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We consider a model for biochemical oxygen demand (BOD) in a semi-infinite river where
the BOD is prescribed by a time varying function at the left endpoint. That is, we study
the problem with a time varying boundary loading. We obtain the well-posedness for the
model when the boundary loading is smooth in time. We also obtain various qualitative
results such as ordering, positivity, and boundedness. Of greatest interest, we show that a
periodic loading function admits a unique asymptotically attracting periodic solution.
For non-smooth loading functions, we obtain weak solutions. Finally, for certain special
cases, we show how to obtain explicit solutions in the form of infinite series.
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1 INTRODUCTION

In this work we carefully examine a standard model for water quality
in a river with a time varying boundary loading [2]. In the second
section we obtain a full well-posedness result for smooth loading
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functions. In the third section, qualitative properties such as ordering,
positivity, and boundedness are obtained. We also show that a peri-
odic forcing function admits a unique periodic solution (quasi-steady-
state) and that this solution is globally asymptotically stable. In
Section 4, we permit loading functions that are merely bounded and
locally square integrable. We obtain the existence and uniqueness of
weak solutions. Finally, in Section 5, we obtain explicit analytic solu-
tions to a water quality model with periodic boundary loading and
constant initial data. We shall do this by finding such solutions in the
form of infinite series.

We will consider the amount of organic waste in a river, as measured
by biochemical oxygen demand (BOD). We assume that symmetry
across the width of the river holds so that we may model the river as
being one-dimensional. The river is flowing with a uniform velocity of
u >0 and a waste treatment facility is assumed to discharge at a point of
the river. The location of the treatment facility’s discharge will be given
the x spatial coordinate of 0 and the river will flow downstream in an
increasing x direction. The function of position, x, and time, ¢, w(x, ) in
units of mass(length) ~* will measure BOD. We assume that the organic
material diffuses with diffusivity D >0 with units of (length)*(time) .
Furthermore, the organic material will decay with a rate proportional
to its concentration with proportionality constant k; > 0 with units of
(time)~". Finally, lands bordering the river will discharge BOD into the
river at a rate of ¢ > 0 in units of mass(length) ~>(time) .

Putting the above physical mechanisms together yields the following
partial differential equation:

ow  Ow Pw

i u8x+D5}7—k1w+c, fort >0, and x € (0,00). (1)

We assume that as we move away from the waste discharge location,
the BOD approaches its natural equilibrium. That is

1mw@0=% for all ¢+ > 0. 2)

X—00 1

If the BOD discharge is given by a function f(z), with units of
mass(length) ™ and the initial distribution of BOD at t=0, wo(x), is
known, we obtain the last two equations of the model:

w(0,1) = £(1) 3)
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and

w(x,0) = wo(x), x € (0,00). (4)

2 CLASSICAL SOLUTIONS

We will first transform (1)-(4) into a system with homogeneous
boundary conditions. Then we will examine the relevant spatial oper-
ator and show that it generates an analytic semigroup on an appro-
priate Hilbert space. This will allow us to obtain our well-posedness
result.

First the transformation:

We will consider the following system:

ov ov 8% <

E — _ua_}.pw— kiv+(u+D— kl)(f(t) —kl)e_" —f/(t)e—x,

for t >0, and x € (0, 00), (5)
lim v(x,¢) =0 for all >0, (6)
v(0,7) =0, (7)
and

(x,0) = wo(x) — (£(0) — = e == (8)

’ — Wo k] k] .

A simple computation will show that if v satisfies (5)—(8), then

c\ _ ¢
wix, 1) =v(x, )+ [ f(t) —— e +— 9)

k1 k1

will be a solution to (1)—(4).
Our mathematical tools may be found in [4] and [5]. The following is
actually the concatenation of two theorems found in [5].

THEOREM 1 Let V and H be Hilbert spaces for which the identity
V< H is continuous. Let a: V x V — C be continuous, sesquilinear, and
V-elliptic. In particular, there are constants ¢ and K such that 0 <c < K
and

a(w,v) < K||w|l,|Vlly, forallwandvinV
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and
Rea(v,v) > c|v||}, forall vin V.

Define
D(A4) ={we V: |a(w,v)| < Kulv|lg, veT}

where K,, depends only on w and let A, a linear function from D(A) to H,
be given by

(Aw,v)y =a(w,v), we D(4), ve V.
Then D(A) is dense in H and — A generates an analytic semigroup on H.

In order to apply this theorem to problem (5)—(8), we must choose
appropriate spaces H and V, and pick a sesquilinear form a so that the
operator we define from it is given by Av=u(dv/dx) — D(O*v/dx?) +
kyv. The space H will be the space of measurable functions on [0, 00)
such that [5° [v|*dx < oo for each v in H. That is H = L*([0, c)). The
inner product on H is given by (w,v), = [;° w(x)¥(x) dx. The space V'
will consist of those elements of H, v, whose distributional derivatives
0v/Ox are also in H and satisfy v(0) =0 and lim, _, ,,v(x) = 0. The inner
product on V is (w,v), = [;°(dw(x)/0x)(Ov(x)/0x) + w(x)¥(x) dx;
thatis V' = Wé’z([O, 00)). The required imbedding is a standard theo-
rem of Sobolev spaces [1]. We will also find the following metric
spaces useful: M;={v+(c/k,): ve W2/[0, 00)} with metric d(w, wy) =
[[wy — wyl|2,; We define the form a on V' x V' by

a(w,v) = /0 u%:;(x)v(x) + D% (x)g—; (x) + kyw(x)¥(x) dx.

According to Theorem 1, we need to obtain two estimates. The first

of these is the continuity estimate. We obtain this now,

* |ow owl|dv
< - ==
la(w, v)| _/0 Ul gV + Dl p + ki|wl|v] dx
w ow ov
< ull== - i
<], W+ Pz g+l

< ulwliplvlly + Dlwllylvily + kilwlilivily

= (u+D+k)lwlplvlly
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where we have used Holder’s inequality, the fact that

ow|?
ox

‘+’”W”H = Iwlly,
H

and the inequality 20,8 < o” + 2.
The second estimate that we need is the coercivity estimate. This is
obtained using the following estimates:

ow

Rea(w,w):/ooouRe%;( X)W (x)+DRe—( )8x( X)

+ kiRe w(x)W(x) dx

ow
=/ ||+D
0

Ox
~[IW( )T + min(D, k)| wll3

+k1|W| dx

— min(D, k1) |13

We have now shown that the operator —A4 defined in Theorem 1
generates an analytic semigroup on H.

To see that the operator 4 obtained above is the one we desire, we
will integrate against some test functions.

First, let ¢ be any compactly supported infinitely differentiable
function on [0, oo]. Then we have for any w in D(A) there is a constant
K,, > 0so that

Kyll¢ll = la(w, ¢)|

a5 + DSE ) + w5 ax

/7 ow 0w
/0<u8x D82+k1w)¢dx

where we have used the definition of distributional derivative. Since
u(Ow]dx) — D(8*w|0x*) + kyw defines a continuous linear functional
on H, it must be in H. Since u(Ow/0x)+ k,w is already in H, this
implies that 8*w/0x? is in H. Furthermore, let B be defined as function
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from D(A) into H defined by

2

ow 0w
Bw = u—aE(X) +D5;(x) + kyw(x).

Then

(AW, ¢)H —(BW, ¢)H = a(w’ ¢)) - (BW, ¢)H

= /00o ug—g(x)a(x) + D%(X)%(x)

00 2
(u(?_w —Da—w+k1w)$dx

+ kyw(x)é(x) dx ~—/ o o

0
=0

where we have integrated by parts. Since C°[0,00) is dense in H,
we have Aw = Bw = u(dw(x)/0x) + D(&*w(x)/dx) + kw(x) on D(4)=
{we V: (8*w/0x®) € H}. Notice that we automatically obtain that
elements of D(A) are continuously differentiable on (0, 00).

All of the above and the properties of analytic semigroups found
in [4] yields the following theorem.

THEOREM 2 Let f: [0, 00) — R be differentiable with Holder continuous
derivative. Then for each wy in My, Egs. (5)—(9) has a unique classical
solution.

Above, by classical solution, we mean a function v:[0,00) — H
which is continuous on [0, c0), continuously differentiable on (0, o),
v(?) is in D(A) for ¢t > 0, and v satisfies (5) for ¢ > 0.

It is easy to see that the following corollary is true.

COROLLARY 3 Let f:[0,00) — R be differentiable with Hélder contin-
uous derivative and v the solution to Egs. (5)—(9) given by Theorem 2 for
some wy in My. If we define w by w(x, t)=v(x, )+ (f(£) — c/k))e ™ +
c/ky, then w is the (unique) solution to (1)—(4).

By solution here, we mean that w:[0,00)— M, is continuous on
[0,00) and continuously differentiable on (0, 00). Note also that for
>0, 8*w/0x* is in M,.
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3 QUALITATIVE PROPERTIES OF SOLUTIONS

We now give some qualitative results on solutions. In particular we
will obtain ordering, positivity, and boundedness results.

THEOREM 4 Let w' and w* be solutions to problem (1)—(4) with data
£, wh and £, W} respectively. If f <f? a.e. and w) < w} a.e., then for
each t >0, w'() < w(t) a.e. on [0, 00).

Proof We will use two approximate functions to help us. The first is
an approximation of

1 >0,
i ={4 120

and is defined by

1 t>1/k,
pr(t) =< kt 0<t<1/k,
0 <0

for each natural number k. The second is an approximation to ¢+ and
is defined by

or(t) = /Orpk(T) dr

Then by subtracting the differential equations satisfied by w' and w?

we obtain

O 1 a_ 0 2 o
EE(W w)——uax(w —w)+D5)7(w

Multiplying by pe(w' —w?) and integrating in x from 0 to oo yields

L7 [g ot = )] et <2y e

© 9
= —u/ a(wl —wH)pr(w! — w?)dx

—w?) — k(W' —w?).

0
o] 82 )
+D W(W1 —w)pe(w! — w?)dx

0

- kl/ (w! — wH)pr(w! — w?) dx
0
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Simplifying and integrating by parts, we obtain

2/ or(w' —w?)dx = —uoy(w' — w2)|§°=0
ot Jo

[e¢]

4 D[%(w‘ — W) — w2>]

x=0
[, 1 5] 1_ 2
—D/O |:(7);(W ~w)] pe(w' —w)dx
- kl/ (W' —w?)pr(w' — w?) dx
0

Noting that the first two terms on the right are 0 and the integrals are
nonnegative, we see that

0

Bt/o or(w —w?)dx <0.

Integrating from 0 to ¢ yields
/000 or(w!(x, 1) — wh(x, 1)) dx — /000 or(w!(x,0) — w?(x,0))dx < 0.
Since o, (w'(x,0) — w(x,0)) = 0 a.e., we see that
/000 or(w! (x, 1) — w(x, 1)) dx < 0.

Letting k& go to oo and applying the Lebesgue dominated convergence
theorem yields

/OO(W1 (x, 1) = w?(x, 1) " dx < 0
0

and hence w'(x, 1) < w?(x, 1) for a.e. x and all 1 > 0.

COROLLARY 5 Let w be the solution to problem (1)—(4) where f>0 on
[0, 00) and wo > 0 on [0, 00). Then w(x, t) >0 for t >0 and a.e. x € [0, ).
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Proof In light of the previous result it will suffice to show that
w(x,8)>0 for 1>0 and a.e. x€[0,00) when f=0 on [0,c0) and
wo € [0, ¢/k] on [0,00). We will, in fact, show that c/k; > w(x, ) >0.
Multiply

ow ow Pw
5 —u—ag'}—DW—k]W‘FC

by pr(w —c/ky), where p; is as defined in the previous proof, and
integrate with respect to x from 0 to co. After integrating by parts, this

will yield
o ™ c c\|” ow c\1%
A G e G IR G
® [gw]> , ¢
o[ ] A e

e ¢ c
—k1/0 (W—H)pk<w—k—1> dx.

This first and second terms on the right are 0, the two integrals are
both nonnegative. Thus

g [*® c
- _— <
6t/o Ok <w kl) dx <0

and

/Ooook(w(x,t) _k_c,> dx < Lwak<w(x,0) —{T) dx =0

Letting k go to oo yields [°(w(x,?) — (c/k1))"dx <0 and thus
w(x, 1) < ¢/k; for t >0 and a.e. x € [0, co). Now multiply

ow ow _Pw
-51-— —ub‘;‘f‘D—a}E—k]W‘f‘C
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by pr(—w) and integrate with respect to x from 0 to co. After integrat-
ing by parts this will yield

o]

_5;/000 ok (—w) dx = uog (—w)|%, + D[g—:pk(—W)]
+D/OOQ [%szk(—W) dx

=7 w(w—%)pk(—»v)dx.

The first two terms on the right are 0. Then the first integral
[ 0w/ox)pi(—w)dx is positive and since  w(x,?)<c/ky,
(w — ¢/ky)pr(—w) is nonpositive. Thus

x=0

a o0
—E/o or(—w)dx >0

and

/ or(=w(x, 1) dx < / or(=w(x,0)) dx = 0.
0 0
Letting & tend to oo yields

| ewtxyrar<o,
0

and thus w(x, £) >0 for >0 and a.e. x € [0, c0).

THEOREM 6 Let w be the solution to problem (1)—(4) where >0 on
[0,00) is in L*(0,00) and wy>0 on [0,00). Then w(x, ?) is essentially
bounded on [0, 00) X [0, 00) with bound

LN(O,:)} .

¢
ki

4
s f() 1
L%(0,00) ” ki

C
HW('a t)||L°°(0,oo) < H + max{ W()(‘) -
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Proof We will use two approximate functions to help us. The first is

an approximation of
1 t>0,
sgno(t)=¢0 t=0,
-1 <0

and is defined by

1 t>1/k,
() =<kt —1/k<t<1/k,
-1 1<~-1

for each natural number k. The second is an approximation to |¢| and
is defined by

se(t) = /()’rk(T) dr.

Let p > 1 and multiply

by ri(w — c/k1)[si(w — c/k)]”~", and integrate with respect to x from
0 to co. After integrating by parts, this will yield

l—8—/005 w—i pdx
pat)y [ ky

e e )
(D) -g)]
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Noting that the first two terms are zero at co and that the integrals
are positive, we obtain

)
2l -o%n(r0-5) -2
el zeolfufn-)

Integrating with respect to ¢ from 0 to ¢ (abusing the notation) we

obtain
P
- ki)} dx

[laleo-g)are [0
+u/[( il
ool

Now letting k tend towards co and applying the Lebesgue dominated
convergence theorem yields

o0 c 4 00 c 4
/0 w(x,t)—k—l dxg/0 wo(x)—k—l dx
! el
+u/ flr)——| dr
0 ki
"ow !
+pD_/0 5);(0,7’) f(’T)—'k—l dr.
Equivalently,
cl|l? c |l cll?
w0 —l <m0 -l -+
ki L7(0,00) ky LP(0,00) ki Lr(0,1)
ow c||P!
+pp 20| -
Ox L>(0,1) ky L(0,1)
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L°°(0 t) }

If the loading function f'is periodic, it is natural to ask whether or
not there are periodic solutions to problem (1)—(4). Such periodic
solutions, called quasi-steady-state solutions in the engineering litera-
ture [2], not only exist, but are unique and attracting.

Taking pth roots and letting p go to infinity yields

P

< max
L>(0,00)

and we are done.

Wi t) — —

WO(') kl

PROPOSITION 7  Let f have period T. Then there is a unique wg in My so
that the solution to problem (1)—(4) with this initial condition satisfies
w(x, T) =wy(x) in My. Furthermore, if Wy is any other initial condition
with solution W(x, t), then lim .0 [[W(-, £) = W(:, )| 120,00 = 0

Proof We will obtain the existence of a periodic solution using the
contraction mapping theorem. Define the map ¥ from M, into itself
by ¥(wy)(x) = w(x,T), where w is the solution to problem (1)—(4)
with initial condition wy. If there is a positive « strictly less than one
such that

1€ (wo) = W (Wo)ll 2p0,00) < /W0 = Woll 220,00)

then ¥ will have a unique fixed point which will be our desired
periodic solution. We proceed as in previous proofs by subtracting the
equations for w and w from each other, multiplying by w — w and
integrating with respect to x,

10 ~
Sl ) = 30,0,

=—u /Ooo(w(x, 1) — w(x, 1)), (w(x, ) — w(x, 7)) dx
+ D/Ow(w(x, 1) — w(x, 1)) (w(x, ) — w(x, 1)) dx
— /0 " (s ) — W(x, 1)) dx
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= =5 100(x,2) = 90x, D)
4 Dl 1) = W%, 1), (w(x, 1) — B, D)
=0 [t ) = B 0) dx — allwle ) = 30l
< ki) = P )y
Thus

10 - .
381 fw(, 1) — w(-, ’)“22[0,00) < —kiflw(-, 1) — w(, t)“zu[o,oo)-

Solving the differential inequality yields
~ - o~ 12

lw(-, 1) — w(, t)”iz[o,oo) <e 1wy — W0||L2[o,oo)~
Thus, letting ¢ = T gives the required contraction estimate

1€ (w0) — ¥ (W0) | 20,00 < €T lIwo — Woll 210,00
To see that the unique periodic solution is globally asymptotically
stable, let wy be such that the solution to problem (1)-(4) with this
initial condition satisfies w(x, T') = wy(x) in M,. Furthermore, if W is

any other initial condition with solution W(x, ¢), then the inequality
we have already obtained

- 2 -2k =~ 12
1w(-, 8) = W, Dl 2210,00) < €210 = ol 200,00

proves that lim, o [|w(-, £) = W(-, )|| 1209 0) = 0

4 WEAK SOLUTIONS

In order to obtain the existence of classical solutions to our problem,
we had to put strong continuity conditions on the loading function f.
However, we can obtain unique weak solutions for any L2 ([0, c0))
loading function f. In order to define weak solutions, we recall that the

Sobolev space W'2[0, c0) is the closure of the infinitely differentiable
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functions on [0, co) with compact support under the norm

dul?

. o0 2 o0
llull,, = \//0 Ju dx+/0 i dx.

We call a function w(x, f) such that (w(x, ) —c/k;) in C([0, c0) —
L*(0, 00)) a weak solution of (1)- (4) if (w(x, ) — c/k)(1 —e %) is in

L2 .([0,00) — {ue W 2(O oo): u(0) = 0}) for sufficiently large K,
w(x,?) is in L ([0, 00) — C[0, X)) for each X >0, its distributional
derivative Ow/0t is in the continuous dual of Lz([O, T)—
{ue W0, 00): u(0) = 0}), lim,jo fOT |w(x, 1) — £ (2)|* dt for each T>0,
w(x, 0) =wg(x), and the following holds for every v in Lz([O, T)—
{ue W0, 00): u(0) =0}):

00 Taw T pxo ow
/0 /Oavdtdx—/()/() —ua(x)v(x)

Ov
I (x) Ix (x)

— kyw(x)v(x) + cvdxdr.

We will start by showing that classical solutions are weak solutions.
Then we will show that weak solutions are unique and obtain our
existence and approximation results. For the rest of this section we will
take K be a constant greater than u/D.

LEMMA 8 A classical solution to problem (1)—(4) is a weak solution to

(H-@).

Proof Let w be a classical solution to (1)—(4). Then (w(x, 1) — c/k,) is
in C([0,00) — L*0,00)), (w(x,t)—c/k,) is also in L2 ([0,00) —
W2(0,00)), w(x,?) is in L2 ([0,00) — C[0,X)) for each X >0, its
derivative Ow/0t is continuous into L2[0 o0) and hence defines a
bounded linear functionalon L2([0, T) — {u € W'2(0, c0): u(0) = 0}),
w(0, 1) = f(t), w(x,0) = wo(x), and the following holds for every u in
L*([0,T) — {u € W"2(0,00): u(0) = 0})

ow ow &w
V=—u

a7 £V+Dﬁv—klwv+cv.
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Integrating with respect to x from 0 to co and integrating by parts
yields

©ow *ow 2w o0 c
A ¥ —vydx = —u/o a—xvdx—i—D A Wvdx—k;/ ( _k_l)de

ow  Ow Qv
——u/ Bx 2 ydx +D[6x Lzo—D A aaxd

Intergrating with respect to ¢ completes the proof.

THEOREM 9  Weak solutions to (1)—(4) are unique.

Proof Let w' and w? be weak solutions to (1)-(4). Let
h(x,t) = w'(x, 1) — w?(x, t). Notice that h(1 — e k) is in L*([0,T) —
{u € W'2(0,00): u(0) = 0}). Therefore

/ W (x, T)(1 —e %% dr

[ S
/ / h(x, £)(1 — e 5%

Dax( )8h (x, 8)(1 — e7%%) —Dgf—c(x, Oh(x, t)Ke %

— kyh(x, )h(x, 1)(1 — e %) dxds

T poo
< / / i (x, ke K — DR, K2 K
s Jo 2 2
— kih(x, )h(x, £)(1 — e %%) dx dt
<0,

where we have integrated by parts in the x variable. The above implies
that 1 [7° #2(x, T)(1 — e~ ¥*) d¢ = 0 for each T> 0 and we are done.

The following result will give the existence of weak solutions as well
as the approximation result which will allow us to write down explicit
analytic representations of weak solutions in some cases.
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THEOREM 10 For every f in L2 ([0,00)) N L>([0,00)), there is a
(unique) weak solution w to (1)—(4). Furthermore, if {f"},-, is any
sequence of differentiable functions with Hdélder continuous derivatives
on [0, 00) that converges to f in L% ([0,0)), then the associated solutions
to problem (1)—-(4), w", converge to w in C([0,00))— L*0, x)),
uniformly on bounded t-intervals. If f" — fin L*°([0, 00)), then w" — w in
L*>([0, 00) x [0, 00)).

Proof Let fbein L2 _([0,00)) N L®([0,00))and{ f"}>°, any sequence
of differentiable functions with Hélder continuous derivative on [0, co)
that converges of fin L2 ([0,00)) which is bounded in L>([0, cc))

by M. Let w” be the associated solutions to problem (1)-(4), w". Let
T>0.Let K>u/D. Let h=w" —w™. Then

/ R (x, T)(1 — e %¥) dx

=/ /m%h(l—e‘“)dx
// (6, (1 — %)

+D3 h(x Oh(x, 1)(1 — e 5) — kyh(x, )h(x, H)(1 — e ¥*) dx dt

/ / X—D%(x,t)gg(x,t)(l _ oKy

—D(9 (x, )h(x, ) Ke *¥ dx d¢

// B (x, ) Ke K* dx — h( 1) Ke K~
0

—/ —hz(x K*e K dxdr
0o 2

5/ %hz(o 1) dt
)

DK, .,
ZT“f ="l 20,75
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where we have integrated by parts and used the fact that
T 2 (u/2)R (x, t) Ke %< dx — [3°(D/2)k(x, t)K*eK* dx < 0. Thus

/0 w"(x, T) = w™(x, T)P(1 = ¢7%) dx < DI = "Il o,

Let £ >0 and choose />0 so that 2/M < ¢/2 and choose N so that if
m,n> N then

el—e X

||f f “L2[0 T) <3 2 KD

Then
/ W(x, T) — w"(x, T)[? dx
0

! 00
:/ [w”(x,T)—w”‘(x,T)|2dx+/ W(x, T) — w(x, T)[ dx
0 !

<2M + —— = : K,/ lw"(x, T) — w™(x, T)[*(1 — e %) dx

1 n m
<3 e = — DK /" = " 20,1

<E.

Since this holds for every T> 0, we have that {w” — c/k,} is uniformly
Cauchy in C([0, T) — L*(0, 00)) for each >0 and hence converges to
a function w such that (w(x, ¢) — c¢/k,) is in C([0, T') — L*(0, c0)).
Returning to the computation above and not discarding the term
D [ [57 (8h(x, 1)/0x)(Oh(x, 1) /0x)(1 — e~%¥) dx dt yields the inequality

/oo w*(x, T) — w™(x, T)lz(l — e ®)dx
0

< DK f" = f"ll 20,7y

2 o] 8W" 8wm 2 i
ﬁD/O/o <ﬁax_(x’t)“a‘(xaf)) (1 —e*)dxdr

which implies that {(8w,/0x)*(x,7)(1 —e %)} is Cauchy in
L*([0, T) — L*([0, 00)). Now
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T poo
/'/[«wum—wamu—f“mfwm

[ o)

"(x, 1) — w"(x, 1)) Ke K*)?
23(W a; w™) (x,0)(1 = e—Kx) (wn(x’ 0 — {—)Ke“’("dxdt.

1
Since each term on the right hand side converges to 0, (w(x,t)—
c/ki)(1 —e %) is in L2 ([0, 00) — {u € W'2(0,00): u(0) = 0}).

loc

Let v be in C§°((0,00) x (0,00)), which is dense in L2([0,T) —
{u € W'2(0,00): u(0) =0}). Then we have

o T c\ Ov
- 1) —— ) —dtd
/0 /o (W(x ) kl) a
(o) T
=/ / aW"vdtdx
8wn ow,, Ov
/ / )—D—a;(x a(x)

— ki (w,,(x, 1)

- E) vdxdz.

Letting n tend towards oo yields

/ /(w(x, ——)—dtdx
=/ / gvdtdx
// —u—— D%;(x)% X)

-k (w(x, 1) — k%) vdxds

where g is the weak limit of Ow,/0t in the continuous dual of
L*([0,T) — {u € W'(0,00): u(0) = 0}) and

4
wW——

80 < (u+-D k) w—

I v“LZ([O,T)——»W‘-Z(O,oo))'
L2([0,T)—W"2(0,00))
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Furthermore, since

o [ s [ (e ) S

g is the distributional derivative of w, Ow/0t.

Since for each natural number n, w,(x, 0) = wy(x) and w, converges
to w in C([0, T) — L*(0, 00)), w(x, 0) = wo(x) in L*(0, c0).

All that remains in order to show existence of weak solutions is to
show that w(x, ?) is in L2 ([0,00) — C[0, X)) for each X >0 and that
as x tends to zero, fo Iw(x, 1) — £ (1)|* dz tends to zero. Let h=w" — w"™.
Then

/whz(n,t)dnz/I—u/xhxhdndf
/ /hxxhdndf—k.// W dndr
-u/hzx, )dr — D / (X, T)h(x, T) dT
—D// NOX: dndr—k,// h? dndr.

We now integrate from 0 to x in the spatial variable again,

[ [ #moanas

__u//hzn, dndT——/ (6,7 = (f"(r) — f7(r)2d
—D/// (hx(n,r))zdndﬂdr—kl//x/ﬁoohzdndﬂdr
—u//hzn, dnd7‘——~/ (x5, 7)) = (f"(7) —f™(7))* dr
—D/ x [Tty an= [ anr)anar
—kl/o/o/ﬂ h? dndpBdr.
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Rearranging yields

g-/o’(h(x,r))zdv—z—/x/oohz(n,t)dndﬂ—ku/ol/oxhz(ﬂ,T)dﬂdT

2 / (f(r) - f™ (7)) dr
) /0 x / (he(n7)dn = [ (s ()" et
—kl/ot/ox/;ohzdndﬂdr.

Since lim (1 — e~ %%)/x = K, we have that all of the terms on the right
hand side are Cauchy, uniformly on bounded x intervals. Further-
more, each classical solution w”(x, ) satisfies that lim,_, ﬁ) "(y,7)—

w"(x,7))*dr = 0 for each positive 7. Therefore, the same result holds
for w. We have now shown that for every f in L2 ([0,00))N
L>([0,00)), there is a (unique) weak solution w to (1)—(4). Further-
more, if {f"},2, is any sequence of differentiable functions with
Holder continuous derivatives on [0,00) that converges to f in
L2 ([0, 00)), then the associated solutions to problem (1)—(4), w", con-
verge to w in C([0, 00) — L*(0, 0)), uniformly on bounded t-intervals.
To see that if f"—f in L*°([0,00)), Then w"—w in L*([0, 00) x
[0, 00)), let h=w" —w™ and using the same notation as in the proof of
the boundedness of classical solutions, multiply the differential equa-
tion by ri(h)[si(h)F ! and integrate from 0 to oo,

(e 9]

o5 [ sy ax = WP+ D[Sl Y|

0 /o °° [%] 2 (h(m)ls(m)P™

+ (rh () [si(m)) ) dx
ki /ooo<h)rk<h>[sk(h>]"" dx.

x=0
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Nothing that the first two terms are zero at oo and that the integrals
are positive, we obtain

/ [sk(h) ]”dx <- [Sk (f" () =f"(¢ ))]
Oh n n m p—1
= D-n(f"(1) 0)[se(f" (1) = (1))

_;[Sk () =)y

pat

D[ 0.0l )

Integrating with respect to ¢ from 0 to ¢ (abusing the notation) we
obtain

| s ax <u [t - ) an
0 0

"1 Oh
+pD/—
0

72 (0.7)| [se(/"(r) =" (0)] " dr

Now letting k tend towards oo and applying the Lebesgue dominated
convergence theorem yields

[T mmorar<a [0 - mopar
0 0
" 0.7)1770) (0P ar

'|Oh

Equivalently,
IGO0y < #LA™ D) =S DI 00
1) =" O 0,

+ DH—(O 2)
Lo (0,0)

Taking pth roots and lettting p go to infinity yields
WAC Dl 20,00 < I™(E) =" (D)l 22 (0,0)

and we are done.



WATER QUALITY MODEL 215

Remark 1 Because a function in L*0, 7] can be approximated by
increasing sequences of smooth functions, the results on ordering,
positivity, and boundedness hold for weak as well as classical
solutions.

5 FOURIER SERIES FOR WEAK SOLUTIONS

In [2], explicit solutions were given for problem (1)—(4) in the specific
cases of f constant, f'a sine function, or f'a cosine function when wy is
constant. In fact, the solutions for the foregoing were done by looking
at the solutions for the real and imaginary parts of an exponential
loading function f. It is this complex solution we will use here. We give
them here and then use this information and Fourier series to give an
explicit series representation for a particular weak solution.

If wo(x)=Ly, a constant, c=L,, and f(t)=A, the solution is

given by
1 L, ux \/X X
=—|A4A-— — — /= fe|l——
w(x, 1) 2< kl) exp |5 n prler c[\/m \/)\t]
1 L, ux \/X X
+ 5 (A — k—l) eXp E + Bx erfe I:— ZE — )\t]

—%(Lo —i—;’) exp[%—klt]
X lexp (—x@)erfc(\/% - \/,E)
+exp <x\/§)erfc(\/‘%+ \/E)}

L L
+ (Lo - k—f) exp(—kit) + k—f,

where 3 =u?/4D.
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For f(f) = Bexp(iwt), ¢ =0, and wy = 0. In this case we have

w(x, 1) = gexp [% + iwt} {exp (—xﬁ)erfc(zjm - \/E)

+exp(x\/%)erfc<5j——l)_:t+ \/07)}

where A = u?/4D + k; and a = A +iw.
We note that the only constant initial condition allowed by our
existence theory is wy = c/k;.

Example 1 We will take our unit of time to be one day, our unit of
distance to be one meter, our unit of volume to be liters, and our unit
of mass to be milligrams

m
D=17 dle’
u=125000 ——,
day
ki = 0.5days,
_ mg
c=17.5 L—day’
m
wo(x) =15 Tg

Our function fwill be the period 1 day continuation of the following
F(6) =15+ 26: 28
L
which yields the sawtooth wave in Fig. 1. This will yield the fourier

series for f of

00

f(t) ~ Z % exp[2inmi].

n=-—00
The truncated fourier series

N

13i
Su(t) ~ 28 + E ) exp|2in|
n=—N,n#0 nm

with N =6 is given in Fig. 2. We get a series representation for w(x, f)
by using superposition for the individual forcing functions 28 and
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FIGURE 1 BOD loading function at x =0.
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FIGURE 2 Approximate BOD loading function at x=0.
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(13i/n)exp[2innt] for n a nonzero integer. This yields

1 L, ux A X
W()C, t) 2 (A - k—) €Xp |+ 2D \/;X erfe [ﬁ - )\t:|
1 L, ux A X
2 (A _k_l) exp 2—5+ \/gx erfc[—— ZD_t+ v)\t}

;(L" 11; ) plap ki)
X [exp(—x@)erfc(\/—:x_ﬁ— ﬁt)
+ exp (x@)erfc(%m + \/E)

+£€+ i ﬁe p[ZD i27rnt]

ki n=—N,n#0 2nm

o o i)
oo )

Figures 3—7 will give the profile of the first 300 kilometers of the river
at days 5, 10, 15, 20, and 25 respectively.

(LO - %—) exp(—ki?)

50

Time = 5 Days

w N
o o
T T

BOD Concentration, mg/ml
n
o

o
T

0 1 L i L ! L ! 1 L

0 30 60 90 120 150 180 210 240 270 300

Distance down river, km

FIGURE 3 BOD concentration profile of the first 300 kilometers of the river after
5 days.
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FIGURE 4 BOD concentration profile of the first 300 kilometers of the river after
10 days.
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FIGURE 5 BOD concentration profile of the first 300 kilometers of the river after
15 days.
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FIGURE 6 BOD concentration profile of the first 300 kilometers of the river after
20 days.
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FIGURE 7 BOD concentration profile of the first 300 kilometers of the river after
25 days.
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