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Linear, constant-coefficient difference equations play a central role in many areas of engineering, where cases
involving repeated zero-valued characteristic roots are sometimes of particular interest. Unfortunately, the
classical solution expression presented in the mathematical literature of difference equations is not valid for this
latter case. In this paper we develop a unique generalization of the classical solution expression for linear,
constant-coefficient, homogeneous difference equations that accommodates the most general case of repeated
zero-valued characteristic roots, thereby “completing” the classical theory. A worked example is presented to
illustrate our result.
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1. INTRODUCTION

In many branches of engineering it is expedient to model a dynamical system/process in
terms of its behavior or response at specified discrete-values (isolated point-values) of the
relevant independent variable. For instance, the static deflection y(x) of a structure at
discrete spatial points x = x;, i = 1,2,3, ---, along the length of the structure. Or, the
“motions” y(f) of a dynamical system evaluated at discrete-values t = t;, t,, - of the
temporal independent variable ¢t = time. Such models are called “discrete independent-
variable models” (hereafter called discrete-variable models) and the appropriate
mathematical tool for their development and analysis is the theory of difference equations.
In particular, if the underlying dynamic system/process admits to linearization, and the
spacing between the discrete-values of the independent variable is constant, the classical
theory of linear difference equations is directly applicable to the development and analysis
of such models.

Practical applications of linear, constant-coefficient difference equations in discrete-
variable modeling sometimes lead to situations in which the difference equation model
naturally turns-out to have one or more zero-valued characteristic roots. In such cases the
influence of those zero-roots on the behavior of the model’s analytical solution may be of
particular interest. For example, in the area of linear discrete-time/digital-control system
design, engineers often strive to achieve a “closed-loop” system whose linear, constant-
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coefficient difference-equation model has all zero-valued characteristic roots. This latter
case yields a desirably “quick” response called “deadbeat response”, [1], [2].

The effectiveness of classical linear difference equation theory in analyzing discrete-
variable models in engineering has been hampered by the lack of a theoretical basis for
accommodating the case of repeated zero-valued characteristic roots in conventional
analytical solution expressions. In fact, presentations of classical difference-equation
theory [3]-[11] typically ignore cases of zero-valued characteristic roots, or implicitly rule
them out, by assuming (without explanation) that certain otherwise “arbitrary” coefficients
in the difference equation are non-zero. Some texts define the “order” of a difference
equation in such a way that no zero-valued characteristic roots can ever occur! (See
Section 6 of this paper.)

In this paper we present a novel generalization of the classical solution expression for
linear, constant-coefficient, homogeneous difference equations. Our generalized solution
expression gracefully accommodates the most general case of repeated, zero-valued
characteristic roots and thereby serves to “complete” the classical theory by eliminating
the need to avoid or rule-out such cases. A numerical example is worked-out in detail to
illustrate the ineffectiveness of the classical solution expression and our proposed method
to overcome that defect.

2. THE CLASSICAL SOLUTION EXPRESSION FOR A LINEAR,
CONSTANT-COEFFICIENT HOMOGENEOUS DIFFERENCE EQUATION

In this paper we are concerned with the analytical solution of arbitrary (real-valued)
n"-order linear, constant-coefficient, homogeneous difference equations of the general
form

Wk +mT) + d,y(k+n— DD +- - -+ & y(k+ DD
+a, y(kT) =0 (1)

subject to the n arbitrarily specified “initial condition” (initial sequence) values y(0) = y,;
YT) = y;5 y2T) = yp; -5 y((n — 1DT) = y,_,. This is recognized as the natural,
difference-equation counterpart of the “initial-value problem” in differential equation
theory. The specified constant 7 > 0 is the (uniform) “spacing” between the discrete-values
t = kT, k = 0,1,2, ---, of the independent variable ¢, and the {4;}] are given, arbitrary
real-valued constants. In the interest of engineering applications, where the value of 7 may
be an important design parameter, we have elected to not invoke in (1) the normalization
T = 1.0 as is customary in mathematical texts.

It is recalled that the conventional solution expression for (1) has two possible formats,
depending on whether or not the characteristic polynomial of (1) has repeated (equal-
valued) characteristic roots A;. If the n characteristic roots {A;, A, ** , \,,} associated with
(1) are all distinct (non-repeated) the classical solution expression is [11; p. 153]

y(kT) = Cl(Xl)k + CZ(XZ)I‘ +.. .+ C,,():,,)k; C; = constant,

k=012, - . 2
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On the other hand, if, say, two of the characteristic roots (X,, X,) of (1) are each repeated
(m,, m)-times respectively, X, # X, m,> 1, m ;> 1, m, + m, = m < n, and the remaining
roots (X,,41, *** » \,,) are distinct (non-repeated), the appropriate solution expression for
(1) in that case is [11; p. 154]

YD) = 3 C K™D (K + S G k0 () + Gy (Ko
1 1

+. -+ C, (N5 k=012, - - 3)

The obvious, natural generalization of (3) to include an “arbitrary” number of repeated
roots X\, with “arbitrary” multiplicities m;,, constitutes the most general solution expression
for (1) as traditionally presented in texts, [3]-[11]. It is with this understanding, and the
desire to avoid any further notational complexity, that we hereafter treat (3) as
representing the conventional general solution expression for (1).

A Shortcoming in (2)

Expressions (2), (3) are presumably “weighted sums of » linearly-independent particular
solutions” as required for the general solution y(kT) of the n”-order linear, constant
coefficient difference equation (1). The values of the weighting constants {C,, :--, C,} in
(2), (3) are to be chosen to satisfy the n arbitrarily specified “initial-condition” values for
the initial sequence {y(0), ¥(T), ¥(27), ---, y((n — 1)T)}. However, a mathematical
shortcoming in (2), and an outright mathematical defect in (3), arises when (1) has
zero-valued characteristic roots, A\; = 0. In particular, if \; = 0 is a distinct characteristic
root appearing in (2), the evaluation of (2) for k = 0 leads to the indeterminate expression
(0)° appearing on the right side of (2). The “appropriate” value one should assign to the
term (0)° in that case has, to this author’s knowledge, never been explicitly addressed in
any mathematics or engineering textbook. Of course, for engineers it is quite natural to
infer, from the graph of (p)’ vs. p, p = real, that

lim (p)° = 1, p = real. @
p—0

However, the proper evaluation of (0)°, as it arises in (2) when \; = 0, seems to have been
quietly disregarded in difference equation texts. It should be mentioned that Mayhan [12]
is one engineering author that has recognized the presence of this mathematical
shortcoming. But he too avoids explicitly mentioning the evaluation of (0)°, in favor of a
special brute-force method he advocates [12, pp. 100, 132].

A Defect in (3)

When \; = 0 appears as a repeated characteristic root in (3), the evaluation of expression
(3) for k = 0 not only involves the aforementioned indeterminate term (0)°, but also terms
like (0)°, 0(0)°, 0% (0)°, 0% (0)°, etc. In that case, regardless of what fixed value one assigns
to the term (0)°, the corresponding set of particular solutions
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{0, k(0)"- - -, K™ D(0)") &)

that then appears in (3) can never be linearly independent on k = 0,1,2, --- . Consequently,
expression (3) is an invalid solution expression for all cases of repeated zero-valued
characteristic roots X, that may arise in the linear, constant-coefficient difference equation
(1). This situation would have little consequence if such cases did not naturally arise in
applications of difference equations, as they do in fact.

3. RESOLUTION OF THE TECHNICAL DIFFICULTIES WITH (2),(3) WHEN
Ai = 0

Our proposed resolution of the “technical difficulties” with (2), (3), when zero-valued
characteristic roots X; naturally appear, is as follows. First, for the purpose of evaluating
the term (X,)° in (2), (3) when X, = 0, agree to accept the special value'

0y =1 6)

based on the limit (4). Then, replace the highly dependent (hence ineffective) “repeated
zero-root basis functions” (5) by the unorthodox, slightly mutated set of basis functions

{0, %V, @2 . ., )¢ ™) %)

It is easily verified that, using the evaluation (6), our proposed new basis set (7), for
repeated zero-roots, is a linearly independent set for all k = 0,1,2, --- . Thus, using (7) our
proposed “correction” to the inherent defect in (3), for the case of repeated zero
characteristic roots, consists of re-writing (3) in the following alternative form (here we
let X, in (3) be the repeated zero-valued root, having m, > 1-fold multiplicity and X, # 0
with multiplicity m, > 1).

YD) = C, 0 + GOV + %Y +. - .+, %™

my . . - 5
3GV + oy R+ + -+ G (R
m.>1,m;>1,k=0,12, - ). 8)

Note that, with the evaluation (6), the terms (0)(k'i)2, i =12, ,m, in (8) act as the
classical Kronecker delta function 8(k — i). Moreover, the terms (0)*™ in (7) can be
replaced by a variety of equivalent expressions such as (0)'“"', I(-)| = absolute value, or
by (0)* " p = 1,2, ---, etc. without loss of linear independence.

Our generalized expression (8), for accommodating the case of repeated zero-valued
characteristic roots in (3), apparently cannot be represented as a special case of the
(otherwise correct) classical solution expression (3), using any conventional procedure.
Thus the first m, terms in (8) constitute a “particular solution” that has the nature of a
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“singular-solution” [13], as sometimes encountered in differential-equations. This is a
rather novel situation for linear difference equations because, as is well-known, linear
differential equations cannot have singular solutions!

4. AN EXAMPLE OF THE ZERO-ROOT DEFECT IN (3) AND THE
PROPOSED ACCOMMODATION (8)

To illustrate the defect in (3) and our proposed accommodation (8), when A= 0 is a
repeated characteristic root, consider the following specific 3™-order linear difference
equation

y(k+3)T) - 05y((k+2)T)=0;k=0,12, - - )

with the three arbitrarily specified “initial-condition” values

¥O0) =y, (D) =y, ;y2T) =y, (10)

The corresponding characteristic polynomial for (9) is
K*-058%*=0 (11)

which clearly yields the three characteristic roots (A = 0 is a twice-repeated root),

X, =0;X,=0;X,=05 (12)

According to the traditional solution expression (3), the general solution y(kT) of (9)
would be written as

y(kT) = C,(0)* + Ck(0)* + C5(0.5) ; k=10,1,2,- - -, (13)

where the three constants {C;, C,, C3} in (13) are to be chosen to satisfy the three given
“initial-condition” values (10). However, this latter step is not possible for (13), owing to
the linear-dependence of the first two terms on the right-side of (13), and thus (13) is not
a valid expression for the general (complementary) solution of (9).

According to our generalized solution expression (8), for accommodating repeated
zero-valued roots, the correct general solution of (9) is given by the expression

Y(KT) = C,(0) + C0* Y + C,0.5 k= 0,12, - - (14)

Note that the second-term in (14) is, structurally, quite different from its counterpart in
(13).
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It is readily verified that the three particular solutions in (14) are linearly independent,
for all k = 0,1,2, --- , and that the values of the C;, i = 1,2,3 in (14), needed to satisfy the
three specified initial-conditions (10), can be easily computed to obtain

Ci=Y—4,;C, =y —2y,;C; =4y, (15)

5. THE REMARKABLE GENERALITY OF THE GENERATING-FUNCTION
METHOD

As we have already indicated, the solution expressions (2), (3) constitute the typical
results found in the contemporary difference-equation literature [3]-[11], even though (3)
fails to give the correct answer when repeated, zero-valued characteristic roots occur.
Thus, it is surprising that there exists a very old and well-developed mathematical
technique, for deriving analytical solutions of difference-equations, that does not experi-
ence difficulty when zero-valued characteristic roots occur in (1). In particular, as an
alternative to using our generalized solution expression (8), the “correct” solution of (1),
for arbitrary cases of distinct or repeated, zero-valued characteristic roots, can be obtained
by straightforward application of the “Generating-Function Method” [11], [14],
introduced over 200 years ago by DeMoivre and Laplace, [15], [16] for solving linear
difference equations. In the engineering literature the latter method, with a simple
reciprocal change of variable (1 — 1/z), is used to derive operator expressions called
discrete-time “transfer-functions” and is often credited to more recent researchers (circa
1950) under the name “Z-Transform Method.” In light of the genesis remarks in [17] and
in the seminal paper [18; p. 226], there is little excuse for continuing the perpetuation of
this misplaced credit and alias name for the DeMoivre/Laplace Generating-Function
Method, in the engineering literature.

6. COMMENT ON THE DEFINITION OF “ORDER” FOR A DIFFERENCE
EQUATION

The ineffectiveness of (3), for cases of repeated zero-valued characteristic roots, is
obscured in some mathematical texts [6], [11] by defining the “order” of a linear difference
equation of the form (1) as the difference between the highest and lowest-order
discrete-valued arguments (modulo 7) appearing in the dependent-variable terms. This
ingenious definition makes it impossible for any linear difference equation (1) to have a
zero-valued characteristic root (distinct or repeated)! For instance, by that definition our
example (9) would be defined as a first-order [= ((k + 3)T — (k + 2)T)/T] difference
equation with only one initial-condition, rather than a third-order equation with three
independent initial conditions (10). Such artistic license in defining “order” is perhaps
appropriate at some levels of mathematical abstraction, but is totally unacceptable in
engineering applications of difference equations for the purpose of modeling real-life
dynamical systems over pre-specified ranges of the independent variable. In such
applications the dynamical “order” of the system is a natural, intrinsic property that has
important physical meaning (number of independent initial-conditions) that must not be
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altered or obscured by the difference-equation modeling procedure. For instance, an
inherently third-order dynamic system that is modeled and treated as a first-order system
can lead to potentially dangerous situations, in terms of stability considerations.

7. SUMMARY

Difference equations are the natural tool for developing and analyzing mathematical
models of “discrete independent-variable” type systems in engineering. However, in those
applications the practical utility of the classical solution expression in linear, constant-
coefficient difference equation theory has been hampered by the fact that the classical
solution expression does not yield correct answers when the difference equation model has
repeated, zero-valued characteristic roots.

In this paper we have introduced a generalization of the classical solution expression
that accommodates the most general case of repeated, zero-valued characteristic roots.
This generalization involves the introduction of a “singular-type” particular solution for
repeated zero-valued roots, and serves to “complete” the classical theory, in the sense that
cases involving zero-valued, repeated roots need no longer be implicitly (or explicitly)
ruled-out as they traditionally have been. A worked numerical example has been presented
to illustrate the results.

Some generalizations of the solution expressions used here are presented in [19].
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Endnotes

1. The fixed evaluation (6), of the normally “indeterminate” expression (0)°, is valid in the present context
only because of the unique structure of (4) (fixed power of zero) as it arises in (2), (3) when A; — 0, for

some i. A similar circumstance arises in evaluating particular terms in some compact expressions for
power-series.



