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Necessary and sufficient conditions for existence of optimal control for all initial data are
proved for LQ-optimization problem. If these conditions are fulfilled, necessary and suf-
ficient conditions of optimality are formulated. Basing on the results, some general hypo-
theses on optimal control in terms of Pontryagin’s maximum condition and Bellman’s
equation are proposed.

Keywords: Optimal control; LQ-optimization; Pontryagin’s maximum principle;
Bellman’s equation

1 INTRODUCTION

The LQ-optimization is a well-developed part of the theory of optimal
control. Results related to the LQ-problem are well-known and usually
are included into textbooks (for example, see [1]). However, usually
only positive definite quadratic forms of phase coordinates are con-
sidered. A generalization to non-positive forms leads to some new non-
trivial problems, among which conditions of existence of an optimal
control have to be considered. Besides, usually an analysis of the prob-
lem in terms of Riccati’s equation is provided for finding out only suffi-
cient (but not necessary) conditions of optimality. It is turned out that
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the existence of a solution of the Riccati’s equation yields a necessary
condition of an optimal control existence for each initial datum. We
prove that the existence of a solution of the Riccati’s equation is a
necessary and sufficient condition of the existence of an optimal con-
trol for all initial data.

In addition, there are some auxiliary problems, connected with LQ-
problem, which can be interesting not only for the optimal control
theory (among them connections between boundary problems and
Riccati’s equation). On the basis of our results for LQ-optimization,
we make some general suppositions about optimal control, the main
of which is a hypothesis on the necessary and sufficient conditions for
existence of optimal control for all initial data.

2 LQO-OPTIMIZATION

Linear systems and square functionals are considered. The systems are
described by the equation

% = ANz + BOw+ (1), z(to) =2". (2.1)

Here z(?) is a phase-coordinate vector, w(f) a control vector, ¢(¢) a fixed
vector-function, A(f) and B(f) are matrices of corresponding dimen-
sions, z° is an initial-state vector. We will suppose that the system (2.1)
is a controllable one.

A functional that defines the aim of control has the form:

I} = [ [hte R + b om, Pl 22)

where R and P are matrices; it is supposed that the matrix P is positive
definite; symbol (, ) stand for the scalar product of two vectors. Matrix
R is not necessary positive definite or zero. A case of nonpositive and
nonzero matrix R is interesting from a mathematical point of view for
a general statement of the optimization problem. As to the control
theory, this case appears in a dynamic game approach to H *°-optimal
control (see [2]).
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The LQ-optimization problem is: minimize functional (2.2) under the
condition (2.1), that is, find such a w*(-) that

J{w*(-)} < J{w(-)} (2.3)

for all w(-).

The following questions are studied in this section of the paper:
(1) conditions under which solutions of the problem exist; (2) neces-
sary conditions; (3) sufficient conditions.

Note that a solution of a LQ-optimization problem can exist for
some initial value z° and not exist for others. We will consider condi-
tions under which a solution exists with any initial value.

Following statements present the main results.

THEOREM 1  An optimal control under any z° in the problem of minimi-
zation of the functional

T
Jiw(-)} =/, [1(z Rz) +1 (w, Pw)] d

for the system

g—j — A(t)z+ BO)w+ (1), 2(to) = 2°

exists iff there exists a solution of the Riccati’s equation

%g+ SA+AS+SGS=R, S(T)=0, t€(t,T),
where G=BP~'B'. If this condition is fulfilled then an optimal control,
w*(%), is determined by the unique solution of the equations

(—l—Z-:Az+Gp+¢, g‘B=RZ—A'p, z(to) = 2°, p(T) =0,
dt dt
by the formula w*() = P~'B'p(2).
For the homogeneous case (¢(t) =0), it is possible to substitute p(t) =

S(H)x ().
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THEOREM 2  An optimal control for any z° in the problem of minimiza-
tion of the functional

J{w()} = / [1(z, Rz) + 1 (w, Pw)] dt

for the system

d
T = AWz+Bw+9(0), (1) =2
exists iff there exists only the trivial solution of the boundary value

problem:

dzA A A dpt
o A

zM1) =0, p(T)=0, T = BP'B’

= Rz — A'p",

Sor all T €[ty, T). If this condition is fulfilled then the optimal control is
determined by the unique solution of the boundary value problem:

dz

d
& P _ Rz~ A'p, z(ty) = 2°, p(T) =

=Az+Tp+ ¢, T

by the formula w*(t) = P~'B'p(?).

The theorem means that Pontryagin’s maximum principle gives the
optimal control if there exists a unique (for each boundary values) con-
trol which obeys the maximum principle.

The rest of this section is devoted to the proof of the theorems.

Along with system (2.1), we will consider a homogeneous system

d

E% = Aé+ By, &(to) =¢&°, (2.4)
and will prove that the minimization of functional (2.2) under condi-
tions (2.1) is reduced to minimization of a functional

JMv()} = / [1(& RE) +1 (v, Pv)] dt (2.5)

under conditions (2.1) with some £°.
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LEMMA 1 For any w(-), #(+), 2°, there exist such v(-) and £° that the
Sfunctional (1.2) differs from the functional (2.2) by a constant depending
may be of ¢(-) and z°, but not of w(-).

Proof of Lemma 1 Consider the equations

_ dg
_ 1p/ _ L
5, = Ac+BP'B'f+¢, o =Ro—Ap,

o(T) =B(T) =0, (2.6)

da

where o and 3 are vectors of the same dimension as z, the symbol 4’
denotes the transpose of matrix 4. Define

£(1) = z(1) — o), v(t) =w(t)— P 'B'B. (2.7)
It is easy to check that by virtue of (2.1) and (2.6), £(?) from (2.7) is a

solution of (2.4), if v(¢) is taken from (2.7). By the direct substitution
of z() = &(¢) + a(?) into (2.2) we have

Jiw(-)} = / [1(6, RE) + L (v, Pv)] dt-+—2/ (6, Ra) + (v, 4'8)] d1.
(2.8)
From (2.4) and (2.6) we have

di(&.8)] _
T = (ﬂ, AV) -+ (6, Ra)

By integrating of the last equality we have

T
[ (€ Ra) + (v, 4'B)] dt = —£(0)B(0) = —(=° — a(0))B(0).
Therefore, from (2.5) we deduce

Hw(-)} = IMv(-)} = 2(2° - a(0))B(0).

The expression (z°—a(0))3(0) depends through (2.6) only on z° and on
¢(-). The lemma is proved.
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Based on the lemma, we can assert that an optimal control for a
system (2.1), (2.2) exists for all z° if and only if an optimal control
exists for a homogeneous system (2.4), (2.5) for all £°.

Consider the following boundary value problem:

d¢ _
dr

d
AE+Tp, L=Re—Ap, €)=’ p(T) =0,  (29)
where G=BP~'B’, the vector p() has the same dimension as £(¢). The
following Lemma 2 is an analog of the well-known Jacobi’s necessary
condition in the classical calculus of variations.

LEMMA 2 If an optimal control exists in the problem (2.1), (2.2) for
each £°, then each nontrivial solution of (2.9), £(2), is not equal to 0 in
any inner point t € (ty, T').

Proof of Lemma 2 Consider the optimization problem for (2.1), (2.2)
with £(fo) =¢£°. Pontryagin’s maximum principle yields necessary
conditions:

v(t) = P"'B'p(1), (2.10)
d§ _ dp_ .. .
g = A6+Tp, o =RE—Ap, @.11)

£(to) = €° p(T) =0, T = BP'B'.

Thus, the optimal trajectory £(2), if it exists, is a solution of the bound-
ary value problem (2.9). Suppose an opposite to the lemma assertion,
i.e., that such a 1" €(tp, T) exists that £(¢")=0. If £() were optimal
then it would be a nontrivial solution of (2.9). Consider together with
v(t) from (2.10) a new control v(¢), such that

vi() =v(1), ift€ (t,t") and vi(1)=0ifte[t",T], (2.12)

The phase vector, £*(¢), corresponding to the control v (¢), is a solu-
tion of equations

L
d—ft— = A& + Bvt, (1) =€°.
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Therefore, £1(£)=0, if te[t",T]. Compare values J"{v(-)} and
JMv*(-)}. The value of the functional (2.2) for v = v(?) is equal to
lA

I =3 [ RE + ot Pl

T
+3 [ 165 R + 0 P

The second integral is equal to 0 because v(f) =0 and £*(¢) =0 on the
interval ¢ €[t", T]. For J"{v(-)} we have:

N

PN =5 [ K6RO + . Pldi+3 [ (6RO + (i Pt

0

The second integral here is equal to 0 as well. Indeed using (2.10) and
(2.11), we have

(@p)

= (&, RE) + (v, Pv).

By integrating the last equality on the interval [¢", T'] and using con-
ditions £(¢") =0 and p(T") =0, we obtain that

T
/, "6 RE) + (v, P)] i = 0.

Taking into account that v(f)=w(r), (1) =£(), if t€(to, 1) we
receive that J*{v*(-)} = J"{v(-)}. Note that the conditions of the maxi-
mum principle are not fulfilled for v” on all interval [¢y, T'] because
it were possible only if B’p(f) would be equal to 0 at each point
te[t", T). But it is impossible for a controllable system. Therefore v
is not an optimal one. We can conclude that »(-) is not optimal as
well. However, if each control for which necessary conditions are
fulfilled is not optimal one, then optimal control does not exist at all.
Lemma 2 is proved.
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The Pontryagin’s maximum principle yields the following necessary
conditions:

w= P 'Bp, (2.13)
(—1£=Az+1"p+¢, Sl£=Rz—A’p,
d d (2.14)

Z(to) = ZO, p(T) = O, I'= BP"IB'.
Write down a matrix Riccati’s equation for the problem (2.4), (2.5):

%§+SA+A'S+SI‘S R, S(T)=0, t€ (1, T).  (2.15)

Let for w(?), z(¢) the necessary conditions (2.13), (2.14) hold. Con-
sider increments, Aw(f), Az(t), of w(?),z(¢). Using the solution of the
Riccati’s equation, S(f), one can write down the next formula for the
functional (2.5) increment, if the control w(¢) varies:

T
A= / 1Aw — P~ B'SAZ|: dt. (2.16)
o

Here ||7r||§, stands for the square of a norm (m, Pr). For increments
Aw(t), Az(t) the following equation holds:
dAz

Tt = AAz + BAw, Az(t) =0, (2.17)

Proof of Formula (2.16) Consider a function y(f) = }(Az(?), S(1) Az(?)),
where for Az(f) Eq. (2.17) holds and for S(¢) (2.15) holds. For the
derivative dy/dt we have, using (2.15) and (2.17):
dy _
dr

where ' = BP~! B’. After some transformations we deduce

=1(Az,(—STS+ R)Az) + (Az, SBw), (2.18)

d
df 1(z, Rz) + 1 (w, Pw) + || Aw — P-1B'SAz|2. (2.19)
By integrating of the last equality on the interval [#,, T'] and using con-
ditions Az(tp) =0 and S(7") = 0, we receive the formula (2.16).
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Thus, if Riccati’s equation (2.15) has a solution on the interval
[to, T'], then the formula (2.16) holds and, therefore, AJ>0. The fol-
lowing statement is proved.

LEMMA 3 The control (2.12), (2.13) is optimal, if Riccati’s equation
(2.15) has a solution on the interval [to, T'].

To compare the conditions of existence (Lemma 2) with necessary
Pontryagin’s conditions (2.13), (2.14) and sufficient conditions of
optimality (Lemma 3), we need a lemma which establishes a connec-
tion between the canonical Eq. (2.11) and Riccati’s equation (2.15).

Consider the canonical system

dz

= Az +Tp, %’;— =Rz—Ap, z(1)=2, p(T)=0, (2.20)

where T € (t, T'), matrix equations

@ 404, L= Re- AV, W(T)=1 UT)=0, (221)

where the /is the unity matrix, and Riccati’s equation

%§+SA+A’S+ STS=R, S(T)=0,t€(t,T).  (2.22)

LEMMA 4 The following four propositions are equivalent:

(1) Equations (2.20) for 7=ty have a solution for each z° and a non-
trivial solution z(t) is not equal to 0 in inner points of the interval
(IO: T)

(2) For solutions of Egs. (2.21)

det®(t) #0, te (%, T).

(3) The Riccati’s equation (2.22) has a solution on [ty, T] and p(t) =
S(®z(?).

(4) Egquations (2.20) for each T € (ty, T) have the unique solution for all
2%, and in particular there is only the trivial solution, z(f)=0 for

2=0.

Proof of Lemma 4 At the beginning, we prove the equivalence of
propositions 1, 2 and 3. It is sufficient for this purpose to prove that
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1 implies 2, 2 implies 3, and 3 implies 1. After that we prove that 2
implies 4 and 4 implies 2.

If 1 is true, then it is possible to write down the general solution of
Egs. (2.20) through the boundary values z(T) =z", p(T) = p”:

2(1) = ®(0)z" + ' (p", p(1) = ¥(1)z" + ' (1)p”,

where ®,®’, ¥, ¥’ are the corresponding submatrices of the funda-
mental matrix. Taking into account that p"=0 and that the fun-
damental matrix is unity for =T and, therefore, ®(7T)=1,¥(T)=0,
we have

2() = ®(1)z", p(t) =V()z", ®(T)=1 U(T)=0 (2.23)

Thus, any solution of Egs. (2.20) with p(T)=0 has the form (2.23).
Substituting (2.23) into (2.20) and taking into account that the vector
z” is an arbitrary one, we obtain Egs. (2.21). If det ®(z) were 0 for
some inner point ¢, then such z” would exist that for this z we would
have z(f) = ®(f)z" =0. It is a contradiction to proposition 1 of the
lemma. It is proved that 1 implies 2.

If 2 is true, consider the matrix S = ¥®~'. Calculating the derivative
dS/dz, by virtue (2.21) we receive (2.22). From z" = &'z, we conclude
that p=Wz" = ¥d 'z = Sz. Thus, 2 implies 3.

If 3 is true, then p(f) = S(¢)z(f), where z(¢) is the solution of the
equation

dz =(A+T8)z, z(tp)=2"
dt
and S(?) is the solution of the Riccati’s equation (2.22). This pair
z(?), p(¢) is a solution of Eqgs. (2.20). If the solution is nontrivial, then
z(¢) cannot be equal to 0 at a point ¢, because in this case p(z) would be
equal to 0 at the same point, and the solution could not be nontrivial.
Thus 3 implies 1. The equivalence of 1, 2 and 3 is proved.

Now we prove that 2 implies 4. Let 2 be fulfilled. The uniqueness of
a solution is obviously deduced from the uniqueness of the trivial
solution in the case z° =0. We prove this last statement. Each solution
z(t) can be represented in the form (2.23): z(f) = ®(£)z". The boundary
condition z(7) =0 for T € [to, T] gives ®(1)z" =0 and, by virtue of the
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condition 2, we have z"* =0, i.e., the solution is trivial. The implication
“2 implies 4” is proved.

At last we prove that 4 implies 2. If 4 is fulfilled then only trivial
solution z" =0 is possible as a solution of linear algebraic equations
®()z" =0. It means that det ®(¢)# 0 for z €[ty, T] and therefore 2 is
fulfilled. The lemma is proved.

The next statement is a corollary of Lemma 4.

LEMMA 5 If an optimal control exists for each initial data, then
Riccati’s equation (2.6) has a solution for t € [ty, T].

The statement of Lemma 5 is the implication of Lemma 2 and of the
equivalence of the assertions 1 and 3 of the Lemma 4, if one takes into
account that nonexistence of solutions of Egs. (2.14), that is, the non-
existence of controls which obey Pontryagin’s maximum principle,
means the nonexistence of the optimal control.

Proof of Theorems 1 and 2 To prove Theorem 1, we use Lemma 1
for the reduction of the existence problem to the homogeneous case,
then use Pontryagin’s maximum principle, Lemma 5 and at last
Lemma 3. To prove Theorem 2, we should in addition use the equiv-
alence of assertions 3 and 4 of Lemma 4.

3 REFORMULATION OF MAIN RESULTS OF
LQO-OPTIMIZATION

To reformulate results of LQ-optimization in general terms, we con-
sider a general optimization problem with the free right end of the tra-
jectory. The minimized functional has the form:

T
/ Flz,w, 1) ds, (3.1)

where w(r) is a control, which belongs to some closed set W, z(f)=
{z1(0), ..., z,(2)} is a phase trajectory, which obeys the equations

% =filz,w,1), zi(to)) =2°, w(t)eW, i=1,...,n. (3.2)
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Remind some well-known definitions. The function

H(z,p,w,t) = Xp;fi(z,w, t) — F(z,w, 1) (3.3)
is called Hamiltonian. The system of equations

dZ,' _ 6H dpi _ 6H 0 _
T -5;: - o’ z(1) =z;, p(T) =0 (3.4)

is called the canonical one. Here 1, < 7 < T. If a control w”\(¢) is fixed for
t €[r, T], then the canonical system with the boundary condition z;() =
29, determines for ¢ €[7,T’] the unique functions z”(¢) and p"\(f), which
we call corresponding to the control w"(f). We say that a control
w*(f) € W obeys the Pontryagin’s maximum condition on the interval
[r, T] with the boundary condition z;(7) = 2? if

H(z* (1), p* (1), w'(0), 1) > H(z*(£),p*(£), w, 1) forallwe W, (3.5)

where functions z*(¢), p*(f) are corresponding to the control w*(¢) for
telr, T

We write down now the Bellman’s equation. Let Q(x,7) be the
Bellman’s function, that is an optimal functional value in the problem
with the initial data z;(7) = x;. Denote by V,Q the vector which com-
ponents are the partial derivatives 9Q/0x;. The Bellman’s equation has
the form:

%0t max{H(x, V+0,w, 1)} =0, (3.6)

where the maximum is taken with respect to we W. The boundary
value of the Bellman’s function is:

Q(x,T)=0. 3.7
For the LQ-optimization we have:

fi(z,w, t) = Zag()zk + Tbis(t)ws, (3.8)
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where ay(?) and b;,(7) are elements of matrices A(¢) and B(¢) in (2.1).
Besides

F(z,w,1) = XX Ruzizi + X Psgwyw,. (3.9)

If we calculate the maximum in (3.6) taking into account notations
(3.3), (3.8), (3.9), we will come to the next equation in partial
derivatives:

09 0000 | 155 xix =
E -+ EZ@Q/ax,a,ka + EEG,k (—9—)—6—;5)5—]‘ + 2 EER,kx,Xk = 0, (310)

where Gy are elements of the matrix G=BP~'B’. It is easy to check
that the quadratic form

0 = JESu(T)xixk (3.11)

gives a solution of the Bellman’s equation (3.10) with the boundary
value (3.7), if the matrix S(7) obeys the Riccati’s equation
ds

3.t SA+AS+SGS=R, S(T)=0, 7€ (w,T). (3.12)

Thus, we come to the following statement:

STATEMENT 1 If the Riccati’s equation (3.12) for the LQ-problem has a
solution for T € (ty, T), then the Bellman’s equation (3.6) for this problem
has a solution in the region ty <7< T.

The connection between Riccati equation and Hamilton—Jacobi
(i.e. Bellman) equation was underlined by R.E. Kalman many years
ago [3].

The statement asserts that the existence of a solution of the Riccati’s
equation means the existence of a solution of the Bellman’s equation.
Therefore Lemma S may be reformulated as follows:

STATEMENT 2 If an optimal control in LQ-problem exists for each
initial datum, then the Bellman’s equation has a solution in the region
th<1<T.
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The equivalence of assertions 3 and 4 of Lemma 4 leads to the
statement:

STATEMENT 3  The Bellman’s equation in LQ-problem has a solution in
the region to <t < T iff for each boundary condition z(t)=2" (i.e., for
each 7, 1o < 7 < T, and each = z°) there exists the unique control obeying
the Pontryagin’s maximum condition.

Reformulation of Theorem 2 leads to the next statement.

STATEMENT 4 If in LQ-problem for each boundary condition z(T) = z°
there exists a unique control obeying Pontryagin’s maximum condition,
then such control is optimal.

4 FUTURE DIRECTION: SOME GENERAL HYPOTHESES
ON OPTIMAL CONTROL

Statements 1-4 on LQ-optimization and well-known results on suffi-
cient condition of optimality in terms of Bellman’s equation (cf.
Lemma 3 above and theorems in [4]) lead to the following general hypo-
theses on optimal control:

HYPOTHESIS 1 The necessary and sufficient condition for existence of
optimal control for all initial data is the existence of a solution of
Bellman’s equation (3.6), with the boundary condition (3.7) in the region
to<7<T.

HYPOTHESIS 2 A solution of Bellman’s equation (3.6), with the bound-
ary condition (3.7) in the region to<1<T exists iff for each bound-
ary condition z(t)=z° there exists a unique control, which obeys
Pontryagin’s maximum condition.

HYPOTHESIS 3 If for each boundary condition z(t)=z° there exists a
unique control, which obeys Pontryagin’s maximum condition, then such
a control is optimal.

Some refinements of these hypotheses must be, of course, made, in
particular, relating to the tangent property (smoothness) of solutions
of the Bellman’s equation.
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