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Several recent studies have shown that vibrations in a two-degree-of-freedom system can be suppressed by using
modal coupling based control techniques. This involves making the first two natural frequencies commensurable
(e.g., in a ratio of 1:1 or 1:2) to establish a state of Internal Resonance (IR). When the system exhibits IR,
vibrations in the two directions are strongly coupled resulting in a beat phenomenon. Upon introducing damping
in one direction, oscillations in both directions can be quickly suppressed. In this paper we consider vibration
suppression of a flexible two-degree-of-freedom gyroscopic system using 1:1 and 1:2 IR. The possibility of using
1:1 and 1:2 IR to enhance the coupling in the system is established analytically using the perturbation method
of multiple scales. The results of IR based control strategy are compared with a new method, which is based on
tuning the system parameters to make the mode shapes identical. Results indicate that this new technique is more
efficient and easy to implement than IR based control strategies. Another advantage of this method is that there
is no restriction on the frequencies as in the case of IR. Finally, a control torque is obtained which on application
automatically tunes the system parameters to establish modal coupling.

KEeyworps: Vibration suppression; modal coupling; internal resonance

1. INTRODUCTION

In this paper, we address vibration suppression of a flexible two-degree-of-freedom
gyroscopic system with an uncontrollable mode. Using conventional control techniques it
is generally not possible to regulate vibrations in such cases using one actuator because
one mode is uncontrollable. However if the oscillations are coupled, the coupling may be
utilized to regulate the oscillations indirectly. The vibration suppression strategy presented
in this work is based on using a simple control scheme like a PD controller to regulate the
vibrations in one direction and using the coupling to control the vibrations in the other
direction. To effectively employ this strategy, the coupling has to be enhanced. Several
recent studies [1-11] have suggested the use of the phenomenon of Internal Resonance
(IR) as a means to enhance the coupling effect.

A system is said to be in a state of IR if the natural frequencies ({2) are commensurable
(ie,a Q, +a,Q, + ... =0, where a’s are positive or negative integers). When IR is
established, the existing coupling between the two coordinate directions is enhanced. At
this state, energy is continually exchanged between the modes resulting in a beat
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phenomenon. Control is achieved upon introducing damping into one of the directions,
from where the energy is dissipated leading to vibration suppression in both directions.

One of the first authors to investigate IR was Sethna [12]. Later several authors,
Stupnicka [13], Van Dooren [14], Haddow et al. [15], and Mook et al. [16] studied
resonant response of a system under harmonic excitation forces. Nayfeh and Mook [17]
in their book give a comprehensive treatment on this subject. These studies reveal that the
choice of IR ratio depends on the type of coupling in the system. When quadratic coupling
is present, 1:2 IR ratio gives amplitude modulated response, and for cubic nonlinearities
both 1:1 and 1:3 IR ratios can be used [17].

The research in Construct group at University of Waterloo has focused on applications
of linear and nonlinear coupling terms to suppress vibrations. The first study in this area
is the work by Golnaraghi [1,2], where he used a sliding mass to control the vibrations of
a flexible cantilever beam. The controller in this work introduced an additional degree of
freedom and kinematic nonlinearities to the system. In this case, control was achieved
when the sliding mass motion was slightly damped at the state of 2:1 IR. Subsequently,
Tuer et al. [3] and Duquette et al. [4] experimentally studied a flexible cantilever beam.
The coupling in their system was introduced through a rigid beam that was attached to the
tip of the flexible beam via a DC motor. Tuer [S5] and Duquette [6] also discussed the use
of linear coupling in vibration suppression of a cantilever beam. In more recent studies,
enroute to generalize these control schemes, Tuer et al. [7,8] utilized coordinate coupling
(linear coupling through position coordinates) and IR with quadratic coupling methods in
active configurations. In these studies, the secondary degree of freedom was introduced in
computer software and the coupling effect was introduced via an actuator connected to the
plant. The example used by Tuer [7,8] was a flexible arm manipulator, and was tested
experimentally for the case of coordinate coupling. The IR case was later tested by Oueini
and Golnaraghi [9], experimentally. Later on, Khajepour et al. [10,11] used the center
manifold and normal form methods to address the deficiencies of earlier studies and
derived design criteria for the generalized coupling control law using quadratic nonlin-
earities.

In the above mentioned references, 1:2 IR ratio was predominantly used because
quadratic nonlinearities were introduced in the system through the controller. However, in
gyroscopic systems, the required coupling between the two degrees of freedom exists
naturally, due to the gyroscopic forces. This makes gyroscopic type systems a natural
candidate for the application of modal coupling based control strategies.

Gyroscopic systems in general can exhibit both linear and nonlinear couplings. For the
system under consideration the equations of motion are coupled through linear, quadratic,
and cubic terms. Therefore, we can investigate modal coupling through 1:1 and 1:2
frequency ratios. The existence of modal coupling for 1:1 and 1:2 IR is established
analytically using the perturbation method of multiple scales and the results are verified
numerically. In addition we also present a new vibration suppression strategy which uses
the linear velocity coupling that arises through the gyroscopic terms and tunes the linear
mode shapes directly to strengthen the link between the two degrees of freedom. It can be
shown that 1:1 IR ratio forms a special case of this method. Numerical simulations show
that, for gyroscopic systems, this method is more effective in suppressing vibrations than
the method of IR. Investigations in the parameter space show that the system cannot be
always tuned to exhibit a desired modal coupling. To overcome this, we present a control
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law, which will make the system exhibit modal coupling, regardless of the values of the
system parameters. This approach opens a new horizon for vibration suppression in other
types of systems, on which we will be focusing in the early future.

2. SYSTEM DESCRIPTION AND MATHEMATICAL MODELING

The system studied is shown in Figure 1. A discrete model of a flexible beam of mass m
and length [ is assumed. The flexibility is modeled as two linear rotational springs of
stiffness k, and k, in the vertical and horizontal planes, respectively. The beam is assumed
to rotate at a constant angular velocity w about the vertical axis. The rotation of the beam
contributes to the centrifugal and gyroscopic forces on the system. The motion is
described by the angular coordinates 8, and 6,. Further, the 0, direction is assumed as the
control direction to which the controller is applied and the oscillations in the 6, direction
are controlled indirectly through the coupling. The model retains many fundamental
characteristics of physical gyroscopic systems like helicopter rotors, but at the same time
it is simple enough to conduct analytical investigations. A detailed study of the gyroscopic
characteristics of helicopter rotor blades can be found in [18,19].
Using the Lagrangian method the following equations of motion are obtained [20]:

1., T
1 0 o; N 0 562 sin(26,) ez
0 COS2(61) 62 —6* Sin(ze ) 0 62
p) 1 _

. 0 wrsine) |[ 6] wi 0 [,
—w*sin(20,) 0 o, 0w |[0

1
—w*zsin(261) — cos(0,) + T* 0
+12 = 0
0

@

Figure 1 System model.
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Similar equations are obtained in [18] in connection with a rigid body model of a
helicopter rotor blade. In (1), nondimensional parameters are used which are defined as

follows:
2
o \/2 14 & _1
'a \gdfdr? g dt2

w* = u), w;z = —1, w; L3 2
g mgl mgl

and 6}, 6,, 6}, and §, denote the nondimensionalized rates. In (1) the term T* represents
the controller torque that is applied along 0,. To illustrate the modal coupling strategies,
we assume Proportional and Derivative (PD) feedback control. Using PD control, T* is
defined as follows:

T* = K(®,, — 8)) + C§; 3)
where K is the controller position gain, C is the controller velocity gain and 0,, is a

constant reference input. Another term T:, which represents the constant element in (3) is
defined as follows:

T. = Kb,, @

Using (3) and (4), the equations of motion (1) are written as follows:

1, . T¢ .-

1 0 6, 0 562s1n(261) 0,
0 cos’(8,) || &5 * 6,
! 2 —6sin28,) O L2

. ¢ orsino) |[ 6], om 0 [0, ]
—w*sin(20,) 0 0 0wy || %

1
S0*sin(20,) — cos(®) + ¢ | _ [0]
=lo
0

N ®)

where w;, and w,, (for notational consistency) are defined as:

0 = o ©)
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The controller is used to tune the system parameters to establish modal coupling and to
introduce damping in the 0, direction. From (6) it can be seen that by adjusting the
controller position gain K, the value of w,, can be tuned to establish modal coupling in the
system.

3. EQUILIBRIUM POSITIONS

The constant solution for (5) is defined as an equilibrium position. The equilibrium
positions are obtained by setting velocity and accelerations to zero in (5) (6, = 6, =
6; = 6, = 0), resulting in the following equations:

e |
0,0, + Ew* sin(@,,) — cos(8,,) + 7. = 0

@0, =0 @

where 0,, and 0,, are the equilibrium values. From (7) it can be seen that 0,, is always
zero, but the equilibrium values for 0,, depend on the system parameters o*, w,,;, and
T.. It can be seen that the first equation in (7) is nonlinear, so multiple equilibrium values
could exist for 6,. When the system parameters are varied the equilibrium positions
change, and by adjusting the controller reference input 8,,, the value of 7., and, hence, the
equilibrium position can be tuned to a desired value.

The stability of the equilibrium positions can be established using the eigenvalues of the
linearized equations of motion or the Lyapunov’s direct method. Figure 2 shows the
equilibrium values for 0, and also points a stable equilibrium position. A detailed
investigation of the stability of the equilibrium positions for this system was conducted in
[20]. In this paper we consider motion only about the stable equilibria.

40
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T T T T T
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Angular Displacement (91) (Nondim.)

Figure 2 Equilibrium function; o* = 8.0, ®,; = 3.0, T, = 0.
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4. MOTION IN THE NEIGHBORHOOD OF EQUILIBRIUM POINTS

To investigate the motion in the neighborhood of equilibrium points, the equations of
motion (5) are expanded about the equilibrium position. In the analysis which follows, the
controller velocity gain C is assumed to be small and neglected for simplicity. Using
Taylor series expansion about an equilibrium point and collecting terms up to third order
we obtain the following approximate equations of motion:

B AR I IR

s3sf + s4d§ + ssu u, + snui’ + sl._,u%li2 + s13u1d§ ®)
Sgityly + Squiy + Syl + Sau000, + slsufdl + sl6ufu2
where u; = 0, — 0,,, and u, = 0, — 0,, and the s, terms are given by:
5, = o* sin(26,,), 5, = 0*? cos(20,,) + wyy + sin(8,,)
1 2 . 1,
§3 = —E cos(0;,) + w*“sin(20,,), s4= —5 sin(260,,)
55 = —2w* cos(20,,), s¢ = —2w* tan(0,,)
55 = 0y 5ec3(0,,), sg = sin(20,,) sec’(8,,)
s = 20* sec’(8,,), 510 = —2w., tan(8,,) sec’(8,,)
2 ., 1. .
S = 5"’* cos(29,,) + -6-sm(01e), 512 = 20* sin(29,,)
13 = —cos(20,,), 514 = 2 sec’(6,,)
515 = 200* sin(8,,) sec’(8,,), S16 = Wap (2 cOS%(8,,) — 3)sec*(8,,) ©)

The equations of motion (8) are used later in the perturbation analysis to establish modal
coupling under resonant conditions.

5. CHARACTERISTIC ROOTS

Assuming u; = a; €™ as the solution of the linearized equations associated with (8), we
obtain the following characteristic equation:

Q= (s, + 5, — 5,500 + 5,5, =0 (10)
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where the roots (); are given by:

)
_ (57— 55) = V(5 + 5, = 5,56 = 485,

0, = :
_ (s, + 57— 515) = \/(s2 -8 sls6)2 — 4s5,5¢57 an
2
Note that
— 45,565, = 40*2wy tan®(20,,) = 0 (12)

therefore Qf and 9.%, corresponding to the eigenvalues of the linear portion of (8) are
always real, and the natural frequencies (), and (), are associated with the positive roots
of Q2 and Q3, respectively.

6. PERTURBATION EXPANSIONS

The perturbation analysis in the case of 1:1 or 1:2 IR is performed using the method of
multiple scales. Details of this method can be found in [17] and [21]. Following the
procedure of the multiple scales method the dependent variables u; and u, are assumed as
follows:

u; = euy (To, T, Ty) + &2u,(To,T),T,) + uy3(To,T,,Ty)

Uy = &y (Ty,T1,Ty) + Eup(To,T1,Ty) + up(To,T,,Ty) (13)

where € represents a nondimensional scaling parameter, and u,;; and u,; (i = 1...3)
represent the solution corresponding to the order €'. Since we use three terms in the
expansion for u, and u,, multiple scales method requires that the nondimensional time ¢*
is also measured on three different time scales 7, T, and T,, which are defined as follows:

T,=¢&'t*i=0,1,and?2 (14)
The scale T, is a fast scale and T, T, represent slower time scales. Using the chain rule

of differentiation and (14), the derivatives with respect to the nondimensional time 7* are
written as follows:

d 2
d—t;=D0+le+eD2

d
e D} + 2eD,D, + £*(2DyD, + D?) (15)
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where D, represents the partial derivatives with respect to 7;.
Substituting (13) and (15) in the equations of motion (8), and collecting like powers of
€, gives the following equations:

Order &:
Dg“u + 51Dglty; + s5uy;, =0
D(z,u21 + s¢Dgu;y + squy; =0 (16)
Order &%
2 _ 2 2
Diuyy + 5:Dguyy + squ1; = —2DoDyuyy — 51Dy + s3uyy + s4(Douyy)
+ s5uy Doty
2 _
Dguy, + 56Dy + Squyy = —2DoDyuy; — s¢Dyuyy + sgDouy Doty + squy Douyy
+ S10U11Uy a7
Order &

D<2)“13 + 5\Dgiy; + syu13 = —2DyDyuyy, — 2DoDouyy — D:fu“ = 5{(Dyuy, + Dyuy)
+ 2s3uyyupy + 25,(Dotty Dy + Doy Do)
+ 55(uyDouyy + uzDotyy + uy Dyuy))
+ sn“il + 512Dou21“%1 + s13(D0u21)2u11
Djuys + s¢Dotty3 + Syt = —2DoDyuy, — 2DoDoty, — Dty — s¢(Dytey; + Dyuyy)
+ sg(Dyuy Doty + DouyDoityy + Douy Dyuyy + DouyyDoutyy)
+ sg(upDouyy + uy Doyy + uy Dyuyy) + s10(uigity; + uyitty;)

2 2
+ 514Dty Doty gy + 515Dty 1y + S16U11401 (18)

The perturbation technique involves solving (16), (17), and (18) sequentially. The general
solution for (16) can be considered as:

u;, = AT, T)e "™ + AT, T,)e %™ + cc

Uy, = rA(T,T)eM ™ + rA(T,, e + cc (19)

where cc denotes complex conjugate of the preceding terms, and A; and A, are, in general,
functions of the slower time scales T; and T,, indicating that amplitudes vary slowly with
time. In (19), r, and r, are the modal amplitude ratios corresponding to the first and second
natural frequencies, respectively, and are given by:
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r=_s2—ﬂf=_ iss(2,
- 02 s}
ry=— $2 2 _ _ _Belh (20)

islﬂz §7 — Q%

The equations developed in this section are used to show the existence of modal coupling
in the 1:1 and 1:2 IR cases, next.

7. VIBRATION SUPPRESSION USING 1:1 IR

The first vibration suppression strategy discussed is 1:1 IR. It requires tuning the value of
u):l to make £, = (),. For a given set of parameters it may not be always possible to
obtain a real value for the tuning parameter v, to establish a desired ratio of Q, and Q,.
Therefore we first consider the problem of tuning the system parameters to establish IR.

7.1 System Parameters

From (11) it follows that the difference between the frequencies (2, and (), is given by:

Q-Q,= '\/sz + 57 — 5186 — 2°\/ 8,8, (1)

If the difference between the frequencies is set to zero, from (21) the following equation
is obtained:

5= \V/s7 £ /5156 22)

It can be seen from (9) that 5,5, is a negative quantity, and from (22) it follows that s, and
hence w, | are complex quantities implying that we cannot have an exact ratio of ), and
,. Since the system cannot be tuned to establish an exact 1:1 ratio of the natural
frequencies, we try to minimize the difference between the frequencies with respect to the
tuning parameter wzl. After simplification it results in the following equations:

8§y = 8

2

0 = —0*%0s(20,,) — sin(8,,) + o, secX®,,) (23)

‘When the system parameters are tuned according to (23) the difference between the natural
frequencies, given by (21) is reduced to the following equation:

8=Ql _Qz= \/ —S1S6

= 20* sin(0,,) (24)
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where 8 is called the detuning parameter. It can be seen from (24) that for small values of
0,., 9 is small and the frequencies can be considered to be approximately equal. For
convenience we refer to this approximate ratio as 1:1 IR. For larger values of 0,,, the value
of § is large and the system cannot be considered as 1:1 resonant. Figure 3(a) shows a set
of values of w:1 required for tuning the system to 1:1 IR when w* is varied. Figure 3(b)
shows the natural frequencies along the same path. From this figure it can be seen that the
range of the tuning parameter mf,l is limited. To overcome this we present a method to
modify the control torque in Section (9.1).

7.2 Perturbation Analysis
The perturbation analysis involves extensive algebraic manipulation, which is carried out
using the symbolic manipulation program MAPLE. In carrying out the perturbation

analysis the approach presented in [21] is adopted. The solution (19) of the order e
equations is substituted into the order €? equations (17), and after simplification gives the

(a) 6

*
Tuning Parameter (mnl ) (Nondim.)
[¥) w
1 1

—
1

o

T T T T T
0 1 2 3 . 4 5 6
Angular Velocity (o ) (Nondim.)

® 57

@, Q)™
o
w
1

Natural Fi
F-S
~3
1

45 T T T T T
0 1 2 3 R 4 5 6
Angular Velocity (® ) (Nondim.)

Figure 3 Tuned parameters and natural frequencies—1:1 IR w:,z = 5.0,6,, = 0.1. (a) Tuned parameter values;
(b) Natural frequencies along tuned path.
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following expressions for the right-hand sides, denoted by rhs3 and rhs4:

rhs3 = x A, &0 4 o A, T 4 o 3A% 20T 4 4A§ 20T
+ x5A, A, VW0 4 x A A HNW 4 oo+ x A AL+ XA,
rhs4d = nglemJo + wazeiﬂzT" + x“Afeim‘T" + anﬁe"szo

+ X34, 4,8 TN 4 x4 A DD 4 e 25)
where xi, i = 1...14, are constants which depend on the system parameters and (')
indicates differentiation with respect to T;. These constants are not presented because of
the length of these terms. Since an exact 1:1 ratio of (), and (2, cannot be established we

use the detuning parameter 8. However we first scale 8 by using 8 = € ¢ to give the
correct time scale, and write (24) as follows:

Q,=0, + o (26)

The terms ¢~ and ¢ %7 appear in both the homogeneous and the particular solution
of (17), this gives rise to secular terms which makes the solution of (17) nonuniform.
Eliminating the secular terms results in solvability conditions which relate the modal
amplitudes A; and A,. To eliminate the secular terms from u,, and u,,, the following
particular solution is assumed, which neglects all the terms except the ones which lead to
secular terms:

Uy, = Py Mo + Pyl

Uy = Py €T + P, el 27

Note in (27) that the conjugate terms are also neglected because they would lead to four
incompatible equations relating A; and A,. Substituting (27) in (17) and equating the
coefficients of €47 and €% on both sides results in the following solvability conditions:

(e, = QP + ik Py, = Ry,
iksQ, Py, + (k; — Q)P,, = R,, (28)
where n = 1, 2 and R,, and R,, are given by:
Ry = xlA;’ Ry, = sz;
Ry = x9All’ Ry = xloAlz (29)
For a nontrivial solution to (28) it requires that

2
Sy — Qn Rln

=0 30
isgQ), R,, (30)
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where s, and s¢ are defined in (9). Solving (30) for n = 1,2 gives the following conditions:

A =0,A,=0 (31)

which imply that A; = A, (T5), A, = A, (T,) and the coupling between the modes cannot
be established using € equations (17). Therefore, we have to consider the higher order
equations (18). The first step involves substituting (31) in (25) and obtain the particular
solution for (17) by considering the remaining terms in the right-hand sides. Substituting
the homogeneous solution for u,; and u,, (19), and the particular solution for u,, and u,,

in (18) results in the following terms for the right-hand sides of (18), denoted by rhs5 and
rhs6:

rhs5 = {x;A\(T,) + x, A%A, + x)74,A,A,} N0
+ {XmAlz(Tz) + x0A4 4, + xzoA%}e"“zTo
+ 2 AN + x,,A3eP 5T + x4 A2 PN 4 ) ATA, OO0
+ x25AlZ%ei(ﬂ,—2.Qz)To + xy ARA BT 4
rhs6 = {x,7A,(T,) + x,6A%A, + Xp0A,A,A,} N0
+ {x30A5(Ty) + x3,A A4, + x3,A24,) 7o
+ xy AP0 4 AT 4 . A A2 | 24 00T,

+ x37A, A2 MW 4y A2, D20 4 e 32)

where (') indicates differentiation with respect to T,, and x; are constants. Using the
resonant condition (26) the following relationships are obtained:
@20, — T, ,—i20T,

o HU=20)T, T, 20T, (33)

Substituting (33) in (32) and assuming a solution for u;; and u,; similar to (27), and

equating the coefficients of similar terms on either side of (18), we obtain the following
solvability conditions which establish the modal coupling:

x39A'l(T2) + x40A%ZI + x41AlA2Z2 + x42A§Zle2iUTz =0

XAx(Ty) + x4 A%, + x45A AR, + xyATAe T =0 (34)
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The complex constants A; and A, are converted to polar form using:

Al - 5 aleial
1 i
A2 = 5 a2e 2 (35)

where a,(T,) and a,(T,) are modal amplitudes and o,(7,) and a,(T,) are phases of the
response.

Using (35) the solvability conditions (34) are reduced to the following differential
equations:

a, = T'\a3a, sin(y)
a, = —T,ala, sin(y)
o, = —2I',a} cos(y) + I'sa} + I'ya}
a, = —2Ia? cos(y) + T'sa? + Ted? (36)
where
vy = 20T, — 20, + 2a, (37

and I'i, i = 1...6 are constants which depend on system parameters and are too long to be
included dhere, the reader is referred to [20] for their actual values. Using (37) the last two
equations in (36) can be combined reducing the number of equations to three:

v =20 + 4Td% — Thah)cos(y) + 2(Ts — Ty)a} + 2(Ts — T)d> (38)

Eliminating vy from the first two equations in (36) and integrating we get the following
equation, which shows exchange of energy between the modes:

a+va,=E (39

In the above equation, v = I',/T’, and E is an integration constant which depends on the
initial conditions and represents the modal energy. Equation (39) shows that the modal
amplitudes are coupled and energy is exchanged between the modes. The system of
equations (36) are solved numerically to illustrate the coupling between the modes. Figure
4 shows such a response for 1:1 IR tuned parameters. It illustrates that the amplitude

modes a, and a, are strongly coupled and 1:1 IR can be successfully used to control the
vibrations.
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Figure 4 Modal amplitude response—1:1 IR. o* = 3.0, o.\:] = 4.04, 0):2 = 50,0, =0.1,0 = —0.599.

7.3 Numerical Simulations

To illustrate numerically the vibration suppression strategy, the nonlinear system of
equations (5) are used. Figure 5 shows the time response for a set of 1:1 IR tuned
parameters for the undamped case. The response shows distinctive beats which are typical
for Internal Resonance. The response on the slow time scale T,, shown in Figure 4,
represents the envelopes of the beats. When damping is introduced in the 0, direction
using the controller velocity gain C, energy can be quickly dissipated from the system.
This is illustrated in Figure 6 for different damping coefficients. These figures indicate that
when C is increased we get an optimal response, Figure 6(b), and further increase in C
does not improve the response because the oscillations in the 6, mode decay quickly and
limit the interaction between the modes. To further analyze the role of damping, center
manifold and normal form methods can be used as shown in [10] and [11].

8. VIBRATION SUPPRESSION USING 1:2 IR

In this section we consider establishing modal coupling using 1:2 IR. This type of
resonance occurs in the system due to the presence of quadratic nonlinearities. Similar to
1:1 IR, we first consider the problem of tuning the system parameters to establish a 1:2
ratio of the natural frequencies.

8.1 System Parameters

If we set 2,/Q), = 2, using (9) the following equations for s, are obtained:

(17s; + 8s,5¢) = \/ 22553 + 400s,5¢5,
5y =
8

(40)
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Figure 5 Time response—1:1 IR. 0* = 3.0, 0,; = 4.04, @,, = 5.0,0,, = 0.1.

Unlike 1:1 IR where the frequencies cannot be tuned to an exact ratio, using (40) it is
possible to tune (), and (), to an exact 1:2 ratio. In (40), we choose the value of s, which
gives a real value for w,,. Figure 7 shows a set of tuned parameter values obtained using
(40). It can be seen from this figure, that for certain values of w* the system can be tuned
for 1:2 IR at two different values of w,,;, which is not possible in the 1:1 IR case.

8.2 Perturbation Analysis

Although the system can be tuned for an exact 1:2 ratio of (), and (),, we still consider
a detuning parameter 3 because it may not be practically possible to tune the system to an
exact ratio. By defining 8 = eo, the frequencies are related through the following
equations:

0, =20, + o 41)
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Figure 6 Time response—1:1 IR. w* = 3.0, w,, = 4.04, w,, = 5.0,0,, = 0.1. (a) C = 0.5; (b) C = 1.0; (c)
C=20.

Using (41) the following relationships are obtained:
G 2UTo = JUTy, —ioT,

ei(ﬂ,—QZ)To — eiﬂzToeicrﬂ (42)

Substituting (42) in rhs3 and rhs4 and following a procedure similar to the 1:1 IR case,
the following solvability conditions are obtained for 1:2 IR:
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Figure 7 Tuned parameters—1:2 IR. w,, = 5.0, 8,, = 0.1.

J‘47“1; + x48A§e_iaTi =0
X40Ay + X50A AT = 0 43)
where (') indicates differentiation with respect to T, and x; are constants. Using (35) the

complex constants A, and A, are converted to polar form resulting in the following
simplification:

a, = T\azsin(y)

a, = ~T,a,a,sin(y)

a,o, = I'yaicos(y)
a0, = Tya,cos(y) “44)

where
vy=o0oT, + a; — 2o, 45)
Combining the last two equations in (44) gives:

ay' = T'ascos(y) — 2T ,alcos(y) + a,0 (46)

and combining the first two equations in (44) gives the following conservation of energy
relationship for the modal amplitudes:

& +vii=E 47)
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Note that to show modal coupling for 1:2 IR we had to use terms only up to £ order. This
is typical for 1:2 IR because only quadratic terms contribute to the modal coupling. Figure
8 shows the modal amplitude response on the slow time scale T, obtained using (44). The
response shows that the amplitudes are coupled but the coupling is not as strong as in 1:1
IR case.

8.3 Numerical Simulations

Figure 9 shows the time response for a set of 1:2 IR tuned parameters. Note that the beat
is present but it is not as strong as in 1:1 IR case. Figure 10 shows the damped response
for the same set of parameters. Adding damping to the system shows that small
oscillations remain in the system which decay very slowly. Although using 1:2 IR the
vibrations cannot be suppressed as quickly as 1:1 IR, nevertheless it is still a useful
technique when only quadratic couplings are present.

9. VIBRATION SUPPRESSION USING r; = 1,

In this section we present a new technique for vibration suppression. This method involves
tuning the system parameters to make the linear mode shapes equal. These mode shapes
are represented by the modal amplitude ratios r; and r, given by (20). When the mode
shapes are made equal the response for 8, and 6, becomes similar, and upon introducing
damping in one direction the oscillations in the other direction are also suppressed. To
make the mode shapes equal it requires setting r; = r,, which gives the following
equation:

5, =8

wh + 0*2c0s(20,,) + sin(8,,) — wrgsec?(®,,) = 0 (48)

0.9
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Figure 8 Modal amplitude response—1:2 IR. o* = 2.0, w,; = 1.54915, 0, = 5.0, 8,, = 0.1, ¢ = 0.0.



VIBRATION SUPPRESSION STRATEGIES 125

o
W

e o e o
w »

I

'0~3F L LI I 1 1
0 10 20 30 40 50 60 70

Time (l') (Nondim.)

s o
[ S I

Angular Displacement (,) (Nondim.)
S = N

0.4
0.3
0.2
0.1
0
-0.14
-0.2
-0.3 1
-0.4

Angular Displacement (02) (Nondim.)

1| 1 1 1 1 i 1
0 10 20 30 40 50 60 70
Time (1) (Nondim.)

Figure 9 Time response—1:2 IR. w* = 2.0, w,; = 1.54915,0,, = 5.0, 8,, = 0.1.

Note that the above equations are the same as (23) which were obtained by minimizing the
difference between the frequencies with respect to ,,. This implies that the difference
between the frequencies () can be obtained from (24), and for small values of 6,, the
difference is small and both r; = r, and 1:1 IR give the same results. When 6, is not small
the difference between the frequencies 2, and (), is large and the system does not exhibit
1:1 IR, however the mode shapes are identical (i.e., r; = r,). Figure 11 shows the
numerical simulation results for this case for damped and undamped conditions. The
response is nonresonant but still gives very good vibration suppression results. Some
applications may not allow tuning the equilibrium positions to large values; in such cases
we have to rely on tuning wf,l to establish r;, = r, for which the range is limited. To
overcome this problem, we present a method to obtain a control torque which will make
the system satisfy r, = r,, regardless of the values of the system parameters.
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Figure 10 Time response—1:2 IR. o* = 2.0, »,; = 1.54915,0,, = 5.0, 8,, = 0.1, C = 3.0.

9.1 Control Torque for r, = r,

To make the system exhibit r; = r,, the condition s, = s, has to be satisfied. To achieve
this we modify the control torque-T* so that in the linearized equations of motion (8) the
s, term becomes equal to s. It can be seen that if choose T* as:

T = —(s, — 5,)0, + T, + Cb]
= —(wpy + 0* cos(20,,) + sin®,,) — wiasecX(8,,))8, + T, + C; (49)
after the differentiation involved in the linearization using Taylor series, in (8), s, becomes

equal to s,. In (49), the term T is a constant, which is used to establish the equilibrium
position. With the modification of T* as in (49), the equations for the equilibrium positions
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Figure 11 Time response—r, = r,. o* = 7.0, w,; = 4.0,w,, = 5.0, 8,, = 0.58. (a) C = 0.0; (b) C = 6.0.

(7) become:

* 1 *2
w0, + = 0*sin(8,,) — cos(®,,) — (o, + w*? cos(20,,)
n1V1 2 (2

+ 5in(8,,) — wry5ec?(8,,))8,, + T- = 0
050, = 0 (50)

Given a set of parameters, the value of T’ required to achieve a desired equilibrium
position is obtained from (50).

With the generalizations introduced in this section we can see the effect of establishing
the modal coupling for a given set of parameters. Figure 12(a) shows the response of the
system when the control torque is not applied (only damping is introduced using velocity
feedback), and Figure 12 (b) shows the effect of applying the control torque to establish
r, = r,. It can be clearly seen that when modal coupling is established the vibrations are
quickly suppressed.
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Figure 12 Time response—r, = r,. 0* = 7.0, w,; = 4.0, 0, = 5.0,8,, = 0.58, C = 2.0. (a) r, # ry; (b)
ry=rnr.

10. CONCLUSION

In this paper we have discussed vibration suppression of a two-degree-of-freedom flexible
gyroscopic system using modal coupling. When modal coupling is established a strong
energy link is formed between the modes which is used to transfer energy from the
uncontrolled mode to the controlled mode from where it is dissipated. The equations of
motion show that the system is coupled through linear, quadratic, and cubic terms,
indicating that the coupling can be enhanced using 1:1 and 1:2 IR ratios. A study of the
system parameters reveal that the system cannot be tuned to establish an exact 1:1 IR ratio.
However, it was shown that for small values of the equilibrium position 0,,, the
frequencies can be approximated as 1:1 IR. It was also shown the range of the tuning
parameter to establish a desired IR ratio was limited. To overcome this a control torque
was introduced which upon application makes the system exhibit modal coupling,
regardless of the choice of the system parameters.

The modal interaction under Internal Resonance conditions was ascertained analytically
using the perturbation method of multiple scales. Results indicate that when 1:1 IR was
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established the modal interactions were strong and the vibrations were suppressed quickly.
However for 1:2 IR the modal coupling was not as strong as in 1:1 IR case resulting in
oscillations which continued to exist for a long period of time. A new method was
presented based on the equality of the mode shapes (r; = r,), which is a generalization of
1:1 IR. Using this method a strong modal interaction was established even under
nonresonant conditions.
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