Mathematical Problems in Engineering © 1999 OPA (Overseas Publishers Association) N.V.

Volume 5, pp. 139-160 Published by license under
Reprints available directly from the publisher the Gordon and Breach Science
Photocopying permitted by license only Publishers imprint.

Printed in Malaysia.

A Model of Frontal Polymerization
Using Complex Initiation

PM. GOLDFEDER and V.A. VOLPERT*f

Department of Engineering Sciences and Applied Mathematics,
Northwestern University, Evanston, IL 60208, USA

(Received 19 May 1998)

Frontal polymerization is a process in which a spatially localized reaction zone propagates
into a monomer, converting it into a polymer. In the simplest case of free-radical
polymerization, a mixture of monomer and initiator is placed in a test tube. A reaction is
then initiated at one end of the tube. Over time, a self-sustained thermal wave, in which
chemical conversion occurs, is produced. This phenomenon is possible because of the
highly exothermic nature of the polymerization reactions.

Though there are certain advantages to this polymerization process over the more
traditional methods, one of the drawbacks is that conversion tends to be incomplete. One
way to increase conversion is by using greater amounts of initiator. The disadvantage to
using this method is that more initiator results in the production of more free radicals,
leading to large numbers of undesirably short polymer chains. A second method is to
use a mixture of unstable and stable initiators. In this paper we develop and study a
mathematical model of the propagation of free-radical polymerization fronts using such a
complex initiation. We compare the propagation velocity, maximum temperature and
degree of conversion of fronts with a stable initiator, an unstable initiator and a mixture
of the two. In addition, we examine how altering the stability of the stable initiator affects
these quantities. We show that it is indeed the case that a mixture of unstable and stable
initiators does have many advantages over using either type of initiator individually, in
agreement with the existing experimental data.
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INTRODUCTION

Frontal polymerization is a process in which a spatially localized reac-
tion zone propagates into a monomer, converting it into a polymer.
In the simplest case of free-radical polymerization, a mixture of mono-
mer and initiator is placed in a test tube. A reaction is then initiated
at one end of the tube. Over time, a self-sustained thermal wave, in
which chemical conversion occurs, is produced. This phenomenon is
possible because of the highly exothermic nature of the polymerization
reactions.

These reactions will continue to occur until one of two things
happens: either complete consumption of the initiator or complete
conversion of the monomer. One of the problems which commonly
occurs with free-radical polymerization fronts is that the process is
truncated for the former reason, and not the latter. This is known as
initiator burnout [2]. For frontal polymerization to be a viable alter-
native to more traditional methods, it is necessary for conversion to be
at, or near, one-hundred percent.

There are many extremely desirable characteristics of this novel
method of creating polymers. Included amongst them is a savings in
energy costs, a shorter reaction time, the use of more simple produc-
tion equipment and improved product purity. One drawback is the
aforementioned problem of initiator burnout, which results in incom-
plete conversion. Thus, the issue is discovery of a way to increase con-
version without seriously compromising any of the advantages. One
way to do this is by using a larger amount of a single initiator, another
way is to use a smaller total amount of two initiators. Because the
former method has undesirable side effects, including the production
of short polymer chains, we will focus on the latter approach. Unfor-
tunately, there has been very little research done on this.

The idea behind using two initiators is intuitively simple: mix a
stable initiator with an unstable one. The advantages of the unstable
initiator include a lower activation energy (this allows for initiation at
a fairly low temperature) and a higher propagation velocity. Aside
from the advantage of a much higher degree of conversion, using a
stable initiator also increases the maximum temperature, leading to
greater product purity and less waste. A problem with using a stable
initiator is that because of its high activation energy it is very difficult
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to initiate a self-sustained thermal wave. A second potential problem
relates to what was discussed in one of our earlier papers [5], namely
heat-loss and the so-called extinction limit. Briefly, what we showed
was that for heat losses beyond a certain critical value the wave can no
longer propagate. For a very stable initiator, the propagation speed
tends to be much lower, which effectively allows for greater amounts
of heat loss. One way to circumvent this difficulty in initiation, as well
as potential heat-loss problems, is by combining the stable initiator
with an easily ignitible unstable one. It has been shown experimentally
[10,11] that combining stable and unstable initiators does indeed
increase the conversion and maximum temperature, without sacrific-
ing easy initiation, allowing for critical amounts of heat loss, substan-
tially decreasing the speed of the front, or having adverse effects on the
size of the polymer chains being produced.

In this paper we develop and study a mathematical model of the
propagation of free-radical polymerization fronts using complex initia-
tion. We compare the propagation velocity, maximum temperature
and degree of conversion of fronts with a stable initiator, an unstable
initiator and a mixture of the two. In addition, we examine how alter-
ing the stability of the stable initiator affects these quantities. Com-
parisons are made between our analytic results and the existing
experimental data.

Il MATHEMATICAL MODEL

The propagation of free radical polymerization fronts involves the
usual free-radical mechanism [7] consisting of decomposition, initia-
tion, propagation and termination reactions. For the process studied
in this paper, the characteristic scale of the polymerization wave is
much smaller than the vessel through which it propagates, so that the
test vessel (usually a test tube) can be treated as infinite on the scale of
the polymerization wave. To study polymerization waves that propa-
gate at a constant speed and do not change their profile in the course
of propagation, we introduce a moving coordinate system attached to
the wave, in which the wave is a stationary solution. Thus a traveling
wave coordinate (x) may be introduced. At one side of the vessel
(x=—00) there is a lresh mixture of monomer and initiator, and on
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the other side (x = 0o) there is the inactive polymer, or products, that
are left behind in the wave’s wake. The kinetic equations describing
this system are written as

ul] + kI, =0, (2.1)
ully + kaaly = 0, (2.2)
uR' — 2fikarh — 2fskaalr + ky RM + ke RP = 0, (2.3)
uM' + kyRM + kpy MP = 0, (2.4)
uP' — kyRM + kRP + kP’ =0, (2.5)
uP' — kRP — kP’ =0, (2.6)

where u is the propagation velocity of the wave which must be
determined in the course of solution of the problem. Here 7y, I, R, M,
and P denote the concentrations in mol/L of the initiators (unstable
and stable respectively), primary free radicals, monomer, and inactive
polymer, P is the concentration of the polymer radicals, and prime
denotes the derivative with respect to x. The quantities kq;, kq>, kp, and
k are the rate constants for the decomposition, propagation, and
termination reactions, respectively, that are all taken in the form of
Arrhenius exponentials

kan = K3, exp(—Eqn/R;T) (n=1,2),
ky = kg exp(—Ey /Ry T), ki = k¥ exp(—E/R,T),

where R, is the gas constant, T is the temperature of the mixture, and
kgn,kg,k? and Eg,, E,, E, are the frequency factors and activation
energies of the three types of reactions.

Equations (2.1) and (2.2) describe the decomposition of the
initiators. Here f] and f, are efficiency factors which are necessary to
account for the fact that not all of the radicals produced survive to
initiate polymer chains. Equation (2.3) describes both the production
(the 2f\kqil, and 2f>kg>l> terms) and consumption (the k,RM and
kRP terms) of the free radicals. These radicals are produced in the
initiator decomposition reactions and consumed in the propagation
and termination reactions. In a similar way, the remaining equations
(2.4)—(2.6) describe the change in the concentration of the monomer,
polymer radicals and inactive polymer, respectively.
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These kinetic equations must be supplemented by the energy balance
in the system, which accounts for thermal diffusion and heat release in
the polymerization process. Since the heat release occurs mainly in the
propagation step [9], the energy balance takes the form

KT" —uT' + gkp(RM + MP) = 0, (2.7)

where & is the thermal diffusivity of the mixture (assumed to be con-
stant), and ¢ is the increase in temperature associated with converting
1 mol/L of monomer into polymer.

We will study a simplified kinetic system by using a quasi-steady
state assumption regarding the total concentration of the radicals.
Under this assumption [3,8], the rate of change of the concentration of
the radicals, R and P, is much smaller than the rates of their pro-
duction and consumption, so that there is a simple algebraic balance
between the amounts of radical and initiator. Thus, equations (2.3)—
(2.5) can be reduced to a single equation:

uM'+keff,/1+ f I\fllM 0, (2.8)

where the effective rate constant, keff, ratio of initiator concentrations,
I, and ratio of efficiency factors, f, are given by

kar ;)
kete = 2f1 , 1= 11 f= 7
Thus, our model consists of the mass and energy balances (2.1), (2.2),
(2.7), and (2.8), and the boundary conditions at the left (x=—o0)
and right (x=o00) ends of the tube. For calculational simplicity, we
make a change of variables for the initiators, I, = J2 (n=1,2), and for
convenience write the modified equations as

qu/-l-JIk](T):O, (29)

wlb + k(T = 0, (2.10)
k3(T) ~2

M+ M J ky(T) =0, 2.11

u i " (T) 2(T) (2.11)

kT" —uT — quM' =0, (2.12)
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and the boundary conditions at the cold (x = —00) and hot (x = +00)
boundaries

x=—-00: M=My, T=Ty, J,=Jopn (n=1,2
) 0 0 n On ( ) (213)

x=+400: T =0.

Here Ty is the initial temperature, Jo, = v/ Ipn (=1, 2), and M are the

amount of (modified) initiators and monomer present in the initial mix-

ture, and

k](T) = kdl(T)/Z = ko CXp(—El/RgT), ko1 = kg,/z, E, = Eq4,
ko(T) = ket(T) = koz exp(—E2/RgT), koy = k%, Ez = Eefr,

€l

k3(T) = kgo(T)/2 = kos exp(—E3/RyT), kos = k3,/2, E3 = Eqy,

[k Eq — E
Ky = kS 2f1—k%‘, Eeff=E,,+—‘—“—2——‘.
t

With the reaction rates in the form of Arrhenius exponentials, this
problem is quite difficult to study analytically. In previous works
[4—6] the authors of this paper have circumvented this complexity
by replacing the Arrhenius dependence of the reaction rates on temper-
ature, k,(T) (n=1,2,3), by step functions with heights equal to the
maximum of the Arrhenius function and integral values over the range
Ty to Ty, being approximately equal to those of the Arrhenius func-
tions. This approach has proven to provide results that are not only
correct qualitatively, but also quantitatively. Thus we approximate
kn(T) as

where

0, T<T, _
ko(T) =~ {An(Tb), T>T, (n=1,2,3), (2.14)

where

Ty = To(l =€), e = ReTo/En, Au(T) = kn(To) (n=1,2,3).
(2.15)

Here, T,, (n=1, 2, 3) are the temperatures at which the reactions begin,
€, are small dimensionless parameters, A, A,, and A3 are the heights
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of the step functions, and k(Ty), ko(Ty), and k3(Ty) are the reaction
rates evaluated at the maximum temperature, Ty,. For the subsequent
asymptotic analysis, it is important to note that €y, €,, and €5 are of the
same order.

Since the typical situation is that the activation energy for the first
decomposition reaction, E|, is greater than that for the polymerization
reaction, Ej, formally it is possible for the polymerization reaction to
occur prior to the first decomposition reaction which is not consistent
with the nature of this model. In order to make up for this inaccuracy
of the steady state approximation, we introduce the Heaviside func-
tion, x(J1o — J1), in the polymerization reaction, rewriting Egs. (2.11)
and (2.12) as

~A3(T) -

M’ + 1M x(o - 1+ 72D 2y =0, (216)
A(T)

kT" —uT' — quM' = 0. (2.17)

Thus, the first decomposition reactions and the polymerization
reaction will begin simultaneously as a result of the Heaviside func-
tion, x. Since the set of equations is invariant under spatial translation,
we let the point in space where both reactions begin be x =0. Because
we have replaced the Arrhenius-type reaction rates with step functions,
the spatial region from x = —o0 to x =400 can be divided into three
regions: one where neither reaction has begun (x <0, k\(T) =k(T) =
k3(T)=0), one in which the first decomposition and the polymeriza-
tion reactions are occurring but the second initiator has not yet begun
to decompose (0 < x < x3, k1(T)ko(T) # 0, k3(T) = 0), and one after the
second initiator has begun to decompose (x> x3, ki(T)ky(T)ks(T) #
0). Thus Egs. (2.9), (2.10), (2.16), and (2.17) can be stated for each of
the three regions as

ul{ =0, uJy=0, uM' =0, kT"—uT' =0, (2.18)

for x <0,

uli +J1(x)41 =0, ul;=0, uM'+J(x)M(x)4; =0,

2.19
kT" —uT' — quM' =0, 19)
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for 0 < x < x3, and
qul +Ji(x)4; =0, uJé +J2(x)A3 =0,

uM' 44 /1 +f::—?.}2A2J1 (x)M(x) =0, (2.20)

&T" —uT' — quM' =0,

for x > x3. The boundary conditions are given in (2.13). In addition,
there are the following matching conditions at x=0 and x=x; that
constitute continuity of the mass, temperature and temperature
gradient distributions in the polymerization wave:

Ji(07) = J1(07), J2(07) =J»(0%), M(07) = M(0"),
T0")=T(0%Y) =T, T'(07)=T'(0"),
Ji(x3) = N(x]), L(x3) =h(x3), M(x3)=M(x3),
T(x3)=T(x3) =T, T'(x3)=T(x7).

(2.21)

(2.22)

Il SOLUTION

Solution of the Egs. (2.18)—(2.20) subject to the boundary conditions
(2.13) and matching conditions (2.21) and (2.22) were found by first
solving the equations for J(x) and M(x), and then substituting the
results into the equation for 7(x). Solving for J,(x) and M(x) over all
of space yields

J1o0, x <0,
Ji(x) = {Jmc_(A'/")x, 0<x<x3, (3.1
Jioe~ /WX x> xs,
J20, x <0,
Ja(x) = § Ja0, 0 < x < x3, (3.2)
Joge /M) x> e,
and
M, x <0,
M(x)=3 Moexpla(e M1/9x—1)], 0 < x<x3,
My exp[a(e=A/Mx 1) expla(F(x) — F(x3))], x> x3,
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where

A [* A4 2((Ay—A3) fu)r o= (A1 /)T
Flx) ="~ L+ gt dr,  (34)
X

and the following nondimensional quantities were introduced

Az Jo1
o=

)
b= [l
4, =1

The concentrations J,(x), Jo(x), and M(x) of the initiators and the
monomer given by Egs. (3.1)—(3.3) satisfy the conditions of continuity
in Egs. (2.21) and (2.22). Solving the equations for 7(x) yields

(o]
T(x) = Ty + 22 ol / (Mo — M()e @™ dr (3.5
X
which is valid over the entire spatial region and satisfies the condition
of the continuity of both the temperature and its gradient from Egs.
(2.21) and (2.22). Here, M is given by Eq. (3.3).
Applying the remaining conditions in (2.13), (2.21), and (2.22) pro-
duces the following three equations

Ty —Tp = %“ / (Mo — M(7))e” ™" dr, (3.6)
0

T3 — Ty = Letuiom / (Mo — M(r)e @7 dr,  (3.7)
x3
Ty — Ty = q(Mo — My), (3-8)

where My, the amount of monomer remaining when the reactions have
ceased, is found by taking the limit as x — oo of Eq. (3.3)

My = Myexpla(e” /% — 1)] exp[—aF(x3)]. (3.9

Equation (3.8) was derived by evaluating Eq. (3.5) in the limit as
x — oo and applying L’Hopital’s Rule.

We now have four equations for four unknown quantities x3, Ty, u,
and My Before examining these equations, we will determine the
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asymptotics of F(x) given by Eq. (3.4) in small e. Nondimensionalizing
this integral gives us

F(x) = / \/ 1+ epe2(1-9te™" dy, (3.10)
4

where

This can be rewritten as

F(x) = / Ve 2 + ege2¢ dt
€

-2t

[e.0] oo e
= Vepe 2t dt +/ de
/6 ’ ¢ Vel +epe 2 + \/ege 2

+1, (3.11)

v 00 —2t
= 4 2 d
6¢/§ ¢ H-/g e 2 + e+ /e ‘

where

= o 1 ~ 1 s
1 /E ¢ (\/e—Zt + egpe—2¢t 4 \/6¢e_25’ \/6‘2’ T ep+ @) L.

It can be shown that
et
< — ds. .
I< 2\/e¢/€ Sege ds (3.12)

Thus, it is apparent that I is, at most, an O(1/€) quantity, which allows
for the following approximation for F(x)

=) -2t
F(x) = \/¢/ee™ /x4 /e = : T dr

= \/¢/ee /0% L e=(/0x L O(\/€ Ine). (3.13)

+ O(Ve)
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Inserting this result into Eq. (3.9) allows us to write a simple expres-
sion for My, (in the original variables)

My, = Myexp [—a <1 + \@%)J + O(Ve Ine). (3.14)

Now that an approximate expression for F(x) has been found, it is
possible for us to find analytic solutions for Egs. (3.6)—(3.8). Instead
of attempting to solve them in their current form, it will be easier to
generate a new set of equations by looking at their differences. First
subtracting Eq. (3.6) from Eq. (3.8) gives us

o0
T,— T, = q—:/ [M(7) — Myple~®/®m dr
0

_ qu (/xa [Moea(e—(A|/u)r—l) _ Mb] e~ W/R)T 47
K 0

o0
+Msy / [e?F() — 1]e=W/mI d’T). (3.15)

X3

Subtracting Eq. (3.7) from Eq. (3.8)
Ty—T; = % ( /0 " Mo — MyJe0/7 47
—e~W/m)x /OO[MO — M(7)]e~W/mr dr). (3.16)
X3
By adding and subtracting factors of f M(r)e~@"®7dr  and

o [M(1) — Myle=/®7dr, rearranging and s1mp11fy1ng, Eq. (3.16)
can be rewritten as

Ty — T3 = q(Mo — My)(1 — e~ /om) 4 2
K

X (/OO[M(T) — My)e~®R dr

/ (M(r) e WIRT dr — (eW/mw _ 1)
x/ [Mo — M(7)le “("/”)Tdr>. (3.17)
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Substituting in results from Eq. (3.15), adding and subtracting
(e/mxs — 1) [ Mye™ @/ d, and simplifying yields

X3
T, — T3 = q(Mo — Mb)(l — e_(“/")’”) +@/ Mbe_(u/N)T dr
K Jo

_ %(C(u/nm ) ( / (Mo — MyJe=/"" dr
X3

+ [ty = Mo ). (3.18)

Simplifying this expression gives us

Ty — T3 = (Ty — Th 4 qMy) (/P — 1)

X3
_ qelulom ¥ / M(r)e 9 dr. (3.19)
KJo

Since reaction zone for this system is known to be quite small, it is
reasonable to consider the nondimensional quantity (u/k)x3 as an
O(e,) quantity. Using this assumption, as well as the fact that the
quantity (Ty, — T7)/Ty is also an O(e,) quantity (n=1,2,3), we can
rewrite Eq. (3.19) to O(e,) as

T, — Tz = quEx3 — q%/ ‘ M(7)e” R dr, (3.20)
K 0

Adding this result to Eq. (3.15) and again taking advantage of (u/k)x;
being O(e,) gives us to O(e,)

o0
To—Ts = My~ / [eFD) — 1]e~®/PT dr, (3.21)
K

X3

Thus, we now have the four equations (3.8), (3.14), (3.20), and (3.21)
for the four unknown quantities 7}, My, u, and x3. We rewrite the
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equations here for convenience

Tb — T() = q(MO - Mb), (322)
My = Moexp |—a| 1+ \/{J}) , (3.23)
X3
Ty — Ty = gMy 2 x3 — g2 / M(r)e” /") dr, (3.24)
K K Jo
Ty~ T5 = gMy " / [@F0) _ 1]e= W/ 47, (3.25)
X3

where

F(x) = Jo \é el /(x=x3) | g—(A1/u)x

Note that the latter four equations are of O(e,). Substituting results
from Eq. (3.3) into the integral in Eq. (3.24) yields

o
T — T3~ qug)g — qMoe‘“/ explae” e dt, (3.26)
0

where

This can be rewritten as

1
Ty — Ty~ My Y xs — qMoe 2 / e @)1 gy
K V Je-tlg

~ quE)Q _ qMoe_" (50 exp[ae—(v/a)gﬂ]
K

a2 1
- —/ e lIny dy) , (3.27)
Vo Je- (/o)

where we again took advantage of £, being a small quantity and, in
addition, assumed (as in our previous paper [4]) that due to a large
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activation energy, a/v < 1. This equation can be rewritten as

(&3 — q)‘—llﬁ;;e"‘ ~ & (exp [—a fo\/{ — explae™ (/)]
o2 [!
— Y Inydy. 3.28
3 /e—(v/am ey (3.28)

Turning our attention to the integral in Eq. (3.25), we again begin by
nondimensionalizing it, which yields

o o]
qu/ (expla(ne=</®)t 4 e=(/)N)] _ 1)e~" dt
&

0

e~%
= qM (1 —e o / explany©/*) + ay /)] dy), (329)
0

n = jo\ﬁef("/a)ﬁo.
€

Though the integral in this equation cannot readily be solved
analytically, using the fact that 7> 1 (we are assuming that Jo will not
be a small quantity, i.e., a substantial amount of the stable initiator is
present in the initial mixture), we can approximate it using Laplace’s
method (see, for example, [1]) as

where

_l__exp [Z—v & — & + ae~ (V% | ane—(ev/a)go] )

Substituting in for  and expanding all of the exponentials (assuming
that (ev/a)¢y is a small quantity) allows us to rewrite the integral as

1

Joy/fev

X exp la (JO\/{ + e“v/‘%ﬂ . (3.30)

[1_£0+...][1_%&)_{_...][14_%504_.”]
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Substituting this result back into Eq. (3.29), neglecting e ~ “/**° com-

pared to jOV f/e within the exponential, and keeping only terms to
O(e) yields

qMy | & + ! Aexp[afo\/j}} . (3.31)
Jon/fe ¢

Using the approximation for My from Eq. (3.23), substituting these
results into Eq. (3.25) and simplifying gives us the following equation

&y exp —afo\/j—r ~ 3 T e — ! . (3.32)
el qM, s
JoV\/jTE

The left-hand side of this equation consists of an exponentially small
term multiplied by a small quantity. Thus, it would be reasonable to
say that the two terms on the right-hand side can be considered as
being very nearly equal to one another. This gives an approximate
equation for v, the nondimensional propagation speed,

(Jo\/;e €3Tz a) g} (3.33)

Using the definitions of v and €3 given above allows us to write an
equation for the dimensional propagation velocity

5 K)AzRg TgJozea - A3
P S 3.34
E3qM, A, (3:349)

which can be rewritten in the original variables as

, KR Tg kS, [E— Eq —2E,
= 2 —_—
W = Fatty o\ Pl o exp 2R Th
[ I E, + Eq - 2E,
0 t dl p
X eXp [2kp kglkoexp{ 3R, H (3.35)

If Ty, is fairly close to the adiabatic temperature, T,4 (Which is the case
if My is small), then this is an explicit formula for the propagation
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velocity. Otherwise, combining it with Egs. (3.22) and (3.23) and
solving it numerically (as we do below) is necessary.

IV RESULTS

Examining Egs. (3.22), (3.23), and (3.35) numerically, we were able to
observe how changes in the initiator type and composition affected the
maximum temperature in the front (7}), the final degree of conversion
of the monomer (A43,), and the propagation velocity (u).

Unless otherwise noted, the following parameter values were used
[4,10]:

kS =4-1021/s, kS =5-10°L/(s-mol), k =3-107 L/(s - mol),
Eq = 2Tkcal/mol,  E; = 4.7kcal/mol, E; = 0.7 kcal/mol,

kg =8.9-10"1/s, E4, = 31.3kcal/mol,

g =33.24L-K/mol, & = 0.0014 cm?/s.

(4.1

In addition, we fixed the initial temperature (7,) at 300K, and the
initial amount of monomer present (M,) at 6 mol/L. In Figs. 1-3, we
compare how changes in the type and consistency of the initiator will
affect the maximum temperature, amount of monomer remaining and
propagation velocity. The quantity I, in these figures (as well as Figs.
4-6) denotes the total amount of initiator present, whether it is all of
one type or a mixture. In the cases where we mixed initiators, the ratio
of stable to unstable initiator was one-to-one. For the cases where only
a single initiator was used the asymptotics in this paper will not work
due to the fact that the parameter J, will either be zero or infinite,
making it necessary to use alternate equations for Ty, My, and u. In a
previous paper [4] we have derived equations for these quantities. We
write them here for convenience:

Ty, — Ty = q(My — M),
My = Mye™ @,
2 RART] e — 1
E\(Ty = To)  f, e In(1/y) dy

where A and « are defined as in this paper.
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Figure 1 is a plot showing the effect of initiator type on the maxi-
mum temperature achieved. For the cases of a single initiator, stability
tends to radically increase the maximum temperature. This is expected,
as the higher activation energy (Eq,) characteristic of a more stable
initiator means that the temperature must reach a higher value before
any significant initiation can occur. Thus, because the reactions are
harder to initiate and therefore begin at a higher temperature with a
stable initiator, even with a gradient similar to the unstable initiator,
a higher maximum temperature will be reached. For the case of a
mixture of initiators, the maximum temperature achieved is nearly as
high as that for the stable initiator alone for very small amounts of
initiator. Though it is not shown on this graph, for slightly higher
amounts of initiator, the maximum temperature achieved for the
mixed initiators is actually slightly greater than for the stable one only.
As was mentioned above, this is a desirable characteristic.

Figure 2 lends even greater validity to the theory of mixing stable
and unstable initiators in frontal polymerization. This figure shows the

500.0
480.0
< 460.0
-
— unstable only
--- stable only
— == mixed
440.0 4
420.0 — R
0.00 0.02 0.04 0.06 0.08 0.10

I, (mol L)

FIGURE 1 Effect of changes in initiator type and composition on the maximum
temperature of the system.
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FIGURE 2 Effect of changes in initiator type and composition on the amount of
unreacted monomer remaining after the reactions have ceased.

effects of changes in the initiator type and composition on the amount
of monomer remaining once the reactions have run to completion
shows that for a mixed initiator, conversion is nearly complete for
even small amounts of initiator. For a stable initiator only, conversion
is slightly higher for smaller amounts of initiator, but for concentra-
tions greater then 0.05molL ™' complete conversion is achieved for
either a stable or mixed initiator. This is in stark contrast to the
unstable initiator, where conversion is never much greater than ninety-
five percent.

Figure 3 shows how the front velocity is affected by the type
of initiator. As was mentioned above, one of the goals of using
two initiators was to increase conversion without decreasing speed.
This figure shows that it is indeed not necessary to sacrifice speed
for greater conversion. For initiator concentrations greater than
0.010mol L ', the velocity for the mixed initiator is greater than that
for the stable one. In fact, as can be seen in the graph, as the total
amount of initiator increases, the difference between these velocities
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FIGURE 3 Effect of changes in initiator type and composition on the propagation
velocity of the front.

increases dramatically. Thus, having a mixed initiator definitely does
not result in very much of a loss of speed.

Figures 4—6 show how changing the activation energy of the stable
initiator, I, affects the maximum temperature, amount of monomer
remaining and propagation velocity. The lower the activation energy,
the less stable ;. For these plots, an equal mixture of stable and
unstable initiators was used. A less stable I, (due to a lower activation
energy) tended to produce a lower maximum temperature, lower
conversion and higher velocity. The results of Fig. 4 are apparent from
looking at the following equation, derived from Eqgs. (3.22) and (3.23)

2Tk . —
02K p \/} exp [Et + Eg 2Ep] _ ln< qM, )
\/ KS,K? 2R, T To+qMo — Ty

(where it was assumed that, because 1 < 1/ (f/€).Jo, the exponential of

Eq. (3.23) could be approximated as —a/(f/€)Jo. As the activation



158 P.M. GOLDFEDER AND V.A. VOLPERT

500.0 —————rmrere e ————

480.0

< 4600
= /
1
1
]
]
440.0 + —— E,=263kCalmol’ | |
--- E,=28.8kCalmol’
—-- E, =31.3kCal mol’
420.0 n 1 n L " 1 . 1
0.00 0.02 0.04 0.06 0.08 0.10
I, (mol L")

FIGURE 4 Effect of changes in the activation energy of the stable initiator on the
maximum temperature of the system.

energy of the stable initiator, Ey,, is lowered the value of the left-hand
side of this equation decreases. The accompanying decrease in the
right-hand side of the equation can only be caused by a decrease in Ty,
Figures 5 and 6 can be understood through similar reasoning by
examining Egs. (3.23) and (3.35), respectively.

Comparing our results with the available experimental data [10,11]
shows fairly good agreement. These experimental papers show that a
more stable initiator causes a higher maximum temperature, lower
propagation velocity and much greater conversion than an unstable
one, without the undesirably short polymer chains. Specifically, it was
shown that the propagation velocity dependence on initiator is not
additive, maximum temperatures were higher for an initiator mixture
than for either type of initiator alone, and that conversion is (for
amounts of initiator that were not too small) nearly equal for mixed
and stable initiators. The results of this paper were in excellent qual-
itative, as well as very good quantitative, agreement with each of these
findings.
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FIGURE S5 Effect of changes in the activation energy of the stable initiator on the
amount of unreacted monomer remaining after the reactions have ceased.
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FIGURE 6 Effect of changes in the activation energy of the stable initiator on the
propagation velocity of the front.
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We have introduced a mathematical model of a free-radical poly-
merization front using complex initiation. In doing so, we have con-
firmed that a combination of stable and unstable initiators tends to
make this method of polymerization more viable than with a single
initiator.
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