (1 — p)P2(0)] — P1(0), (2.7)
(A= 6)P;(8) = AP,_;(6) + S™(0)[pPn(0) + (1 — p) Pr41(0)]

—P,(0), n=2,...,7), (2.8)
(M = 0)P1.1(8) = AP7(0) + S™(8)[pPr+1(0) + (1 — p) P112(0)]
— Pr11(0), (2.9)

(M = 0)P;(6) = M Py (6) + S*(0)[pPn(0) + (1 = p) Prs1(0)]
—P,(0), (n=T+2,...,K), (2.10)

—0Pg 1(0) = M Pg(0) + pS™(6) Px+1(0) — Px+1(0). (2.11)

2.3. Probability Computation

Let the steady-state probability be
o0
P, =P;(0)=P;(0)|p— = / P,(x)dx, (n=1,...,K+1).
0

From (2.1), we have
Py(0) = APo/(1 — p).

Using (2.1) in (2.7) and adding (2.7)—(2.11), we get

g‘ip;(o) [ -5 (0)]§P (2.12)

n=1
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From (2.12) and using L’hospital’s rule, we get

im@=[“m”§p )

Using (2.1) in (2.7) and letting 6=\ and 6 =0 respectively in (2.7),
we get

K41

= E(S))_P,(0). (2.13)
n=1

=0

A [1=80\)
Py(0) = (1-p) [ S* (N ]PO’ (2.14)

pi(0) = 12

P5(0). (2.15)

>

Note that S*()\) is the probability that no cells arrive during a
processing time. Now letting 6 = A in (2.8), we obtain

(1= pS*(N)]Pa(0) — AP, (A)
(1—-p)S*(N) ’

Let us define jth derivative of P;(0) as

Ppi1(0) = (n=2,...,T). (2.16)

d’Py(6)

= p*0 =1,...,K+1).
a0 P), (n=1,...,K+1)

From (2.7) and (2.8), we obtain

PIOW) = =7 SUVNP(0) + (1 = p)P(O)

p:(j) (N

=-7§T{Aaﬁ?”u)+s“ﬂ”unpam»+<1—pﬂuHmn}

(n=2,...,T, j=0,...,T—n—1), (2.18)

where P;© (A) = P}(X). Now P,(0) (3 <n< T+ 1) can be expressed in
terms of P, recursively from (2.17) and (2.18).
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Letting 6 = A in (2.9), we get

Pria) = EEE G A0 ag)

From (2.7) and (2.8), we get

S*(A)[P1(0) + (1 — p)P»(0)] — P1(0)

Pru) = ,\2 . (2.20)
Pr(M) = APy (M) + S*(Al)[an(0/32+ (1 = p)Pn+1(0)] — Pa(0) ,
(n=2,...,T). (2.21)

Now, Pr,»(0) can be expressed in terms of P, recursively from (2.20)
and (2.21).
Letting 6 = A in (2.10), we get

[1 = pS*(M)]Pa(0) — M Py (A1)

Pr1(0) = 0 —p)500) 2 , (m=T+2,....K).
(2.22)
From (2.7)—(2.10), we get
P () = S OIP0) + (1 L) +P 00
(j= 19""K_T)’ (223)
P;(j)()\l)
_ P2, () + S O A)[pPA(0) + (1 = p) Pas1 (0)] +7P2Y " (\)
A2
m=2,...,T, j=1,...,K—T), (2.24)
P; ()
S ,_+1‘T {AP;‘”"(A]) + 8" (A)[pPr41(0) + (1 —P)PT+2(0)]}=

(j=0,...,K—T-2), (2.25)
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p;(j) (A1)

= —]-%-_1{)‘ P*(1+1)()\1) + S*(j+1)()\1)[pP,,(0) +(1 —p)Pn+1(0)]},

(n=T+2,...,K—1,j=0,....K—n—1). (2.26)
Hence P*T(i)] (M) (G=0,...,K—T—2) can be obtained recursively
from (2.23) and (2.24). Also P,(0) (T+3 <n< K+ 1) can be obtained

in terms of P, recursively from (2.25) and (2.26).
Letting 6 =0 in (2.8)—(2.10), we get

AP, _1(0) + (1 = p)[Pn11(0) — Pn(0)]

P, (0) = 3 , (n=2,...,T),
(2.27)

P3.(0) = AP7(0) + (1 —p)[flm(O) — Pra(0)] (2.28)

PX(0) = '\‘P*’(O)Jr(l_fl)[P”“(O) ”(0)], (n=T+2,...,K).
(2.29)

The only unknown quantity P ;(0) can be obtained from (2.13),

K+1

P}..(0) = E(S) Z P,(0) — Z PX( (2.30)
Py can be obtained from the normalization condition and is given by
K+1 -1
1+> P} (0)} (2.31)
n=1

The above procedure to compute {P,, n=0,...,K+1} can be
summarized as follows:

Step 1: Let Py=1 (P, will be calibrated after the normalization).
Compute P;(0) from (2.1).
Compute P,(0) from (2.14).
Compute P1 (0) from (2. 15)
Step 2:  Compute P1 (}\) (j=0,...,T-2) from (2.17).
Compute P\ (\), (n=2,...,T,j=0,...,T—n—1) from
(2.18).



Step 3:

Step 4:
Step 5:
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Compute P, . 1(0), (n=2,...,T) from (2.16).

Compute Py (A1) from (2.20).

Compute P;(\1), (n=2,...,T) from (2.21).

Compute Pz, 5(0) from (2.19).

Compute P{Y(\)), (j=1,...,K— T) from (2.23).

Compute Pf,(j)(/\l), n=2,...,T,j=1,...,K—T) from
(2.24).

Compute P37 (A1), (j=0,...,K— T—2) from (2.25).

Compute P} (\)), n=T+2,...,K—1,j=0,...,K—n—1)
from (2.26).

Compute P, 1(0), n=T+2,...,K) from (2.22).

Compute P;(0), (n=2,...,T) from (2.27).

Compute P7.(0) from (2.28).

Compute P;(0),(n=T+2,...,K) from (2.29).

Compute Py (0) from (2.30).

Compute SUM = 1 + 3541 px(0).

Compute Po=1/SUM.

Compute P, = P;(0)/SUM, (n=1,...,K+1).

2.4. Performance Measures

Let us define the following notations:

X
AI

mean number of cells (combining both types),

mean queue size (combining both types),

mean system sojourn time (irrespective of cell types),

mean queue waiting time (irrespective of cell types),
effective arrival rate of high-priority cell (= A;(1 — Pross1)),
effective arrival rate of low-priority cell (= Ay(1 — Py ogs2)),
effective total arrival rate (= X} + \}).

Then we have

L= KZHn P, (2.32)
g = Kzﬂ(n -1)- P, (2.33)



338 B.Y. AHN AND H.W. LEE

From Little’s law, we get
W=L/N, Wy=Ly/X. (2.34)
Let Ppross1 and Py o2 be the loss probabilities of each types of cells

respectively. Then from PASTA (Poisson Arrivals See Time Average,
Wolff [19]), we get

Pross1 = Pg1, (2.35)
K+1
PLoss2 = Z Pn- (236)
n=T+1

2.5. Numerical Example

We consider an example with A\; =1.0, A, =2.0, p=0.01, T=3, K=35.
We assume deterministic processing time with E(S)=0.3. Then we
have A=\, + X\, =3.0, $*() =¢ .

Step 1: Compute P,(0), (n=1,2) and P;(0).
Po(0)=1.0,
P1(0) = APy/(1 — p) =3.030303 03,
P(0) = AP[1 — S*V]/I(1 — p)>S*(\)] = 4.467716 899,
P;(0) = (1 — p)P2(0)/) = 1.474346577.

Step 2: Compute P,(0), (n=3,4,5,6).
Pr(A) = —S*D(N)[P1(0) + (1 — p)P2(0)] = 0.909090 909,
P2 =—S* @ (N)[P1(0) + (1 — p)P,(0)]/2 = 0.136363 636,
P3(0) = {[1 = pS*(N)]P2(0) = APF(A)}/[(1 = p)S*(N)]

= 4.278913 872,
P;() = =P D) + S*O(N)[pP5(0)
+(1—p)P3(0)]} = 0.931224 16,
P4(0) = {[1 = pS*(N)]P3(0) — APF(N)}/[(1 = p)S*(N)]
= 3.646783 036,
Pi(A) = {S*(M)[P1(0) + (1 — p)P2(0)] — P1(0)}/ X2
= 1.245634 547,
Py(A1) = {AP} (A1) + 8 (A1) [pP2(0)
+(1 — p)P3(0)] — P2(0)} /A2 = 1.220241 396,
P3(A1) = {AP3 (A1) + 8 (A1) [pP3(0)
+(1 — p)P4(0)] — P3(0)} /A2 = 1.044048 289,
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P5(0) = {[1 — pS*(M)]P4(0) — AP; (M)}/[(1 — p)S*(M))]
= 0.664869 732,

PO = {S*O(A)[P1(0) + (1 - p)P5(0)]

+PF(A1)}/ M2 = —0.20541 8545,
PP (A) = {=5*@(A)[P1(0)+(1 — p)P2(0)] + PrV(A)} /%

= 0.043052 201,

P;O0) = (AP () + S5O (A1) [pPa(0) + (1 — p)P3(0)]
+P; (,\1)} /A = —0.173701527,

PO = (P (1) + S5O (\)[pP3(0) + (1 — p)Pa(0)]

+P3g 1)}/,\2 = —0.14447 1085,

P;(\1) = —{AP; (A1) + 8D (\)[pP4(0) + (1 - p)Ps(0)]}
= 0.587804 706
P5(0) = {[1 —pS*(M)IP5(0) = AP (M)}/[(1 = p)S*(A1)]
= 0.098361 825.

Step 3: Compute P,;(0), (n=2,3,4,5).
P3(0) = {AP}(0) + (1 p)[P5(0) — P(0)]}/
= 1.412041 578,
P;(0) = {AP;(0) + (1 — p)[P4(0) — P3(O)]}/
= 1.203438 402,
P;(0) = {AP;(0) + (1 — p)[P5(0) — P4(0)]}/
= 0.658221 035,
P3(0) = {MPF(0) + (1 — p)[Ps(0) — Ps(0)]}/ M
= 0.097378 207.
Step 4: Compute P¢(0).
P;(0) = E(S) X5, Pa(0) — Y23, P2(0) = 0.010658719.
Step 5: Compute P,, (n=0,1,...,6).
SUM =1+ Y5_, Px(0) = 5.856084 518,
Py=1/SUM =0.170762 562,
Py = P}(0)/SUM = 0.251763 199,
P, = P;(0)/SUM = 0.241123 837,
P; = P;(0)/SUM = 0.205502 225,
P4 = P;(0)/SUM = 0.112399 511,
Ps = P¢(0)/SUM = 0.016628 552,
= P¢(0)/SUM = 0.001820 110.

Then we have Prosi=Pe=0.001820110, Pros2 = Zf,=4 =
0.130848 172.
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2.6. Approximation of the Mean Sojourn Time of Each Class

In this section we derive an approximate mean waiting time and
system sojourn time of each class of cells following the method
described in Lee and Ahn [11]. Let us define the following notations:

P,  probability that an arriving cell sees n cells in the system,

Tr, remaining total processing time of the cell under processing
when the arriving test cell finds # cells in the system,

Wq(l) approximate mean queue waiting time of a high-priority
(type-1) cell,

W}z) approximate mean queue waiting time of a low-priority (type-2)
cell,

w®  approximate mean system sojourn time (=queue waiting
time + processing time) of a high-priority cell,

Ww® approximate mean system sojourn time (=queue waiting
time + processing time) of a low-priority cell,

Q! probability that the position of the high-priority test cell is n
given that it enters the system, (n=1,...,K+1),

Qﬁ probability that the position of the low-priority test cell is n
given that it enters the system, (n=1,...,T+1).

From PASTA, we have

Ql — Pn—l — Pn——l
"ok Pm (1= Pxi)
i (n=1,...,K+1) (2.37)

B (1 - PLossl) ’
Similarly, we have

P,
2 n—1
Qn (1—PLoss2)’

We first note that the number of cells that is found by an arriving
cell and the remaining total processing time of the in-service cell are
not independent. Takagi [16] shows how to obtain the joint transform
of the two quantities in case of simple finite capacity M/G/1 queue
with one class of customers. It is expected that the joint transform for
two class cases is more difficult to obtain. With this difficulty in mind,

(n=1,...,T+1) (2.38)
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we proceed to obtain the approximate mean waiting time as follows:
Let the total processing time of a cell be S7. Then we have

Sr=81+8+ -+ Sk (2.39)
where K is a geometric random variable with
Pr(K=k)=p 1 -p), *k>1) (2.40)

Since the probability generating function K(z) of K is [(1 —p)z]/
(1 —pz), we have the Laplace transform of the probability density
function of St as

S3(6) = —————-———(i :i ?SS (g) (2.41)
The mean becomes
E(St) = 15(_%); (2.42)

and the second moment becomes

1 — p)E(S?) + 2pE*(S)
(1-p)’

E(S%) = ( (2.43)

Let IT}p(z,0) be the joint transform of the number of cells in the
system and the remaining total processing time in an ordinary M/G/1
system with Bernoulli feedback (we will denote the system as M/G/1/
FB). Then, it is known that (Takagi [15])

(1 = pr)z(1 — 2)[S7(A — Az) — S7(0)]

" A
Mrs(20) = = A 1205300 —20) — 2]

(2.44)

where p7= AE(S7) = AE(S)/(1 —p). Thus the mean remaining total
processing time when the entering cell sees one cell in the ordinary
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M|G/1/FB system becomes

—(8/06)(0/02)Wp(2,60)|,_y

E(TRr1,m/6/1/FB) =

P ry6/1/rB
(1-pr) [ E(ST)]
= 1+ y 2.45
APy p/G/1/FB STN) (2:49)

where Pj a6/1/r8 is the probability that an arriving cell finds one cell
in the system in the ordinary M/G/1/FB queue.

Returning to our system, let E(Tg ;) be the mean remaining total
processing time of the in-service cell under the condition that the
entering cell finds j cells in the system. To obtain E(Tg ), we apply the
result of ordinary M/G/1 queueing system with infinite capacity. Our
justification for doing so is that the loss probability in our system is
extremely low. Thus using Q} = Py /[1 — Pros1] in place of Py ar6/1/r8
in (2.45), we can approximate E(Tg ;) by E(Tx) where

E(Try) = ¥ QET) [1 + gif;;] (2.46)

E(Tru,mic/1/r8) for n>2 is hard to obtain because we need to
differentiate (2.44) n times. Thus in these cases, we are going to use the
remaining total processing time irrespective of the number of cells seen
at an arrival epoch. Let Sy, be the steady-state remaining total
processing time that an arbitrary arriving test cell sees irrespective of
the number of cells in an ordinary M/G/1/FB system. Then we have
(Wolff [19])

E(S3)
2E(S7)

o0
E(Sty) = Z Pyyy6)1/8 - E(TrnM/G/1/FB) =
n=1

_ (1-p)E(S?) + 2pE*(S)
- 2(1 - p)E(S)

(2.47a)

or

o0
Z P pi/6)1/FB - E(TRrpmM/G/1/FB)

n=2

= E(St+) — Pym/6/1/FBE(TR,M/6/1/FB)- (2.47b)
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Thus we have

E(Trnmy6/1/r8) = E(TR M/G)1/FB)
_ E(St+) = Pruyo/rsE(Tr,) M/G/]/FB)
> o2 Pumjc)1/B

(2.48)

Thus for n > 2, we use the following quantity as the approximate mean
remaining total processing time averaged over all cells:

E(Sr.) — Q3 E(Tr))
1-9l-01

In summary, we use the following quantity as the approximate mean
total remaining processing time:

Uopn) ) B0 ()

E(Trn) = E(Tg) =

n>2).  (2.49)

by 1
E(Tg,) = e . (2.50)
E(Sty) — QYE(TR)) (n>2)
1-01-0) -

We, then, have the approximate formula for mean waiting time of an
arbitrary high-priority cell as

K+1

W) = QE(Tr1) + Y O {E(Try) + (n—2)E(ST)}.  (2.51)

n=3

The mean system sojourn time W of high-priority cells can be
obtained from
m_ 1
wO = E(Sr) + w. (2.52)

Similarly, we obtain the approximate mean waiting time and sojourn
time of a low-priority cell as

T+1

W = QUE(Tr1) + Y 02 {E(Try) + (n—2)E(ST)},  (2.53)

n=3

w®@ = E(Sy)+ w®. 2.54
q
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3. PERFORMANCE ANALYSIS

In this section we analyze the performance of the system.

3.1. Changingthe Feedback Probability p

We first analyze the effect of the feedback probability p on the loss
probabilities and mean system sojourn time. We see in Fig. 2 that as p
increases Py g1 and Py g5 increase. For this particular example, loss
probabilities begin to increase sharply around at p=0.1. Figure 3

shows that as p increases mean system sojourn time of both types
increases.

3.2. Changingthe Load Ratio \;/\

Figure 4 shows the effect of the load ratio A;/A on the mean system
sojourn time for different p. As we can see in the figure, p has more
effect on the mean system sojourn time than the load ratio A;/A does.

This tells us that controlling p is more effective than controlling the
load ratio.

6.06-01 1.06400
Sy T
—@—High-priority cell e .
§ 5.06-01 <eeBeee-Lowpriority cell '-'...A 8.06-01 @
£ 7.06-01 1
% 4.06-01 .
6.06-01
= X
2 g
0E-01 5.06-01
e S
= 4.06-01 %
-]
g 2.06-01 3.06-01 ‘g
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FIGURE 2 Change of loss probabilities as p varies (a=0.95, A\/A=0.7): A=S5,
E(S)=0.19, Var(S)=0, T=18, K=20.
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FIGURE 4 Mean system sojourn times as A;/A varies for different feedback prob-
abilities p (a=0.95): A=5, E(S)=0.19, Var(S)=0, T=18, K=204.

4. OPTIMAL THRESHOLD T7'* AND BUFFER SIZE K*

In this section we propose an algorithm to determine the optimal
threshold 7™ and buffer size K* that satisfy a given QoS. Let LIMIT,
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and LIMIT, be the QoSs for high- and low-priority cells respectively.
We define (T*, K*) as the minimum values of T and K that satisfies the
QoSs simultaneously. Then we have

(T*,K*) = min{(T, K)|Pross1 < LIMIT; and PpLossz < LIMIT,}.
(4.1)

Since the functional form of P, is not known, it is impossible to find
optimal T* and K* analytically.

4.1. The Algorithm
The following algorithm is developed based on (4.1).

(Algorithm for finding the optimal threshold T* and queue
capacity K*)

(stepl) SetK=1.
(step2) SetT=1.
(step3) Compute Py o1 and Py ogso.
(step4)  If Pross1 < LIMIT; and Pyog, < LIMIT,
Set I =T, L, =K, go to (step 6).
Otherwise, go to (step 5).
(stepS) SetT=T+1,
IfT>K
Set K=K+ 1, go to (step 2).
Otherwise, go to (step 3).
(step 6)  Stop. (T, K*)=(l, D).

4.2. Numerical Example

Suppose we have A=1, p=0.01, E(S)=0.9, Var(S)=0, LIMIT, =
107° and LIMIT,=10"3. We find the optimal pair of the threshold
and the queue capacity (7, K*) as the load ratio A/ varies. Figure 5
shows the optimal values (7™, K*) for various load ratios. We see that
(T*, K*) also increases as the ratio A;/A increases. For this particular
example, partial buffer sharing does not make sense if the load ratio is
greater than 0.7.
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FIGURE 5 Optimal threshold and queue capacity: a=09, LIMIT,=107>,
LIMIT,=103 X=1, p=0.01, E(S)=0.9, Var(S)=0.

5. RESEARCH SUMMARY

We analyzed the partial buffer sharing with error control using
My, M,/G/1/K+ 1 queue with threshold and instantaneous Bernoulli
feedback. We developed a recursive algorithm to find the loss prob-
abilities. We also obtained the approximate mean sojourn times of
each class of cells. We finally proposed an algorithm that determines
the optimal threshold 7* and buffer size K* under a given QoS.
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