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A major problem facing battery-powered electric vehicles is in their batteries: weight
and charge capacity. Thus, a battery-powered electric vehicle only has a short driving
range. To travel for a longer distance, the batteries are required to be recharged
frequently. In this paper, we construct a model for a battery-powered electric vehicle,
in which driving strategy is to be obtained such that the total travelling time between
two locations is minimized. The problem is formulated as an optimization problem
with switching times and speed as decision variables. This is an unconventional
optimization problem. However, by using the control parametrization enhancing
technique (CPET), it is shown that this unconventional optimization is equivalent to a
conventional optimal parameter selection problem. Numerical examples are solved
using the proposed method.
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1 INTRODUCTION

Due to the advancement in the battery technology, there is a great
revival of interest among the researchers to return to work on the
development of battery-powered electric vehicles over the past decade.
For details, see [1,6—8].
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The main components of an electric vehicle are: (i) battery cells
which are energy storage system; (ii) a traction system which consists
of an electric motor, a steeling wheel and a motor controller; and (iii) a
friction system which is a mechanical braking device. The driver can
control the power applied to the traction system as well as to the
mechanical braking system. The major problem associated with a
battery-powered electric vehicle is in its batteries. The total weight of
the batteries is directly related to the charging capacity of the electric
vehicle. Due to the limited charging capacity, the vehicle can only
travel for a relatively short distance when compared with a conven-
tional gasoline-powered vehicle. It needs to be recharged much more
frequently.

In this paper, we consider a situation in which an electric vehicle is
to be driven on an even road or an undulated road connecting two
given cities. The distance between the two cities is beyond the driving
range of the vehicle without recharge. In other words, the batteries
are required recharging before completing the journal. The rest of the
paper is organized as follows:

We construct a model for the battery-powered electric vehicle in
Section 2. In Section 3, we formulate an optimization problem in
which the vehicle is to be driven on an even road. The recharge points,
and the speed of the vehicle are considered as decision variables. The
objective is to minimize the completion time of the journey with
respect to these decision variables. The distance between the two cities,
the maximum allowable power to be applied to the motor, and the
number of battery cells are assumed fixed. In this optimization
problem, the capacity of each of the battery cells is regarded as the
state. Clearly, the state will exhibit a jump at each switching time. We
further assume that the maximum allowable number of recharge
points is fixed. A challenging task is to remove this assumption in that
theoretical results are obtained for determining this maximum number
of recharge points. To solve this optimization problem, we first fix a
number of recharge points. This leads to simpler problem in which
only the switching times and the vehicle speed are to be chosen
optimally. The control parametrization enhancing transform (CPET)
(see [4] for details) is then used to transform the problem into a
standard optimal control problem solving by MISER3.2 (cf. [2,3]). We
then increase the number of the recharge points and solve the
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corresponding standard optimal control problem. This process is
repeated by gradually increasing the number of the recharge points
until the maximum allowable number is reached. In Section 4, we
formulate an optimization problem in which the recharge points are to
be chosen from several fixed points rather than free as in Section 3. A
computational method similar to that given in Section 3 is developed
for solving this optimization problem. Note that in both Sections 3
and 4 the vehicle is driven on an even road. In Sections 5 and 6, we
consider the case in which the vehicle is driven on an undulated road.
In Section 5, we formulate an optimization problem in which the
recharge points are fixed, and the switching times and the correspond-
ing speed of the vehicle are considered as decision variables. In Section
6, recharge points as well as the switching times and the corresponding
speed of the vehicle are taken as decision variables. In Section 7, four
examples are constructed and solved by using the methods developed
in the previous sections.

2 BATTERY-POWERED ELECTRIC CAR MODEL

Let ¢ denote the time, and p the power being applied to the motor. The
power p, which is a function of ¢, is a control variable. It is assumed
that

0<p(t) <P, forallte]0,inal]

where fgna 1s the specified time for completing the journey, and P is
the maximum allowable power to be applied to the motor. The electric
power is directly applied to the motor. We assume that the control
force at the wheel of the vehicle is:

F=2
v

, (2.1)

where v=1(¢) is the speed of the vehicle. We also assume that the
resistance on the vehicle due to the friction and air is:

r(v) = m(b; + byv), (2.2)

where b, and b, are known positive constants, and m is the mass of the
vehicle. The dynamics of the vehicle is described by the following
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system of differential equations:

Se, (23)
m%l; ——-1—: — r(v) — mgsin(0) (2.4)
with initial conditions
v(0) =0, (2.5)
x(0) =0, (2.6)

where 0 = 0(x) is the angle of slope of the road at location x = x(¢), and
g is the acceleration due to gravity.

The speed of the vehicle is assumed to satisfy the following obvious
constraint.

v(t) > 0.

For each battery cell, the recharge—discharge rate at time ¢ is:

dg { —c1p1, discharge, 2.7)

dr (c2/(q+ ¢3)) —exp{cs — cst}, recharge

with initial condition:
q(0) = qgo,

where ¢;, i=1,...,5, are given positive constants, and p; is the power
flowing out from each battery cell. The function ¢ is required to satisfy
the following constraint:

Imin < tI(l) < Gmax-

3 THE PROBLEM ON AN EVEN ROAD

In this section, the road connecting two given cities is assumed to be
even. The distance between the two cities, the maximum allowable
power to be applied to the motor, and the number of battery cells are
assumed to be fixed.
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3.1 ProblemFormulation

Let [0, t5na1] be the total driving time, and let {¢;}, i=0,1,...,2/, be
switching times, which satisfy

0=t <t < - <ty<tyy1 = lfinal

where / is the number of recharge points, [#5; _1, 6], i=1,...,/, are the
time intervals at which the vehicle stops for recharging its batteries,
while [ty; _»,t2i_1], i=1,...,I+ 1, are the time intervals at which the
vehicle is driven at a constant speed. We ignore the times taken for
acceleration (respectively, deceleration) at the beginning (respectively,
ending) of each of the time intervals. Thus, in each time interval, we
obtain

av _
de
From (2.2), (2.4), and (3.1), we obtain

0. (3.1)

p=vxr()
= v x m(b; + byv) (3.2)

and the power flowing out of each of the n parallelly connected battery
cells is:
m(by + byv)

=y x TR (3.3)

From (2.7) and (3.3), we have

(byv+ byv?) - m

—c t € (i3, bi-1),

n
2 ) . .
-———((i;f = qg+tc exp{cs —cs(t — tai1)}, 1 € [taim1, i), (3.4)

biv + byv?) -
—c L%ﬂ)m, t € [ta, tay1],
i=1,...,1

with initial condition

9(0) = qo. (3.5)
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Define
T={t=(t,...,tu):; ER, ti-1 < t,i=1,...,2I,1 € N},

where R and N are set of all real numbers and set of all natural
numbers, respectively. A measurable function v:[0, T]— R is called an
admissible control. Let V be the set of all such admissible controls. For
each (t,v,/)eT xVxN, let g( |t,v,]) denote the corresponding
solution of system (3.4) and (3.5). We may now specify the correspond-
ing optimization problem formally as follows:

Given the dynamical system (3.4) and (3.5), find a (¢,v,l) €
T x V x N such that the cost function

a1(t,v,1) = tnai(t,v,1) (3.6)

is minimized subject to the constraints

Gmin < Q(I) < Gmax, (37)
0 < p=m(av+b*) <P, (3.8)
0<ti—ti_y, i=1,...,214+1, (3.9)
tinal
/ ydt = S, (3.10)
0
I<L, (3.11)

where n, / and v are, respectively, the number of battery cells, number
of recharge points, and the corresponding speed. fgna = o4 is the
required time for completing the journey, S is the total distance
travelled, and L is the upper bound of the number of the recharge
points. Let this problem be referred to as Problem P;.

3.2 Transformation

To solve Problem P;, we need to determine the optimal number of
recharge points /, the optimal switching time points = (¢, . . ., t5;), and
the optimal speed v. Let us initially set the number of recharge points
to be k. Then only the optimal switching time points with a fixed num-
ber of recharge points, and the corresponding optimal speed are to be
determined. This simplified problem is referred to as Problem P,".



BATTERY-POWERED VEHICLE 7

We now apply the CPET [4,5] to Problem Pf. Let s €[0,2k + 1] be a
new time variable, and define

2k+1

n(s) = Z "IiX[i—l,i)(S),
i=1

where x(;—1,/(s) is the characteristic function on the interval [i — 1, i),
and the 7s are nonnegative constants. Clearly, n(s), which is called an
enhancing control, is a nonnegative piecewise constant function
defined on [0, 2k + 1] with fixed switching points {1, 2, ...,2k}.

The CPET:

=), 10)=0

maps ¢ € [0, t5na] to s € [0, 2k + 1], where
n(s)=ti—tio, seli—LliQ), i=12,...,2k+1,

satisfying

2Ue+1
/ n(s) ds = ffinal-
0

Let © denote the class of all such enhancing controls. Under the
CPET, the system dynamics (3.4) and (3.5) becomes

(1)
€2

_ n a+—c3—exp{64—05(t—2i+l)}, s e [21— 1,21),

e (b1 + b9*) -m

p R sE€2i—2,2i-1),

N 2
_CIM’;ZM, s € [2k, 2k + 1]
n(s)

(3.12)

i=1,...,/with initial condition

®)-) e
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where §(s) = q(¢(s)), ¥(s) = v(¢(s)), s€[0,2k+1] and i=1,...,k,
while the constraints (3.7)—(3.11) reduce to

Gmin < Q(S) < Gmax, (3-14)

0 < p = m(b1v+ byi?) < P, (3.15)

0<m i=1,...,2k+1, (3.16)
2k+1

/ pds =S, (3.17)
0

I<L. (3.18)

LEMMA 3.1 The all-time state constraint (3.14) is equivalent to the
following terminal state inequality constraints:

Gmin < G2i— 1), i=1,... k+]1, (3.19)
4(21) < Gumaxs i=1,...,k. (3.20)

Proof Obviously: (3.14) = (3.19) and (3.20). Conversely, suppose
that (3.19) and (3.20) exist. Then, for each i=1,...,k+1, §(s),
s€[2i — 2,2i — 1], is monotonically decreasing, since the vehicle is
driven at a constant speed and no battery recharge is taken place in
this sub-interval. Thus

Gmin < 57(21. - 1) < Q(S) < 4(21._ 2) < Gmax-

For each i=1,...,k, 4(s), s €[2i—1,2i], is monotonically increasing,
since the vehicle is stopped for recharging the batteries in this sub-
interval. Thus

Gmin < 6(21‘_ 1) < (j(s) < é(zl) < Gmax-

Therefore, the condition (3.14) exists, and the result follows.

Let V; be the set of all those feasible ¥(s), such that the conditions
(3.15)—(3.20) are satisfied. Problem Pf is now transformed into the
following optimal control problem: Given the dynamical system (3.12)



BATTERY-POWERED VEHICLE 9

and (3.13), find a (y, ¥) € © x V; such that the cost function

2k+1

1(1,9) = Z i (3.21)

is minimized subject to the constraints (3.15)—(3.20).
This problem is referred to as Problem P§°.

DEFINITION 3.1 (n,V) € © x V| (respectively, (t,v)) is said to be a
Sfeasible element if the constraints (3.15)—(3.20) (respectively, constraints
(3.7)-(@3.11)) are satisfied.

THEOREM 3.2 Problem (P[®) is equivalent to Problem (P}) in the
sense that (3*, V"), is a solution of Problem (P{®) if and only if (t*,v") is
a solution of problem (PY), and &,(n*,v*) = g1(t*,v*), where 3*(s) =
-t seli—-L1, i=1,2,...,2k+1, and ¥*(s) = v(¢*(s)), s€]0,
U+ 1],

Proof Let (t',v") €T x V be a feasible element of Problem (Pf), and
let (n, %) € © x V; be the corresponding feasible element of Problem
(P{0). Then it is easy to check that ¢(¢) is the solution of (3.4) and (3.5)
(with [ =k) if and only if §(s) is the solution of (3.12) and (3.13), and

2k+1 2k+1

gi(t,y) = tipa(t,) = Y (= tia) = > mi=£,(n. )
i=1 i=1

Hence, the result follows readily.

In Problem (P}) the cost function (3.6) is minimized with respect to
t,v) €T xV where t=(1,t,,..., 1) is the vector of switching time
points. On the other hand, the cost function (3.21) in Problem (P{‘O) is
minimized with respect to (y,7) € © x V| where 5(¢) is a nonnegative
piecewise constant function. Problem (Pf°) is equivalent to Problem
(Pf). However, Problem (P}°) is numerically much more tractable,
because it does not involve variable switching times.

Let us now address the question of finding the optimal number / of
the recharge points. Let t = (¢4, .. ., t>;) be optimal solution of Problem
(Pf) corresponding to the positive integer k. We propose the following
algorithm.
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ALGORITHM A

1. Choose an initial guess k = k.

2. Let #,=0, fty41=1I50a, and solve Problem (Pf) to obtain
t=(t1,...,ty). Let g’; be the corresponding optimal cost.

3. If k=L, stop, find k* such that gr’,‘ < g\ for all I€{ko,...,L},
and k™ is the optimal number of the recharge points. Otherwise, let
k=k+ 1 and go to step 2.

4 FIXED RECHARGE LOCATIONS

Following the notation defined before and again consider the situation
in which the road is even. However, we assume that the vehicle can
only be recharged at a given set of locations T = {7y, ..., 7}, satisfying
0<T1<Ty< -+ <1< S, where S is the maximum distance the
vehicle is expected to travel as defined in the previous section. We
assume that 4 is fixed. We also assume that the number of recharge
points /=h. The problem can then be formulated as the following
optimization problem:

Given the dynamical system (3.4) and (3.5) with /=h, find a
(t,v) € T x V such that the cost function

g2(t’ V) = tﬁnal(t, V) (41)

is minimized subject to the constraints

Gmin < q(t) < Gmax> (42)
0<p=mav+b?) <P, (4.3)
0<ti—ti, i=1,...,2h+1, (44)
tfinal
/ vdt =S, (4.5)
0
hi-1
/ v()ydt=m7, i=1,...,h (4.6)
0

This problem is referred to as Problem P,.
To begin, we choose the number of recharge points to be h.
However, the exact optimal number of recharge points is equal to A
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minus the number of those recharge points corresponding to the
occurrance of redundancies.
Under the CPET, the constraints (4.2)—(4.6) reduce to

Gmin < ¢(2i—1), i=1,...,h+1, (4.7)
G(20) < Gmax, i=1,...,h, (4.8)
0 <p=m(bi+by*) < P, (4.9)
O<m, i=1,...,2h+1, (4.10)
2h+1
/ vds =S, (4.11)
0
2i-1
/ v(s)ds=m, i=0,...,h (4.12)
0

Let V, be the set of all those ¥(s), such that the conditions (4.7)—
(4.12) are satisfied. Problem P, is now transformed into the following
optimal control problem.

Given the dynamical system (3.12) and (3.13) (with k=), find an
admissible element (5, ) € © x V, such that the cost function

2h+1

&%) = n (4.13)
i=1

is minimized subject to the constraints (4.7)—(4.12).
This problem is referred to as Problem PY.

THEOREM 4.1  Problem (P)) is equivalent to Problem (P,) in the sense
that (0*,¥") is a solution of Problem (PJ) if and only if (t*,v*) is a
solution of Problem (Py), and g,(n*, V") = g2(¢*,v*), where n*(s) =
6=t seli-1i), i=12,...,2h+1, and V(s)=v(t*(s)),
s€[0,2h+1].

Proof The proofis similar to the proof for Theorem 3.2.
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5 UNDULATED ROAD

In this section, the road connecting the two cities is assumed to be
undulated. The distance between the two cities, the maximum allow-
able power to be applied to the motor, and the number of battery cells
are again assumed to be fixed. T={ry,..., 7}, satisfying 0 <7<
T, < --- <T1;< S, are recharge locations at which the vehicle can be
recharged. These recharge locations indude the turning points
y=(1,---57vm) of undulated road. The number of recharge points, /,
is assumed to be fixed.

5.1 Problem Formulation

Since the road connecting the two cities is undulated, the power being
applied to the motor (see (3.2)) becomes

p=vxr()
= v x m(b; + byv + g sin 6),

and the power flowing out of each of the n parallelly connected battery
cells (see (3.3)) becomes

m(by + byv + g sin 9)
p .

P1=VX (5.1)

From (2.7) and (5.1), we have

2 o).
ey (b1v + by :g sin ) M ety i),
dg _ % —exp{cs —cs(t — hi-1)}, 1 € [tim1, 1), (5.2)

dr (byv + byv* + g sin ) - m
n

—C]
i=1,...,1

, € [ty tuy),

with initial condition

4(0) = qo. (5.3)
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We now define the corresponding optimization problem formally as
follows:
Find a (¢, v) € T x V such that the cost function

g3(t,v) = tanal(t, v) (5.4)

is minimized subject to the system (5.2) and (5.3) and the following
constraints:

Gmin < q(t) < Gmax» (55)
0 <p=m(av+bv +gsin ) <P, (5.6)
0<t—ti, i=1,...,2[+1, (5.7
tinal
/ vdt =S, (5.8)
0
Bi-1
/ Wydi=7, i=1,...,], (5.9)
0

where S is the total distance travelled, n and [ are, respectively, the
number of battery cells and number of recharge times, v is the speed,
and T={ry,...,7;} is the vector of recharge points. Let this problem
be referred to as Problem P;.

5.2 Transformation

To find optimal solution of Problem P;, we need to determine the
optimal time points ¢ = (¢, . .., t;), and the optimal speed v.

We now apply the CPET [4,5] to Problem P;. Let s€[0,2/+ 1] be a
new time variable, and let 7(s) be defined by

2041

n(s) = ZniX[i—l,i)(S)’
i=1

where x(;—1,/)(s) is the characteristic function on the interval [i — 1, i),
and the 7}s are nonnegative constants. Clearly, 7(s), which is called the
enhancing control, is a nonnegative piecewise constant function
defined on [0,2/+ 1] with fixed switching points {1,2,...,2/}. The
CPET

Son), (0)=0
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maps ¢ € [0, tgnay] into s € [0, 2/ + 1], where
ns)=t—ti, se€li—1i), i=1,2,...,21+1,

satisfying

2041
/ 1(s) ds = tinal-
0

Let © denote the class of all such enhancing controls. Under the
CPET, the system dynamics (5.2) and (5.3) becomes

g(é(s))
ds\ #(s)
e (b117+b2f12-:l-gsin 0:m o cpi-22-1),
n z}%—exp{c‘; —cs(t—=2i+1)}, se€2i—1,2i),
_ng19+b292:g sin 6) - m_ seRLA+1]
n(s)

(5.10)
i=1,...,/with the initial condition
40)\ _ (40
(%)= (%) (10

where §(s) = q(¢(s)), ¥(s) = v(¢(s)), s€[0,2/+ 1},and i=1,..., 1L
The constraints (5.5)—(5.9) reduce to

Gmin < GQRI-1), i=1,...,01+1, (5.12)

4(2i) < Gmax, i=1,...,1 (5.13)

0 < p=m(b;p+ by’ +g sin §) < P, (5.14)

0<n, i=1,...,20+1, (5.15)
2/+1

/0 pds =S, (5.16)

2i—1
/ Ws)ds =1 i=0,...,L (5.17)
0
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Let Vs be the set of all those ¥(s), such that the conditions (5.12)—
(5.17) are satisfied. Problem P; is now transformed into the following
optimal control problem:

Given the dynamical system (5.10)—(5.11), find a (,9) € © x V3
such that the cost function

k+1

&(n,9) = Zni (5.18)
i=1

is minimized subject to the constraints (5.12)—(5.17).
This problem is referred to as Problem P.

THEOREM 5.1  Problem (PY) is equivalent to Problem (P5) in the sense
that (n*,%*) is a solution of Problem (PY) if and only if (t*,v") is a
solution of Problem (P3), and g;(n*,V") = g3(t*,v*), where n*(s) =
6=t seli-1,9, i=1,2,...,214+1, and V*(s) = v(t*(s)), s€[0,
21+1].

Proof The proofis similar to the proof for the Theorem 3.2.

Note that the recharge points are fixed. But, there may exist collapses
of the switching times. Thus, the exact optimal number of recharge
points is equal to / minus the number of recharge points corresponding
to the occurrance of redundancies.

6 FREE RECHARGE LOCATIONS

With the notation defined in Section 5, we consider the situation in
which the recharge locations for a travelling vehicle are free to be
optimized. The problem can be formulated as the following optimiza-
tion problem:

Given the dynamical system (5.2) and (5.3), find a (¢,v,/)e T X
VY x N such that the cost function

g4(t, v, 1) = tana(t,v,1) (6.1)

is minimized subject to the constraints

Gmin < CI(t) < Gmax» (62)
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0 < p=m(av+ bV +gsin §) < P, (6.3)
0<t;—ti, i=1,...,21+1, (64)
Lfinal
/ vdt =S, (6.5)
0
‘ff
/ ve)dt=, j=1,....,m, t; €t, (6.6)
0
I<L, (6.7)

where S is the total distance travelled, L is the the upper bound of the
number of the recharge points, #» and / are, respectively, the number of
battery cells and the number of recharge points, v is the speed, and
Y={Y1,--.,7m} is the vector of the turning points of the undulated
road. Let this problem be referred to as Problem P,.

6.1 Transformation

To solve Problem P4, we need to determine the optimal number / of
recharge points, the optimal time points #=(¢,...,%;), and the
optimal speed v. Let us initially choose the optimal number of recharge
points to be k£ > m. These recharge points include the turning points
y=01,-.-,7m)- Then, only the optimal switching time points with a
fixed number of recharge points, and the corresponding optimal speed
are to be determined optimally. This simplified problem is referred to
as Problem PJ.

We now apply the CPET [4,5] to Problem Pf. Letse[0,2k+ 1] bea
new time variable, and define

2k+1

n(s) = Z niX[i—l,i)(S),
i=1

where x|; . 1,,(s) is the characteristic function on the interval [i — 1, i),
and the 7}s are nonnegative constants. Clearly, n(s) is a nonnegative
piecewise constant function defined on [0, 2k + 1] with fixed switching
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times {1,2,...,2k}. The CPET:

S=ns), 0 =0

maps ¢ € [0, tgnal] into s € [0, 2k + 1], where
n(s) =t—ti—1, SE [i— l,i), i=1,2,...,2k+1,
satisfying

2k+1
/ ﬂ(s) ds = ffinal -
0

Let © denote the class of all such enhancing controls. Under the
CPET, the system dynamics (5.2) and (5.3) (with /= k) becomes

)
2

= | "M 7+e
e (b19 + by9* + g sin §) - m

n(s)

e (b19 +byv* + g sin ) -m
n
—exp{es —cs(t—2i+ 1)}, se€2i—1,2i),

s s€2i—-2,2i-1),

. s€2k2k+1]

i=1,...,k with the initial condition

q0)\ _ (4
(%)= (%) (69
where g(s) = q(t(s)), ¥(s) = v(t(s)), s€[0,2k+ 1],and i=1,.. . k.
The constraints (6.2) and (6.7) reduce to

Gmin < GQRI—1), i=1,...,k+1, (6.10)
4(20) < Gmax>, i=1,...,k, (6.11)
0 < p = m(by¥+ by#* + g sin ) < P, (6.12)
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0<m i=1,...,2k+1, (6.13)

2k+1
/ vds = S, (6.14)
0

iA
/Jv(s)dt=fy,~, j=1....m, e{l,...,2k—1}. (6.15)
0

Let V, be the set of all those 7(s) such that the conditions (6.10)—
(6.15) are satisfied. Problem P} is now transformed into the following
optimal control problem:

Given the dynamical system (6.8) and (6.9), find a (,7) € © x V4
such that the cost function

2k+1

g9 =Y m (6.16)
i=1

is minimized subject to the constraints (6.11)—(6.15).
This problem is referred to as Problem PJ°.

THEOREM 6.1 Problem (P}°) is equivalent to Problem (PY) in
the sense that (n*, ") is a solution of Problem (P}°) if and only if (t*,v")
is a solution of Problem (PY), and g,(n*, ) = ga(t*,v*), where 9*(s) =
=1t seli-=19, i=1,2,...,2k+1, and ¥*(s) = v(*(s)), s€]0,
2% +1].

Proof The proof is similar to the proof for the Theorem 3.2.

The recharge points, besides the m turning points, can be located in
any intervals of the undulated road. Let t=(t,..., ) be optimal
solution of Problem (Pf) for a fixed positive integer k, and fixed
permutation of the recharge points in the intervals of the undulated
road. We propose the following algorithm for finding the optimal
number of recharge points:

ALGORITHM B

1. Choose an initial guess k = k.
2. Let t=0, fy41="tina- Solve Problem (Pf) to obtain
t=(ty,...,ty). Let g{j be the optimal cost.
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If k=L, stop. Find k*, which denotes a permutation of k recharge
points in the intervals of the undulated road, such that g“’f < gﬁ for
all k=ky,...,L, and all permutations of the k recharge points in
the intervals of the undulated road. k™ is the optimal solution of the
recharge points. Otherwise, let k =k + 1 and go to step 2.

7 NUMERICAL EXPERIMENTS

We now consider some numerical examples of the problems formu-
lated in Sections 3-6. All the examples below were solved using
MISER3.2 [2,3] in Fortran double precision on a Unix Workstation.

In Examples 1 and 2, the road connecting the two cities is assumed
to be even.

Example 1 Choose S=600, P=50, m;=1400, L=35, and n=280 in
Problem (P)). The dynamical system is

dg

dt

(

L

1 _(v/40 +1%/1200) - 1400 o
100 80 ’ t € [tai-2, 1),

—-—qz_?_ogo —exp{2.5 = 3.0(ty — t2i-1)(t — tai-1)}, ¢ € [t2i-1, t2i),
40 + v*/1200) - 1400
_ITI)E(V/ tv é;O ) , t € [ta, tas1],
i=1,...,1
(7.1)

with initial condition

4(0) = 60. (1.2)

Then, Problem P; becomes:
Given the dynamical system (7.1) and (7.2), find t={t, 12, ..., tas},
v, [, such that

81 (ta v, 1) = tﬁnal(t’ v, l)
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is minimized subject to the constraints

20 < g(1) < 80,
0<p <50,
0<ti—tiy, i=1,...,21+1,

tfinal
/ vdz = 600,
0

/<5,

We choose ky =2 in Algorithm A. Consider the case in which k =4.
Under the CPET given in Section 3, we have:
Given the dynamical system

dg
ds
(1 (/40 + $°/1200) - 1400 o
100" 80 ; s€2i-2,2i- 1),
2000 B S o
1 (/40 + $°/1200) - 1400
100" 80 : s€[8,9]
i=1,...,4,

with initial condition
4(0) = 60,

find parameter vectors n and ¥ such that
9

g 1 (’7’ f]) = Z Ni
i=1

is minimized subject to
20<g(2i-1) i=1,...,5,
G(2i) <80 i=1,...,4,
0 < p <50,
O<7], izl,...,g,

9
/ vds = 600.
0
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TABLE I The optimal switching times and recharge points for
Example 1

i 1 2 3 4 5
t 3.2000 5.4852 9.1523 11.094 14.275
X; 191.08 191.08 410.06 410.06 600

The optimal switching times and recharge points are listed in Table
I, in which the optimal switching times are 3.200, 5.485, 9.153, and
11.09, while the optimal recharge points are 191.08 and 410.06. The
corresponding optimal speed is 59.71 with minimum travelling time
14.275.

Figure 1 contains the optimal recharge plan, the optimal switching
times and the optimal driving speed.

Example 2 In Problem P,, choose S=600, P=50, m=1470 and
n=287. The recharge locations are restricted at 130, 240, 300, 420, and
490. The dynamical system is:

dg
dt

40 + v*/1200) - 1470
_l(l)_o(v/ +v /87 ) s te [t2i—2’ t2i-—1)9

_ qz-?-ogo — CXp{2.5 - 3.0(t2,' - t2,~_1)(t — t2i_1)}, te [t2i_1, t2,~),
1 (v/40 +1*/1200) - 1470
100 87 ) te [tl()’ tll]a
. i=1,...,5
(7.3)
with initial condition
q(0) = 60. (7.4)

Problem (P,) becomes:
Given the dynamical system (7.3) and (7.4), find t={t1, 15, ..., t11}
and v such that

gz(ta V) = tﬁnal(ta V)
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FIGURE | The optimal driving strategy for Example 1. (a) optimal recharge plan
(b) optimal driving speed.
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is minimized subject to the constraints
20 < g(¢) < 80,

0<p<50,
0<ti—ti1, i=1,...,11,

ti
/ vdt = 600,
0

hi-1
/ vdt=7, i=12,...,5,
0

where (71, ...,75)=(130,240, 300, 420,490). Under the CPET trans-
form, we have:
Given the dynamics

dg
ds
( - -2
1 (9/40 + $*/1200) - 1470 o
100" 87 ) sei—2,2i-1),
2000 o o
g o285 =3 0mi(s 2= )} s e 2i-1,20),
1 (9/40 4 $*/1200) - 1470
100" 7 ; s € [10,11),
([ i=1,...,5

with initial condition
4(0) = 60,

find parameter vectors 5 and v such that
11

& (n, %) = Z i
i=1

is minimized subject to

20<g§2i—-1), i=1,...,6,
q(2i) < 80, i=1,...,5
0<p=<50,

0<mn, i=1,...,11,
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11
/ vds = 600,
0

2i-1
/ s)ds=7n i=1,2,...,5.
0

The optimal switching times and recharge points, listed in Table II,
show that there are four redundancies t; =14, t;=1tg. The lengths of
the recharge intervals [z3, #4], and [¢;, tg] are all equal to zero. Thus, the
actual recharge intervals are [ty, t;], [ts, tg] and [t9, f10]. The optimal
switching times are 2.242, 3.330, 6.262, 8.089, 11.36, and 12.39, while
the optimal recharge points are 130, 300, and 488. The corresponding
optimal speed is 57.76 with minimum travelling times 14.292.

Figure 2 contains the optimal recharge plan, the optimal switching
times and the optimal driving speed.

In Examples 3 and 4, the road connecting the two cities is assumed

to be undulated with two tuning points located at 350 and 550, res-
pectively. Therefore y = (350, 550). The angles of slope of the road on
the intervals (0, 350), (350, 550), and (550,600) are 4.4°, 174°, and
5.86°, respectively.
Example 3 In Problem (P3), choose P =50, m=1440, and n=_84.
The recharge locations are restricted at 150, 250, 350, and 470. All
turning points of the undulated road are included in the recharge
points. Thus, the recharge points are 150, 250, 350, 470, and 550. The
dynamic system is

dg
dt
(1 (v/40 + v*/1200 + g sin 6) - 1380 o
100 7 , 1 € [i-2, hi-1),
) 0 - exp(2:5 - 300 — o)t - )}, 1€ [t ),
1 (v/40 + v*/1200 + g sin 6) - 1380
100 7 ) 1 € [t5, o),
i=1,...,4 (7.5)

TABLE II The optimal switching times and recharge points for Example 2

i 1 2 3 4 5 6 7 8 9 10 11

4 224 333 523 523 626 809 10.16 10.16 11.37 1239 14.29
x; 130.0 130.0 240.0 240.0 300.0 300.0 418.7 418.7 488.4 488.4 600.0
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(b) o : '

0 5 10 15

FIGURE 2 The optimal driving strategy for Example 2. (a) Optimal recharge plan,
(b) optimal driving speed.
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with initial condition

q(0) = 60.

Problem (P;) then becomes:

(7.6)

Given the dynamical system (7.5) and (7.6), find t={t,1,,..., 1},

and v such that

g3(t,v) = trnal(t,v)

is minimized subject to the constraints

20 < q(1) < 80,

0<p<50,

0<t;i—ti, i=1,...

tio
/ vdt = 600,
0

hi-1
/ vdt=m7, i=1,...
0

, 10,

’5’

where (74, ...,7s) = (150,250, 350, 470, 550). Under the CPET given in

Section 5, we have:
Given the dynamics

dg
ds
(1 (/40 + #*/1200 + g sin ) - 1380
100" 78 ’
2000
_ q+50

s € 2i-2,2i—1),

—exp{2.5—3.0mi(s—2i+1)}, se[2i—1,2i),

100
i=1,...,4

78

___L_n(§/40—kﬁ2/1200-kg'ﬂn 9) - 1380

s € [8,10],
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with initial condition

find parameter vectors n and ¥ such that
10
&m9) =Y n

i=1

is minimized subject to

20 < (i), i=1,3,5,7,9,10,
4(2i) < 80, i=1,...,4,
0<p <50,

0 <, i=1,...,10,

10
/ vds = 600,
0

2i-1
/ W)ds=m, i=1,...,5.
0

The optimal switching times and recharge points, listed in Table III,
show that there exist redundancies: 3 =14, t;=tg. The lengths of the
recharge intervals [f3, t4] and [¢7, tg] are all equal to zero. The actual
recharge intervals are [f1,f] and [ts,2¢]. Therefore, the optimal
recharge locations are 150, and 350. The optimal switching times are
2.778, 5.010, 8.714, 11.256, and 14.204. The corresponding optimal
speeds are 54.0, 67.8, and 51.8. The minimum travelling time is 15.170.

Figure 3 contains the optimal recharge plan, the optimal switching
times, and the optimal driving speed.

TABLE III The optimal switching times and recharge points for Example 3

i 1 2 3 4 5 6 7 8 9 10

t; 2778 5.010 6.862 6862 8714 1126 13.02 13.02 1420 15.17
x; 150.0 150.0 250.0 250.0 350.0 350.0 470.1 470.1 550.1 600
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FIGURE 3 The optimal driving strategy for Example 3. (a) Optimal recharge plan,
(b) optimal driving speed.
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Example 4 In Problem (P,), choose S=600, P=50, m,=1440,

L =35, and n=84. The dynamical system is:

dg
dr
(1 (v/40 +1%/1200) - 1440 o
100 84 ’ t e [t21—27 t2l—1)»
_ 212_?_%— exp{2.5 —3.0(t2 — tai1)(t — t2ic1)}, € [t2in1, 1),
40 +12/1200) - 1440
—i&(v/ au 24 ) 1440 1 € [ta, tae,
\ i=1,...,/
(7.7)
with initial condition
q(0) = 60. (7.8)
Problem (P,) becomes:
Given the dynamical system (7.7) and (7.8), find t={t,t,,..., 127},

v, [, such that
ga(t,v, 1) = thnal(t, v, 1)

is minimized subject to the constraints

20 < g(1) < 80,
0<p<50,
0<ti—ti, i=1,...,21+1,

ffinal
/ vdt = 600,

ti
/lv(t)dt:fyj, J=12, t€t,
0

1< 10,

=3

where y = (350, 550).

We choose ko = 3 in Algorithm B. Consider the case in which k= 5.
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Under the CPET given in Section 6, the problem becomes:
Given the dynamical system

( PN ~2 .

—ﬁn@/‘m”@zm) 1440 € ie2.2i-1),
dg _ n———jﬁ‘);)o —exp{2.5 = 3.0mu(s —2i+ 1)}, s€[2i—1,2i),
ds

o 22
_T(lj(_)n(V/40+ P &200) 1440 se [10,11],
[ i=1,...,5

with initial condition
4(0) = 60,
find parameter vectors n and ¥ such that
11
g4(”’ ‘A)) = Z U
i=1
is minimized subject to

20<4g(2i-1), i=1,...,6

(}(2i)§80, i=1,...,5,
0<p<50,
O<’I7;, i=1,...,11,

i
/v(t)dt:*yj, j=1,2, i€{1,3,57,9},
0

1
/ vds = 600.
0

The optimal switching times and recharge points are listed in
Table IV. The optimal switching times are 3.360, 5.294, 8.623, 11.02,

TABLE IV The optimal switching times and recharge points for Example 4

i I 2 3 4 5 6

t 3.3600 5.2944 8.6227 11.018 14.028 15.026
X; 175.83 175.83 350.00 350.00 550.00 600
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FIGURE 4 The Optimal Driving Strategy for Example 4. (a) Optimal recharge plan,
(b) optimal driving speed.



32 W.R. LEE et al.

and 14.03, the optimal recharge locations are 175.8, and 350.0. The
corresponding optimal speeds are 52.06, 66.22, and 49.79, respectively.
The minimum travelling time is 15.026.

Figure 4 contains the optimal recharge plan, the optimal switching
times and the optimal driving speed.
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