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Benney’s theory of evolution of disturbances in shear flows over smooth and flat
boundary is extended to study for shear flows over combined spatially and temporally
corrugated walls. Perturbation and multiple-scales analyses are employed for the case
where both amplitude of the corrugations and the amplitude of wave motion are small.
Analyses for instability of modulated mean shear flows with respect to spanwise-
periodic disturbance rolls and for the subsequent vortex formation and vortex stability
are presented, and the effects of the corrugated walls on the resulting flow and vor-
tices are determined. It is found that particular corrugated walls can originate and
control the longitudinal vortices, while some other types of corrugated walls can
enhance instability of such vortices.
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1 INTRODUCTION

In the last several decades there have been essentially two main theo-
retical approaches to investigate the instability of shear flows to
spanwise-periodic disturbance rolls and the subsequent prediction of
the observed longitudinal vortices in shear flows over smooth and
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flat walls. On one hand the work by Benney [1,2] and Benney and Lin
[3] was concerned with alternative theoretical approach to the three-
dimensional instability of parallel shear flows and was involved in
interactions between first harmonics of disturbance waves and the
mean shear flows. At high values of Reynolds numbers such interac-
tions were nonlinear and took place on a fast time scale. Instability to
spanwise disturbance rolls was then detected in several cases. Benney
speculated that such instability may explain the well-known experi-
mental observations of Klebanoff et al. [4]. These experiments showed
clearly the evidence for spanwise-periodic longitudinal vortices main-
tained by the wave motion and provided proof that three-dimensional
waves dominate the nonlinear flow regime. On the other hand the
work by Craik [5-7], Leibovich [8] and Leibovich and Paolucci [9]
considered the stability of unidirectional shear flows in the presence of
small amplitude two-dimensional waves, independent of the spanwise
direction, with respect to streamwise independent disturbances in the
form of longitudinal vortices. The resulting instability was called later
by the subsequent investigators [10] as CL2, or Craik—Leibovich type-
2. The method of approach used in this latter work employs combi-
nation of a generalized Lagrangian-mean equations [11] plus some
modeling to take into account the influence of the developing mean
flow on the fluctuating part of the flow.

Both of the theoretical approaches described above intended to
understand the same type of instability and its consequences on the
shear flows which could explain, with more deeper physical under-
standing, the flow features exhibited in notable experiments such as
that of Klebanoff et al. [4]. Patera and Orszag’s [12] computational
study of the linear instability based on infinitesimal three-dimensional
disturbances superimposed on an evolved finite amplitude two-
dimensional shear flow led to the finding that there were some rapidly
growing instabilities, and some similarities between their computa-
tional results and those of linear instability computations of Benney
model carried out by Benney and Chow [13] were noticed. CL2-type
instability referred to earlier in this section can also be considered as a
Patera and Orszag [12] type instability for order one mean shear flows.

In the present study we apply the approach due to Benney [2] to
investigate shear flow instability, vortex formation and vortex stability
and control in shear flow over corrugated walls at high Reynolds
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numbers in order to obtain some estimation of the effects of surface
corrugations, that can vary both in time and space, on the disturbance
evolution and on the subsequent induced secondary mean flow and
vortices.

2 GOVERNING SYSTEM

We consider an incompressible fluid flow of average depth d over a
wall which is corrugated with respect to both time and space variables.
It is convenient to use a cartesian system of coordinated x*, y*,z*,
with y*=0 being the averaged location of the wall. We non-
dimensionalize the governing Navier—Stokes and continuity equations
by using d, U, d/U and pU2 as scales for length, velocity, time and
pressure, respectively. Here U is an appropriate velocity scale and p is
a reference (constant) density of the fluid. The non-dimensional form
of these equations can then be written in the form:

0 _ 1_,
(E+u~V)u— Vp—i——IEV u, (L.1)

V.ou=0. (1.2)

Here u is the velocity vector (u,v,w), p is the pressure, ¢ is the time
variable and R=dU/v is the Reynolds number, where v is the kine-
matic viscosity.

The boundary conditions for (1.1)—(1.2) are:

(u—us)=_z(f:') ;)_:(u—us) aty =0, @.1)
m=1 '
u=0, aty=1, (2.2)

where 6 is the magnitude of the corrugations, which is assumed to be
small (6« 1), h is corrugated wall shape function, x=x*/d is the
streamwise variable, y =y*/d is the transverse variable, z=z*/d is the
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spanwise variable and wuy= (u, vs, wy) is the velocity vector of the
corrugated wall. The conditions (2.1)—(2.2) are based on the con-
sideration that the velocity vector assumes the corrugated wall velocity
vector on the corrugated wall. The terms in the right-hand-side of (2.1)
arise simply by the contributions of the higher order terms in a Taylor-
series expansion about y =0 of (u — u).

We now apply a mean flow—first harmonic interaction type theory
[2] for (1.1)—(1.2) and (2.1)—(2.2). The modification of the mean flow
by the first harmonic of the superimposed waves makes the subsequent
stability analysis more involved since the interactions between the
mean flow and the first harmonic arise nonlinearly. Following Benney
[2], we consider the following expansions for the dependent variables
of the present problem:

(u, v, w,p) = (uo,0,0 — Lx/R) + (11, vo + 1, wo + W1, ;)
+ 82 (g, 72, W2, po + Pp) + C.C.+ -+, (3.1)
where —Lx/R is a linear function of x providing a constant pressure
gradient driving an initial classical parabolic basic flow velocity profile

in the streamwise direction, the coefficients with subscript zero “0” are
functions of y, z and of slow variables x, and ¢, defined by

x5 = x, ty = bt, (3.2)

and the other coefficients with subscripts n (n#0) are functions of
(x, x5, 1,2, t, t;). We shall assume that

u; = (us, Vss Ws)

= (uso,(), 0) + 5[ﬁs1 + 5’1,7;1, Vo + V51 + 5’%1, Wso + Ws1 + 5’»7’;1], (3.3)
where §’ is another small parameter (6§ < 8’ < 1), the coefficient uy is
a constant and particular forms of the other coefficients introduced in
(3.3) will be specified later, but the unprimed ones are, in general,
functions of x, x;, z, t and ¢, and primed ones are, in general, functions

of x,, z and t,. The surface corrugation shape function 4 is likewise
assumed to be of the form:

h = h(x, %, 2,1, 15) + 8 H (xs, 2, 1), (34)

where the coefficients 4 and A’ will be specified below.
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In the spirit of the mean flow—first harmonic interaction theory [2],
we assume the following simple forms for the given coefficients 4, A,
ﬁsl, ﬁs/], wsl and ﬁ’.’\'l:

h(x, x5, 2,8, t5) = A(xs,2, tx) exp(iax —iwt) + C.C., 4.1)
K (x5, 2, t5) = A' cos(Bz) exp(id'x; — iu't;) + C.C., (4.2)

w51 (X, X5, 2, 1, t5) = Ug1 (X5, 2, 1) €xp(iax — iwt) + C.C., (4.3)
il (x5, 2, t5) = 1y cos(Bz) exp(ia'x; —iw'ty) + C.C., (4.4)
Vs1(x, X5, 2, 1, ) = 51 (X5, 2, 25) exp(iax — iwt) + C.C., 4.5)
V1 (x5, 2, 15) = v,y cos(Bz) exp(ia/x; — iw'ts) + C.C.,  (4.6)

Ws1 (X, X5, 2, 8, 15) = Wyt (X5, 2, 1) exp(iax — iwt) + C.C., 4.7

Wiy (x5, 2, 15) = Wy sin(Bz) exp(ia/x; — iw't;) + C.C., (4.8)

where i = vV—1, a and o’ are streamwise wave numbers of the surface
corrugation, 3 is spanwise wave number of the surface corrugation,
w and w’ are frequencies of the corrugations and C.C. indicates com-
plex conjugate. More general forms of the above coefficient will be dis-
cussed later.

Using (3.1)—(3.4) and (4.1)—(4.6) in (1.1)—(1.2) and (2.1)-(2.2), we
find that, to zeroth order in &', the following assumptions should be
made:

(1,71, V1, Wl,ﬁl) = (u1, Vi, W},p1) exp(iax —_ iwt), (5)

where (uy, v, wy, p1) are functions of only x;, y, z and ¢,. Using these
results in (1.1)-(1.2) and (2.1)—(2.2), we obtain the following basic
flow system for the zeroth and first harmonic coefficients:

V~u0 =0, (6.1)

duy - L 1
i . =—4—A .
T V - (uouo) - g Ao, (6.2)
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ov 1o} 1s)
8: + V (lloV()) (2v1v1) + (vlwl -+ vlwl) o= 3’;:) +—0A2 05
(6.3)
owy =~ 0 ok 0 . op 1
at:)+V~(uowo)+a—y(v1w1+v1w1)+-é;(2w1wl)= 60+ Aorwo,
(6.4)
6\’1 6w1 _
oy + — + 5 = 0, (6.5)
Oug Ouy ) 1
1(auo — w)u1 + a—yvl + 3LWI —1ap; + E (Az - a2)u1, (6.6)
: _ _om
i(aup — w)v = 2 TR (Az — o), (6.7)
Y
. 0 1
i(aup — w)wy = ——a%l + ﬁ(A2 —a®)wy, (6.8)

where
. 2
Go(2 008 L, _& &
Ox;” dy’ 0z 9y?
Ry =06Ris reduced Reynolds number assumed to be of order one, uy=

(uo, vo, Wo) and “asterisk” indicates complex conjugate. These equations
are subjected to the following boundary conditions:

6u0

up = (ux()s V50, W.s()), (u], V1, Wl) = (...A_é;

’vsl,W.ﬂ) aty =0,
(1.1)

u0=(u1,v1,w1)=0 aty = 1. (72)
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3 DISTURBANCE SYSTEM

The terms containing §’ parameter in (3.3)—(3.4) and their particular
form, given in (4.2), (4.4) and (4.6), imply small perturbations of
(6.1)—(6.8) and (7.1)—(7.2) whose particular solution in the absence of
such perturbations can be the following ones:

u0=ﬁ0(y)a V0=0, W0=0, P0=ﬁ0(y)=_2|v1|2, (81)
u =a1(y), vi=n(y), wi=0, p1=p(»), (8.2)

provided
Vs = V51 = Wyo = Wy =0 (8.3)

and the following system is satisfied:

. dn
1oy + d_y = 0, (84)

o _dag _ .1 /d )\
1(au0—w)u|+-a-—y-v1=——1ap1+-<d—y2—a i, (8.5)

R
i(aity — w)7v ——d—ﬁ—l--i—l & 7 (8.6)
ailp — w)v; = & TrR\32 o v, .
@7, m) = (-4 .0,0) aty=0 8.7)
u,v,wp) = dys ) }’"‘ ) .
(l—ll,vl,wl)=0 aty=1. (88)

Assuming the solution of the form (8.1)-(8.2) for (6.1)—(6.8) and
(7.1)-(7.2), then the system for small disturbances of amplitude §’
acting on such basic solution to be given below is satisfied by the
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disturbances’ variables (i, p,) and (&, p}) of the form:

(tigs Fg> s 1 71> P1) = [tig(¥)5 V()5 Po(3)> w1 (), v1 (), P1 ()]
x cos(Bz) - exp(ia'x; — iu/t5), 9.1)
(W, W}) = [wo(»), wi(»)] sin(Bz) exp(ia/xs — iw'ts).  (9.2)

The system for the y-dependent coefficients of the disturbance vari-
ables is given by

dy;
i) + -2 + =0, 10.1
0 dy ﬂ 0 ( )
(ol — g+ Sy = L (& (102)
auo w )y, & Vo = R d uo, .

i(a/ﬂo - w')vé + 2:}) (Vlvl + vl*vll) + ﬂ(VW{* + 171*w{
_ dpg 1 e,
-, (dy Ar (10.3)

) d 1 [/d?
(oo =)Wl + = (g -+ ¥w0) = i+ ( ﬂ2>w¢$,

dy?
(10.4)
i +d + Bw} (10.5)
a dy 1 .
o dv _ du} digg
_ /_____ ! __g - /
i(adig — w)uy & Uy + 1 O + P 4

1/
—iap] +— <F —a? - ﬂ2> uf, (10.6)
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/ 2
i(aiip — w)v) + iaviu) = —9&+ ! (-9— —a? - 62> vi.  (10.7)

dy ' R\dy?

= ’ / 1 d2 2 2 ).,/

i(aidip — w)w) = Bp} +2 o7 a” — (% |w, (10.8)
(ugs g wg) =0, (ug,v{,w) = (us'l + A'%l;g, vgl,w;1> aty=0,
(10.9)
(ug, v§, wp) = 0, (ug,vi,w{) =0 aty=1. (10.10)
02 V0> Wo 1 VW
4 EXAMPLE

In this section we explore some aspects of the analytical results for the
inviscid flow case of the theory presented in the previous two sections
when it is applied to a simple shear flow with a free surface. Such simple
shear flow is a particular extension of the problem studied by Benney
and Chow [13], of a shear flow over a flat and smooth boundary, to
the case for the flow over a moving corrugated boundary.

Following [13], we assume R = oo and the following linear profile

ﬁO(Y)=Fy’ (11)

where Fis a constant. In addition, boundary conditions in the absence
of perturbations, described in the previous section, are now [13]

vo=9d%=o at y =0, (12.1)
&



326 D.N. RIAHI
Using (11) in (8.4)—(8.6) and eliminating #; and ¥;, we find

&py  2aF dp,

—_— s 25 —
dy?  (ailp —w) dy op =0 (13)

The system (12)—(13) for p; represents an eigenvalue problem for w.
Similar to the consideration in [13], critical layers will not be con-
sidered here, and using transformation of the form:

1 dp

G(y) = “Fy—w dy’ (14)

eigenfunction is found to be of the form:
py=1B (ﬂ - Fy) coshay — £ sinh oy (15)
1 o a ’

where B is a constant. Using (15) in (12.2) lead to the eigenvalues
given by

w= (%) {(2F— F tanh o/a) + [(F tanh o/a)® + 4tanh a/a]l/z}.
(16)
Let us now consider the case where
a=0. (17)

Using (17) in (8.4)—(8.6) and applying zero boundary conditions for v;
and (12.1)—(12.2), we find

i =vn=p =0, (18)
provided
w#0. (19)

Applying the instability system (10) for the present example, we find
that three-dimensional instability of the basic flow follows, for a wide
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range of values for a’ and w’ [13], provided (17) and (19) are not
satisfied and if the disturbance mode is not due to the corrugated wall.
If the disturbance mode is due to the corrugated wall, then the basic
flow is stable for real values of w’. However, if the conditions (17) and
(19) are satisfied, for particular corrugated walls, then the basic flow
remains stable and no three-dimensional instability takes place regard-
less of the type of the disturbance mode, provided w’ for the cor-
rugated wall is real as is usually assumed. In addition, for the case
where (17) and (19) are not satisfied, no three-dimensional instability
occurs regardless of the type of the disturbance mode, provided

8 =0. (20)

5 SOME CONCLUSIONS

(i) Certain structured walls can prevent shear flow destabilization by
three-dimensional disturbances.

(ii) Structured walls can provide neutral flow disturbances leading to
a modified form of the basic shear flows.

(iii) Vortex formation in the shear flows can be prevented if the flow
catalyst, such as, for example, two-dimensional waves super-
imposed on a one-dimensional original mean shear flow, can be
suppressed by the presence of some types of structured boundary.

(iv) Three-dimensional instabilities of slightly perturbed two-
dimensional spatially periodic shear flows can take place in the
presence of corrugated walls if these walls have particular ampli-
tude and shape that reinforce the two-dimensional spatial periodic-
ity of the shear flows.

(v) Stabilizing effects of the corrugated walls can be much more
stronger if the amplitude of their non-periodic component be
comparable to that of the waves which are resonant with the
mean flow.
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