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In this paper we develop a test for determining whether the observed sample path
comes from a system with hysteresis perturbed by noise, or if it arises from a system
governed by an ordinary differential equation with the same noise. A large sample size
test is constructed, which is appropriate in many practical situations. Two models are
considered as alternatives to the hysteresis model. An asymptotic expression for the
cutoff point of the test is found using a version of the central limit theorem.
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1 INTRODUCTION

Hysteresis can be a by-product of fundamental physical mechanisms
such as phase transitions, or it can be built into a system deliberately
in order to monitor its behavior, as in the case of temperature control
via a thermostat. Hysteresis is a genuinely nonlinear phenomenon,
which is usually not smooth and therefore not easy to treat in a
mathematical way. The simplest example of a hysteresis nonlinearity is
given by a relay (or loop) operator that is characterized by two
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threshold values xo, x;, with xo < x;, and two output values (which
we take to be 0 and 1). In our setting the system with hysteresis that
incorporates feedback is governed by one of two stochastic differential
equations, depending on which of the two thresholds x, and x,
X1 > xo was crossed last. Two models are considered as alternatives to
the hysteresis model. The first model is described by a diffusion
process dX(¢f)= —a(X(¢))dt+ odW/(r) with the drift a(x) obtaining
just two values, that is a(x) =a for x <x* and a(x)= —a for x> x7,
where x* is the arithmetic mean of the thresholds in the model with
hysteresis. The second alternative model is described by the Ornstein—
Uhlenbeck process dX(#) = — a - (X(f) — x*) dt + o dW(¢). We construct
the likelihood ratio test for these problems. An asymptotic expression
for the cutoff point of the test is found using a version of the central
limit theorem based on a renewal argument. The hysteresis model is
presented in detail in Section 2. Section 2 also contains the results for
the alternative hypothesis of the first type (the drift with a jump).
Simulation results that allow to assess the power of the test are
presented in Section 3. The proofs are given Section 4. The case of the
Ornstein—Uhlenbeck alternative is considered in Section 5.

2 HYSTERESIS VERSUS DIFFUSION PROCESS WITH
DISCONTINUOUS DRIFT

In this section we introduce a simple stochastic model with hysteresis
that incorporates feedback. The system is governed by one of two
stochastic differential equations depending on which of two thresholds
xo and x; was crossed last. The process X(¢) is defined as the con-
tinuous Markovian solution of the equations

dX(Z) = b,'(,) dt + UdW(l), X(O) = Xx < Xp,

0, <t< ,
i(f) = { Tok < 1< okt 2.1)
I, Tkyr <8< Topq2
where X(0) = x < xo, 7o=0 and

Tok+1 = min{z > 7y X(£) = x1},
Tok+2 = min{t > Tzk_HZX(t) = xo}.
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We assume that by < 0 and b; > 0, therefore, as is easy to check, all
the 7, are finite with probability one and also have finite expectation.
Note that the process X(¢) itself is not Markovian, while the couple
(X(¢), i(1)) is a Markov process. Figure 1 shows the state space of the
stochastic process (X, i), where the lower line corresponds to i() =0
and the upper line to i(¢) = 1. The transition from i=0 to i=1 occurs
at x = x; and the transition from i=1to i=0 at x = x,.

Assume that the drift coefficients of X(r) differ only by the sign,
bo= — by =b. It can be shown that the case of general drift coefficients
can be reduced to this special case by properly shifting the process [8].

Let (X(0), i(0)) = (xo, 0). Denote by X(¢) the process defined by the
equation dX(z) = o dW(z), X(0) = xo. Applying Girsanov’s formula
(see, for example, [9, Chapter 3]), the Radon—Nikodym derivative of
the measure corresponding to the process X(¢) on [0, T'] with respect to
the measure of the process X(¢) is given by

duy by T b
oex - 20 awin — |
T ) exp{ /0 © gp(s /0 9 ar
(minAT) (i AT) p2
=exp{2(/ ;dW(t)—/ ds

T2 T2i ﬁ
(mit2AT) _ (mi2AT) p2
+/ —de(z)—/ ——zdt>}.
T2it+1 4 2 20

i+1

1 dX(t) =bl dt + cdW(t)

R
e —— ==

dX(t) = b0 dt +5 dW(t)

*
Xy X X, X

FIGURE | State space of the stochastic process (X, i).
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We call a cycle for the thresholds xg, x; the time interval [T, Tox 4 2)
between two successive intersections of the trajectory X(f) with the
level x, separated by crossings of the level x;. The duration of such a
cycle is 7o, 2 — Ty, and it is finite with probability 1. Let A= x; — xg
and pi(X, T) = dpx/dpy.

Then the density can be written in the form

exp{2N(T, h)hb/o+ (b o) X(T) — (b*/26*) T},

? (X T): lf (Tn) = X0,
ne exp{2N(T, h)hb/o+ (bh/20) — (b/) X(T) — (b*/20*) T},
if X(Tn) = Xi,
(2.2)

where 7, = max{r: 7, < T} and N(T, h) is the number of cycles of X()
in [0, T'] for the thresholds x,, x;.

We now slightly modify the notation for the model with hysteresis.
We assume that the arithmetic mean of the two thresholds,
x*=(xo+x;)/2, is known, and h=x; — x, is unknown. The model,
also called ‘model 1’, is now parameterized by x*, 4 and b.

First we discuss how to find a test for the case of a known A= Ay,
and then we show that the result extends to the composite hypothesis
when the observations come from a process with hysteresis with some
h > hy>0.

The process with the drift with a jump (referred to as ‘model 0, as it
is the model of the null hypothesis) satisfies

dX(t) = —adt + odW(z), for X(¢) > x*,

dX(¢t) = adt + odW(t), for X(¢) < x*, 23)

where a >0, X(0)=xo and x* is the midpoint of the interval [xo, x1].
The equalities (2.3) can be written as
dX(0) =a- (1 -2I(X(¢) > x*))dt + odW(¢), X(0) = xo,

where I(A4) denotes the indicator function of the set 4.
Without loss of generality let x*=0. The Radon—Nikodym deriva-
tive of the measure corresponding to this process on [0, 7'] with respect
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to the measure for the process X(¢) = oW(t), X(0) = x, has the form

gl’j—;()() - exp{ /0 " (@)o)(1 - 21X () > 0)) dX(2)

_ / "(@ /2011 - (X)) > 0))? dt}.
0

Using that (1 — 2I(X(¢) > 0))> =1 and applying Tanaka’s formula (see,
e.g. [9]), one can reduce the density to

Cdpy a

PX.T) = 300 = exp{al(T0) - KT = 32 7). 24
Here L(T,0) denotes the local time for the process X at 0 and is
defined as

1T
L(T,0) = lim - /0 1(X(s)] < ) ds

(see, for example, [3, p. 52]).
The likelihood ratio for the two models is therefore
po(X,T) b

- %5 (@* =)+ R(X, T),

where R(X, T') denotes the remainder containing the terms X(7") and
| X(T)|. We reject the null hypothesis that the observed trajectory
comes from model 0, if LR(X, T) < k(a, T'), where k(a, T') is chosen
such that o= Po(LR(X, T) < k(a, T')). As we test a simple hypothesis
versus a simple alternative, the corresponding test is optimal according
to Neyman—Pearson Lemma.

Next we show how to determine k(«, T') for large values of T. Let
5(0) :=L(15;0) — L(72i_2,0),i=1, ..., N(T, h),belocal timeatzeroin the
ith cycle, and let d;=7,; — 75;_,, for i > 1, denote the duration of the
ith cycle. By strong Markov property, the vectors (d;, /;(0)), i > 1, form
an iid sequence under both models. As L(T, 0) is an additive functional,
it has the representation L(T,0) = YN 1,0) + R(0), where R(0)=
L(T, 0) — L(T n¢r, 1y, 0) denotes the remainder term. The likelihood ratio
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statistic can now be written in the form

N(T7h) b T 2 )
LR(X,T)=a Z 1(0) = —2N(T, h)h — 5 (@* = b*) = R(X, T).

i=1

We show that a central-limit-theorem (CLT) type argument can be
applied to get the limiting distribution for the properly standardized
statistic LR(X, T'). The following theorem will be used to find the
cutoff point of the likelihood ratio test statistic.

THEOREM 2.1  Assume that Ed} < oo and EI} < co. Let A= (Ed;) ™.
Then

N(T}h)
T-1/2 <N(T, h) =T, ) (4(0) - Elf(O))) SNOE),  (25)
i=1

where T}, = M Vard;, T}, =) Cov(d,(0)), %3, = X Var/;(0),
and

N(T}h)

T-1/2 (N(T, h) = AT, Y 1(0) - ATIEI,-(O)> SNOE),  (26)

i=1

where 11 = X%, £ = 2}, + EL(0)S},, £ = 55, 4+ (BL(0))°E5,+
2K (0)S1,.

Using Lemmas 1 and 2 from the next section we can show that the
remainder term R(X, T') goes to zero under the proper normalization.

Applying this CLT type result, we find the cutoff point for the test
statistic through the relation

a= }glgopo (gLRTl/Z

= lim Py(LR(X,T) < 240LRT"? + BoLR(X, T)),
—00

(LR(X,T) — E,LR(X, T)) < za)

where z,, denotes the « quantile of the standard normal distribution.
Thus lim4_, oo Po(LR(X, T) < k(c, T)) =« for

k(o, T) = o1rzaT* + BoLR(X, T).
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The expectation is taken to be
ELR(X,T) = AT(aEy/;(0) — 2bh/0) + sz (a* — b?),

as the remainder term is of negligible order by Lemmas 1 and 2. The
theorem also provides us with the variance of LR(X, T'):

02 r = 2ab)? /o Cov(d,, 1(0))(2abh/o — a®El;(0))
+ Xb?/o* Var d, (4b*h? | > — dabh/oEL (0)
+ (aE1(0))%) + Ad® Var [; (0),

where the expectations and A are calculated under the model of the
null hypothesis.

We notice that for large values of T, k(o, T,h) is monotone
increasing in A. Therefore if LR(X, T)<k(a,T,ho) is satisfied, then
LR(X, T) < k(a, T, h) holds for any 2 > hg. We can now extend the test
to a composite alternative. To test if the observed sample path comes
from the diffusion model, Hy: p=p,, or results from a process with
hysteresis, H,: p = p, with h > hy, we thus take k(c, T, ho) as the cutoff
point for the level « test.

Generally though, the drift coefficients a and b cannot be assumed
to be known and have to be replaced by a properly chosen estimates.
Note that py and p,, the densities in the hypotheses, are not in the same
parametric family, that is, the density p(X, T, b) cannot be approxi-
mated arbitrarily close by po(X, T, b). Cox [4, 5] showed how to treat
this situation of non-tested hypotheses in the case of a classical iid
sample. He proposes to replace the parameter in each density by its
maximum likelihood estimate (MLE) under the specific model and
calculate the expectation of the likelihood statistic using the estimate
under the null hypothesis and the value to which the estimate under
the alternative converges. We adapt this procedure for our situation.
Assume for simplicity that o=1. Let a denote the MLE under the
model of the null hypothesis:

N(Th
Z (0) + o(T'?),

and b the MLE under the model of the alternative:
b = 2hN(T,h)/T + o(T'/?).
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Asymptotic normality of the estimates under both models follows
immediately from the theorem. Then

(Z2710) vy

LR(X,T,a,b) ==
(X,T,a,b) T T

+o(T'?),

The test statistic that Cox proposes is
LR(X, T,a,b) — Bo4LR(X, T, a, b).

We first find Eo ,LR(X, T, a, 5) and then replace a by its estimator.

In the following we write A(a) instead of A wherever it seems
necessary to stress the dependence of A on the drift parameter of the
null hypothesis. Note that by application of the continuous mapping
theorem (see, for example, [2, p. 31, Corollary 1]), with f(x,y)=
— 41?x* 4+ y* we get that

) N(T,h) 2
1/T1/2[LR(X, T,a,b) — IEO)aLR(X, T,a, b)] = T/ (( Z 5:(0 )

— (2hN(T,h)/T)* = (AEL(0))* + (m)z) 2 N(0,0?),

where o2 can be calculated from the theorem. We now replace the
parameter in the expectation by its estimator under the null hypoth-
esis. This results in

T'2[LR(X, T, 4,b) — BoaLR(X, T, b)]
= 42T (\(a)? — N(T, h)*/T?).
To find the variance of the above expression note that
T2 (\@)* ~ N(T,h)*/T?)
= T'2(M@)’ = Na)’ + Ma)® = N(T, h)*/T?).

Thus by applying the continuous mapping theorem again with
f(x,y)= — x>+ X*(y) and noting that Ea¢ = \(a)E/, = a under the null
hypothesis, we get that

T'2(X2(a) — N(T, 1)*/T?) 2 N(0,0*(a)),
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where
0%(a) = 4X(a)(X (@))*Ex(a) + 432 (a)E11 (@) — 4X2(a) X (a)E12(a).

The expressions for the 5 are stated in the theorem.

For practical purposes o°(a) has to be replaced by its consistent
estimate 0%(@). Now we find the cutoff point for the test statistic and
reject the null hypothesis, if A2(@)T — N(T, h)? < z,T'%a(a).

Atkinson [1] suggests a modification of the method by Cox for
iid data: he proposes to replace b by its expected value under the
null hypothesis. As Eob = 2h\(a) the estimator for b in the likeli-
hood ratio statistic is 2hA(a). Atkinson shows that the bias for
LR(X,T,a,b(a)) —Eo,LR(X, T,a,b(a)) is less than the bias for Cox’s
test statistic LR(X, T, d, 15) —Eo,LR(X,T,a, 5). Asymptotically both
test statistics are equivalent. We did not investigate this approach here,
though a comparison of the performance of both methods is desirable
and should be included in future work.

3 SIMULATION RESULTS

In this section we consider applications of the likelihood ratio test to
simulated data. We begin by discussing an algorithm for producing
realizations of the stochastic process with a discontinuous drift com-
ponent. After describing the algorithm we assess the performance of
our test for different combinations of the parameters.

In order to simulate realizations of the process with the jump, we
have to find its transition density. Following Karatzas and Shreve
[9, Chapter 6], the transition density is found to be

@nt)™? | exp(—(x — z — at)?/2t) + aexp(—2az)

x>0, z>0;

-

X+z

X [% exp—(v—at)*/2r)dv
p(x,z, 1) = .

2nt) ™| exp(2ax — (x — z — ar)*/2t) + aexp(2az)

{ X ;’fzexp—(v—at)z/Zt)dv , x>0, z<0.

' (3.1)
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Also notice that the symmetry of the process yields

p(x,z,t) = p(—x,—z2,1).
Thus for x <0 the transition density is easily obtained from (3.1). The
density of the stationary distribution can also be derived from (3.1) by
letting ¢ — oo and equals

_ [ aexp(—2az), z>0,
m(z) = { aexp(2az), z<0. (3.2)

Let x; denote the discrete sample points of X(¢) for t=tg,...,t,,
where t;= Ti/n, i=0,...,n. After the initial value x, is found using the
stationary distribution (3.2), the simulations are performed in three
steps: first we calculate p;=P(z > 0|x;). Then we simulate a uniform
[0, 1] random variable and depending if it is smaller or larger than p;
we choose the negative or the positive branch of the transition density
for the calculations. We then simulate another random variable
uniform on either (0, p;) or (0,1 — p;) and calculate the corresponding
quantile from the transition density by Newton—Raphson method.
The quantile gives us x; ; ;.

A question of importance is the following: can values of local time
for Brownian motion (and therefore for other one-dimensional
diffusion processes) be estimated from observations in discrete time? A
positive answer to this question was given by Csérgdé and Revesz [6].
They discuss several estimators for Brownian local time L(x, ) for
t€[0,1] and x € R, but we only present the estimator we actually used
in the simulations. Let

) fng)

Ly(x, 1) = W;I{ W(k/n) € [x —n™'/2, x + nV/2)}.

Then the following result holds:

THEOREM 3.1 (Csdrgd, Revesz) For any € > 0 with probability one we
have

sup  |La(x, 1) — L(t,x)| = o(n~1/4*).
(t)€l0,1)xR
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TABLE I Number of correct decisions (rejections), true model: hysteresis, #=0.2

b T=40,0=0.05 T=40,0=0.1 b T=60,a=005 T=60,a=0.1

1.6 31/100 48/100 1.5 12/100 22/100
1.7 72/100 88/100 1.6 61/100 81/100
1.8 97/100 100/100 1.7 94/100 99/100
2.0 100/100 100/100 18 100/100 100/100

The extension to ¢ € [0, T'] and X(¢) follows immediately.

Simulation results showed that the prescribed significance level was
reached for T > 40 and for b=1and o*=1.

Table I gives the number of correct decisions, that is correct
rejections of the null hypothesis, out of 100 repetitions fo the test when
the data are generated by a model with hysteresis. We see that the
results are sensitive to the size of the drift. This is not surprising
because the larger the drift, the more the cycles for the model with
hystersis we observe for a fixed time interval. The parameters in the
models were replaced by their maximum likelihood estimates. For the
simulation results presented in the table o was chosen to be one.

4 DETAILS AND PROOFS

Before we prove the theorem we calculate the moments of (dy, /,(0))
under each model using Laplace transforms to show that the assump-
tion in the theorem is satisfied and to find the moments of LR(X, T').

Notice that the absolute value of the process with a two-valued a or
— a, is equivalent to a diffusion with drift — a on [0, co) and reflection
at zero. A cycle for the process with reflection is defined as the time
interval between two successive intersections of the trajectory with the
level h/2 separated by touching zero.

We start by investigating the behavior of the process on a half cycle,
i.e. the time it takes for a trajectory that starts in #/2 to touch 0 and go
back to 4/2. To get the duration of the full cycle, because of the
symmetry properties of the process we just double this amount. For
the first half of the half-cycle (the time interval between intersection
h/2 and the first time 7, the trajectory reaches zero), the local time
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process equals zero. The Laplace transform for 7, is
E, exp(—amn) = exp(ah/20* — h/2(2a/0” + a[o)'?).

The joint Laplace transform for local time and 7, =inf{¢ > 0: X(#)=
h/2, X(0) =0} is given by

]Ez CXp(-—O’Tz — ’)’l] (O)) = N/D, (4.1a)
where

N =2Qa+d*/d»)'?,
D = exp(ha/20” — h/2Qa + @ [0)'?)(a/0” + 2o+ a*/0?)'* — )
+exp(ha/20” + /220 + @ /0*) ) (y — a/” + 20+ [o?)'72).
(4.1b)

Therefore the joint Laplace transform for d; =2(7| + 7,) and /,(0) is
given by

E, exp(—ad. - ’yll (0)) =L, exp(—a2ﬂ )]Ez exp(—aZTz - ’yll (0))
This provides us with the moments for d; and /;(0):
El (0) = o®(exp(ha/o?) — 1)/2a,
Var[}(0) = o*(exp(ha/c?) — 1)* /4%,
Edi(0) = o*(exp(ha/o®) — 1)/d?, (4.2)
0'4 2 2 4h0'2 2
Vard, = a lexp(2ha/o”) — 5+ 4exp(ha/o”)] — Texp(ha/a ),

Cov(d, 1(0)) = ;—:3 [exp(2ha/o?) — 1 — 3hbexp(ha/o?)/o* + ah/d?].

The Laplace transform (4.1) is obtained as follows. Let u(x) be the
solution of

Lu(x) — oau(x) =0 for x € (0,h/2)

(4.3)
u(0) =~yu(0),  wu(h/2)=1.
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Then u(x) satisfies u(x) =E (X (7)) exp(Y(7) + Z(7)) =E, exp(Y(7) +
Z(1)), where 7=inf{t > 0: X(£)=h/2, X(0)=0} and X is a diffusion
process with operator L =¢?/2(d*/dx?) — a(d/dx) on [0, c0) and reflec-
tion at zero. This process can also be written in the form

dX(£)=0dW(t) — adt + I(X(¢) =0)dL(z,0), X(0)=x, L(0,0)=0,
where L(t,0) is the local time of the process at zero, the boundary of
the domain (see [7, p. 87)). Let Y(f)= — at and Z(f) = — vL(¢,0) with
a,v>0. Applying the generalized Ito formula (see e.g. [7, p. 96]) to
the function f(x, y, z) = u(x) exp(y + z), we obtain

u(X(2)) exp(Y (1) + Z(1)) — u(x)

= /0 aexp(Y(s) + Z(s))u' (X(s)) dW(s)
+/0 exp(Y(s) + Z(s)) [/ (X(s)) — yu(X(s))] dL(s, 0)

+ /0 exp(Y(s) + Z()) [Lu(X(s) — au(X(s))] ds.
As u satisfies (4.3) the above expression reduces to
u(X(1)) exp(Y () + Z(2)) — u(x) =/0taexp(Y(s) + Z(s))u (X(s)) dW(s).

After replacing 7 by 7 and taking expectation, we obtain that
u(x) = Exexp(Y(7) + Z(7)) = Eyexp(oT — vL(7, 0)).

Thus solving (4.3) and taking x =0 results in expression (4.1) for the
Laplace transform. Under the hysteresis model the vector (d;, /;(0)) has
the joint Laplace transform

IE[ exp(—adl — ’yll (0))
exp(2hb/a? — 2h(2a/c® + b2 /0?)'?)(2a/0? + b2 /5?)
T (a/0? +52/0?)"* 4 (1 — exp(~h(Q2a/o? + b2 [a2) )
(4.4)
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Thus the moments for d; and /,(0) are

E/(0) = 2(1 — exp(—hb/d?)) /b,
Var[;(0) = 20*(1 — exp(—hb/o?))* /b,
Ed, =2h/b,  Vard; =20°h/b>,
Cov(dy, 11(0)) = 206*(1 — exp(—hb/o*) — 2hbexp(—hb/a?))/b>.
(4.5)
We are now prepared to prove the joint CLT for the number of cycles

and local time at zero in [0,7T’].

Proof of Theorem 2.1 As the (d;,[;(0)) form an iid sequence with
finite second moments, we have the classical CLT result,

D7) 7]
T2 (Zd T, > (i —E )) = N(0,\%), (4.6)

i=1 i=1

where 211 =Var dl, 212 = COV(dl, 11(0)), 222 =Var 11(0)
By [10, Theorem 2],

(7
7172 ((idi - T) - (T—%N(T,h))) 2o. (4.7)
i=1

As convergence in distribution to a constant implies convergence in
probability, we can apply [2, Theorem 4.1, p. 25] and obtain

i 1 ()
T '/2(T—XN(T,h), > - El,.)) 2 NO0,%).  (48)

i=1

By combining (4.6) and (4.7) and applying [10, Theorem 7], which

states that
AT N(T,h) D
T2 Z (—EL)) - > (L—EL) | =0
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and [2, Theorem 4.1] once more, we obtain that

N(T}})

T-‘/Z( N(T h), Z (I, — El) ) 2 N, D).

The final result for the first part of the theorem is given by
N(T;h)

T-1/2 (N(T, h) = AT, > (- lEl,-)) ZNO,3Y),  (49)
i=1

where the entries ©* are given in the statement of the theorem.
As

T"'/2< — AT, ZI(O — A\TEI( ))

N(T;h)

:T—I/Z(N(Th AT, Z(z(o —E(0))

+ EL(0)(N(T, h) — AT)) ,

we apply the continuous mapping theorem (see e.g. [2, p. 31, Corol-
lary 1]), with A(x, y) =(x, y + x), and (2.5) to get the second statement
of the theorem.

To show that the remainder term R(X, T') in the likelihood ratio
statistic goes to zero in probability, we use the following two lemmas.

LEMMA 1 Under both models |X(T)|/T"*—0 in probability for
T — oo.

Proof Recall that for the process with hysteresis dX(f)=b;,dr+
odW(t), X(0) =x, < 0, where i(t) =0 or 1. Therefore

N(T,h)

> (X(rai42) = X(721))

|X( |—‘/ biy dt + oW(T) + x| =
i=0

T
+ / bi(l) dl + O’W(T) - UW(TN(T,h))
TN(T,h)

<B(T — mn(rpy) + ol W(T) — W(Tnrp)l

as X(72i42) = X(72;) = Xo.
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Analogously we have for the process with a drift change in zero that
N(T,h)

> (X(mair2) = X(71))

i=0

1X(T)| =

T
+/ a(l = 2I(X(t) > 0))dt + o W(T) — o W(Tn(z))

TN(T,h)

< a(T — Tnerp) + ol W(T) — Witnem)|

as here also X(75;.2) = X(72:) = xo.

Note that 0 < T — Ton(r, ny < dn(r, 1y + 1, Where d denotes the duration
of the (N(T, h)+ 1)th cycle, and, as we showed before, E;d < oo under
the model with hysteresis (i=1) and under the model with a drift
change in zero (i =0). This leads to the inequality

Ed
Pi((T—- TZN(T,h))/Tl/Z >¢€) < Pi(dN(T,h)H/TI/Z >e€) < eTll/Z -0

for T— oo for i=0,1; W(T) — W(Txrp) 2 W(T — 7y(r,n)) and
Pi(IW(T — manr)l/ T > €)

o0
- /0 PAWE)/T > €| T~ 1anrny) APi rorers (5)

1 [* 1
< Te /o SAP; T rpyrp (8) < EE’(T— TIN(T}h))

1
< —E; | = .
_TG]Ezd_)O, l 0,1

Combining these two results we get that |X(T')| /T'? =0 in prob-
ability under both models.

LEMMA 2 (L(T,0) — L(Tncz. 1y 0))/T"* — 0 in probability for T — oo
under both models.

Proof As local time is nondecreasing in the time argument,
0 < L(T,0) — L(Tnr.1> 0) < LT3t iy + 15 0) — LT v mys 0) = I iy + 1(0).
Thus the expectation of the remainder term is bounded by the
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expectation of /y(z, ») + 1, which is finite under both models. Therefore

Pi((L(T,0) — L(tyr))/T"* > ¢€)
< Eily(z,1)+1(0)

T —0 forT— o0, i=0,1.
€

5 HYSTERESIS VERSUS ORNSTEIN - UHLENBECK PROCESS

In this section we present a criterion to determine if the observed
trajectory comes from a process with hysteresis with the thresholds
symmetric with respect to x* =0, or an Ornstein—Uhlenbeck process
X, referred to as ‘model 3’, that satisfies the equation

dX(t) = —aX(t)dt + odW(r), X(0) =x < xo. (5.1)

To derive the criterion we follow the steps for the case of testing
hysteresis versus a Markov diffusion process with a drift with a
discontinuity. The Radon—Nikodym derivative of the measure corre-
sponding to the Ornstein—Uhlenbeck process X on [0, T'] with respect
to the measure for the process X(¢) = aW(t), X(0) = xo, is obtained by
application of Girsanov’s theorem and is given by

T a2 T
»(X,T) = gl’j’; (X):exp{ /0 —%X(l)dX(t)——z / Xz(t)dt}

=exp{/0T——X(t YdW (1) t53 / X2(2) dt}

Note that application of Ito’s formula to the function f(x)=x? and
Ornstein—Uhlenbeck process yields

XH(T)—x*= -—2a/TX2(s) ds + To? +20/TX(s)dW(s). (5.2)
0 0

Using the above relation, we can find an expression for the stochastic
integral, substitute it in the Radon—Nikodym derivative and get

(X, T) = exp{—Ea—Z/TXz(t) dt + Ta/2 — a(X*(T) — xz)/2a}.
o= Jo
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The likelihood ratio statistic LR(X, T')=log( pz(X, T)/p1(X, T)) for
the Ornstein—Uhlenbeck process and the process with hysteresis is
therefore

LR(X,T) = ——/ X*(¢)dt — 2bN(Th)h+ T+bT

5T +55+RX.T),

(5.3)

where R(X, T') denotes the remainder term that contains the constants
and the terms X(7') and X*(T).

Let Y; = j:;_z X2(t)dt fori=1,..., N(T,h), where the 7; are defined
asin (2.1). Then

N(T,h) b
> Y;—2- (Th)h+ T+

i=1

b:T

503+ RX.T).

2
LR(X,T)=——

( ) 202
The following CLT type result holds, that can be proven in the exactly
same manner as in Section 2.

PROPOSITION Let A= (Ed,) . IfEY, < 0o and BTy < oo then

N(T k)

T-1/2 (N(T, h) = AT, Y Yi(0) - )J]EY;(O)) Z N(0,%).

i=1

The entries of the variance covariance matrix are Y11 = AMVard,,
Y= A3 Var dEY, — 2 COV(d], Y1) and Y =AVarY; + A3 x
Vard,(EY,)* — 2A2EY, Cov(dy, Y}).

Remark An expression for the expectation of Y| in terms of the first
moment of d; can be derived directly from (5.2), as for 7; =inf{z > 0:
X()=h/2, X(O0)= —h/2} we have Ej [J' X*(s)ds= (0?/2a)Esm.
Because of symmetry of the Ornstein—Uhlenbeck process around zero
it follows that 7 is equal in distribution to 7, — 7 and thus E;d, =
Es(m, — 1) + E37y = 2E;37;. Therefore the following relation holds:

d 0.2 0.2
]E}Yl =E3 Xz(s)dSZ—]Eng Z—Eg,dl.
0 a 2a
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Squaring (5.2) and taking expectations also yields a bound for the
second moment of Y7 in terms of the second moment of 7. Thus the
variance of Y and the covariance of Y; and 7, are well defined.

We reject the hypothesis that the observed trajectory comes from an
Ornstein—Uhlenbeck process if LR(X, T') < k(a, T). The cutoff point
can now be found through application of the proposition and equals

k(o, T) = o1rzaT* + B3LR(X, T),

where z,, denotes the a-quantile of the standard normal distribution.

As in the case with the discontinuous drift, we now replace the
parameter in each model with its maximum likelihood estimate under
the specific model. Recall that under the hysteresis model

b = 2hN(T,h)/T + o(T'/?).

Let a denote the maximum likelihood estimate under the Ornstein—
Uhlenbeck process. Straightforward calculation yields

= —%%— +o(T'1).
2 Zi:l Y

The likelihood ratio statistic with the parameter estimates in place of
the parameters equals

LR(X,T,a,b) =

1 [ T (2hN(T, h))*

- - 7).
2[4y NIy, T ]—!—o( )

Application of the continuous mapping theorem with f(x,y)=
—4h*x* 4 0°/4y yields

T~'2[LR(X, T,a,b) — B3 ,LR(X, T,a,b)|

(T oy T — D+ (2
4y Xy, ’ 4\EY,
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Replacing the parameter a in the expectation by its estimator under
the null hypothesis and taking into account that EY; = 0*/(2a\(a)), we
have

T '2[LR(X,T,a,b) — B3 ;LR(X, T, a,b)] = T'?[N\2(a) — N*(T, h)/T?.

An expression for the variance can be obtained by application of the
continuous mapping theorem with f(x, y) = — x>+ X%(»).

In order to determine the cutoff point explicitly, we have to find o,z
and E;LR(X, T), which means that we have to find the moments of
(d1,Y1) under the measure of the Ornstein—Uhlenbeck process. This
is done by calculating the Laplace transform of (7, [;' X*(s)ds) as
follows.

Let u(x) be the solution of

Lu(x) — (ax* + B)u(x) =0 for x € (—h/2,h/2), 54
u(h/2) =1, (5.4)
where L =0?/2(d*/dx?) — ax(d/dx) is the generator of the Ornstein—
Uhlenbeck process. Then u(x) satisfies u(x)=E exp(—a [y X*(s) ds— ),
and for x = — h/2 we get the required result. One of the complications
in this case is that the solution of the system (5.4) cannot be given in a
closed form.
With the transformation u(x) = y(x) exp((b/20%)x?), (5.4) becomes

V(%) = y(x)la/o? — 28/0* — X(a/o* — 2a/0?)] =0,
(5.5)
¥(h/2) = exp (=55 (1/2)").

The solution of this equation can be given in terms of a series
expansion.

An analytic expression for E7; and thus for A can be found by
noting that u(x) =E,7, is the solution of

Lu(x) = -1 for x < h/2,
u(h/2) = 0.
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Then

o) =21 ([ ) [ om(-)o
e [ [ () (2

and A= Qu(—h/2)) .

Recall that A= (E;d;) ~' where the expectation is taken under the
model of the null hypothesis, respectively. The expectation of the
likelihood ratio statistic can now be calculated and equals

a? b bT
E3LR(X, T) = g 2T)\]E3Y1 2— )\Th+ T+2 7

= T(—d*)/20% — 2bh)\/a +a/2 + b*/20%).

As the second moment of d; is finite, the same argument as in
Lemma 1 can be used to show that the remainder term R(X,T)
converges to zero in probability as 7 goes to infinity.

We now have k(a, T) = oprzoT?0/b+ EsLR(X, T') where, for the
case that the parameters are known,

2 2 b 02 -1
O'LR=2)\ COV(dl,Y]) 2;}1—EA

2
+ M Vard 4f’ih2 2h£)\ 2>\1 AVar Y
e 3N 3 +tAVar b,

and EsLR(X, T) = T( — a®)\[20% — 2bh)o + a2 + b*[257).
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