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Damping mechanisms exist in all vibration systems, but their nature is little understood and there is no systematic
method for modeling general damping. This paper describes a novel damping modeling method (the Method of
Energy Approximation, or MEA). This method is novel because it is a unigue damping modeling method without
assumed damping linearity; it is based on experimental data instead of physical principles; hence it is applicable
to vibration systems of various materials and configurations; and it is suitable for vibration system transient
control. Among the three quantities essential to an understanding of the dynamics of a vibration system, mass,
stiffness, and damping, the last is the most complex and least understood. Therefore, with recent technology
advances in such areas as composite materials and smart materials, the need for a good damping modeling
method is more urgent than ever.
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1. INTRODUCTION

We present a novel method for modeling the damping mechanism of a vibration system.
Among the three quantities essential to an understanding of the dynamics of any
mechanical structure, mass, stiffness, and damping, the last is the most complex and least
understood. On the other hand, damping is the most critical factor in ensuring the
robustness and stability margin of a structure. Therefore, with recent technology advances
in composite materials and smart structures, the need for a good damping modeling
method is more urgent than ever. For example, if the damping characteristics of
state-of-the-art helicopter rotors fabricated from advanced polymeric fibrous composite
materials are not well understood, then design must be a worst-case scenario, which often
results in a state of over-design. A consequence of the over-design philosophy is inferior
performance, because of the attendant cascading effects associated with the heavier
design.

Material damping is generally a complex function of frequency, temperature, type of
deformation, amplitude, and structural geometry. Current popular (linear) treatments of
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damping in structural dynamics are not physically motivated and do not reflect the above
dependence.

Furthermore, a flexible structure passive damping (including internal material damping
and external, e.g., air damping) depends not only on the microscopic structure of the
materials but also on the bonding and spatial ordering of the different materials bonded
together. While sophisticated computer-based techniques enable us to make highly precise
calculations of the mass and stiffness properties of flexible structures, the method for
passive damping modeling is very primitive and very limited. For example, the primary
sources of damping for flexible structures could fit into three categories (see Ashley [1]).

1. Material damping due to internal friction;
2. Damping at joints and interconnections;
3. Artificially introduced damping (dashpots).

Each type of damping, in turn, depends on many factors. For example, the damping at
joints and interconnections depends on the following factors:

1. Types of interconnection: 1t is well recognized that structures with pinned or bolted
joints have significantly higher damping rates than identical structures with welded
or tightly clamped joints;

2. Joint loads: Joint damping is dependent on joint loads, and hence gravity will
influence damping measurements.

3. Macroslippage: Beards and Williams [2] reported that significant damping can be
obtained when joints are allowed to undergo rotational slippage. Simple models
such as Coulomb friction with macroslip predict the damping to be dependent on
the normal loads across the interface of a joint. This would infer that large load
should increase damping rates. However, if joints allow some macroslip, this large
load would prevent or reduce the amount of slippage that would occur and thus
reduce damping. Therefore, a simple model such as Coulomb friction damping
cannot describe the damping at joints allowing macroslippage;

4. Microslippage: Because of surface imperfections, joint interface contact pressure
is not uniformly distributed. This allows localized slippage while the overall joint
remains “locked”—microslip. For example, when material damping measurements
are made using a cantilever beam specimen, a prime concern is how the specimen
is clamped to the “wall” such that macroslip contributions are minimized.

In summary, due to its complex nature, it is impractical to construct working models of
damping mechanisms based on certain physical principles, even if they exist. Furthermore,
due to the rapid advances of material science in the last two decades, various materials
with high strength/weight ratios have become available. Most of these modern materials
exhibit nonlinear damping behavior. Therefore, a unified and systematic approach to
damping modeling without a linearity assumption is highly desirable.

2. REVIEW OF PREVIOUS RESEARCH

Several methods for incorporating material damping into structural models have been used
and continue to be used within the engineering community. These methods include
viscous damping, frequency-dependent viscous damping, hysteretic damping, complexe
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modulus, structural damping, viscoelasticity, hereditary integrals (memory functions), and
modal damping [3]. Each has some utility, but each suffers from one flaw or another. Even
if some potentially accurate models exist (e.g., viscoelasticity), they are not widely used
in the engineering community, perhaps because of a lack of physical motivation, or
because such models are difficult to use.

Several more recent and more commonly used methods are as follows:

¢ The most common method available so far for modeling passive damping is, under the
assumption of a linear damping rate, which is questionable, the complex modulus
approach [4]-[7]. This approach is applicable only to the analysis of steady-state
response situations. A critical issue in smart structures is to control transient responses,
and it would be highly desirable to have a systematic damping modeling method which
is suitable for these. A poor damping model may lead to the design of an unstable or
poorly performing closed loop system.

¢ Golla, Hughes, and McTavish (GHM), of the University of Toronto, have developed a
time-domain finite element formulation of viscoelastic material damping [8], [9]. Their
work was motivated by some physical evidence, but was guided by the observation that
experimental results, often recorded in the frequency domain, are often of little use in
time-domain models. The results reported in [10] resemble to those of GHM in some
ways, for example, in the introduction of additional “dissipation coordinates.” However,
the results differ in other ways: no attempt is made to provide a physical interpretation
of the GHM dissipation coordinates as thermodynamic field variables; the GHM model
is restricted to consideration of what is termed “microstructural damping.” The GHM
technique can be successfully used to fit a portion of an experimentally determined
curve of damping versus frequency, and standard structural analysis tools can be used
to solve the resulting equations. This method, as well as all other methods, assumes that
the damping mechanism is linear, and thus cannot deal with nonlinear damping case.

e D. J. Segalman, of Sandia National Laboratory, has addressed the calculation of
stiffness and damping matrices for structures made from linearly viscoelastic materials
[11]. This is basically a perturbation technique: the perturbation solution for a slightly
viscoelastic structure is required to match the corresponding solution for a slightly
damped structure. Segalman works exclusively in the time domain and avoids
introducing additional coordinates, although the resulting stiffness and damping
matrices are generally unsymmetric. How the assumption of “small viscoelasticity”
limits the utility of the approach is still unknown.

¢ Torvik and Bagley, of the Air Force Institute of Technology, have also developed a
technique of material damping modeling [12], [13]. The core of their approach is the use
of fractional time derivatives in material constitutive equations. Their development was
motivated by the observation that the frequency dependence observed in real materials
is often weaker than the dependence predicted by first-order viscoelastic models. With
four- and five-parameter models, they have been able to accurately represent the elastic
and dissipative behavior of over one hundred materials over frequency ranges as broad
as eight decades. For most viscoelastic polymeric materials they have examined, the
parameter representing the order of differentiation is in the range of 1/2 to 2/3. The
application of the general fractional derivative approach to time-domain analysis,
however, is cumbersome, and is an area of continuing research.
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To deal with the constrained-layer damping problem, Parekh and Harris, of Anamet
Lab., Inc., have developed an automated procedure to derive modal damping values.
The procedure uses the NASTRAN finite element program with DMAP modifications
to derive modal loss factors using a Modal Strain Energy (MSE) approach. The
frequency-dependent properties of the constrained viscoelastic layer are taken into
account in an iterative solution. The Ritz procedure, a specialized Lanczos method for
eigenvalue extraction, is used in the procedure together with standard NASTRAN
super-element techniques to increase eigenvalue solution efficiency.

It is generally felt that the Modal Strain Energy (MSE) approach using commercially
available finite element programs is the most computationally efficient method for
analyzing constrained-layer damping problems. One of the major problems confronting
MSE, however, is the frequency-dependent material properties of the viscoelastic layer.

There has been also significant amount of research activities studying the distributed
parameter models of flexible structures. To formulate internal passive damping, strictly
proportional and asymptotically proportional damping operators have been reported in
A. V. Balakrishnan [14], [15], as well as by G. Chen and D. Russell [16], and by S. Chen
and R. Triggiani [17]. F. Huang [18], [19], studied the spectral properties of the systems
in the form

X(t) + Bx(t) + Ax(H) =0

where B is a closed linear operator related in various ways to A* with 1/2 = o = 1.
Some fundamental results for the holomorphic property and the exponential stability of
the semigroups associated with these systems were obtained. The above model is the
abstract form of a distributed parameter model (partial differential equation model),
where A is the stiffness partial differential operator with its well-defined domain.

The strictly proportional damping operator is essentially the square root of the stiffness
operator A. In this case, the eigenvalues have the proportionality property
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The drawback of strictly proportional damping is that the damping operator contains a
nonlocal feature (a combination of integral, as well as differential, operator), which is
unnatural if we consider that internal passive damping is due to the structure’s material
itself. However, if strict proportionality is relaxed to asymptotic proportionality, that is,
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then the nonlocal feature can be avoided.

A. V. Balakrishnan, based upon his theory on the fractional power of closed linear
operators [20], explicitly calculated the strictly proportional and asymptotic
proportional damping operators for the beam bending model [15], in which one end of
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the beam is clamped and the other end has an end-body attached to it. In [14], the strictly
proportional damping operator is given explicitly for beam torsion model.

e Other relevant work on the engineering aspects of damping modeling focuses primarily
on the development of experimental techniques and measurement of damping in various
materials [21], [22].

All of the above methods share the same limitation: a linear damping property must be
assumed. But whether the damping considered is linear or not remains to be answered in
the first place. The method we have developed is the only one which does not assume
damping linearity. This method provides a systematic way of modeling damping without
having to know whether it is linear or nonlinear.

3. METHOD OF ENERGY APPROXIMATION

We will present a new method of damping modeling called the Method of Energy
Approximation (MEA). In order to make the presentation concise and clear, the idea of our
method is explained in a question-and-answer format.

We explain the method through a single-DOF model. Suppose that experimental data
corresponding to the free response of the following single-DOF model with unknown
damping D(x, x) are available:

X + D(x, %) + 03x =0 1

We propose to determine the damping model of a smart structure from its (transient) free
response data to obtain a repeatable model, because, due to our lack of knowledge and the
complexity, it would be unrealistic to derive the damping model for a smart structure
based on physical principles, even if they exist. By using experimental data instead of
physical principles, this method can be applied to structures made of different materials
and with different geometries.

Specifically, the experimental data we need to collect are the peak amplitudes of a smart
structure’s transient free response. Let these be denoted by {a(z,), n = 1,2, - -, N}, i.e.,
* a(?) stands for the envelope of the decaying vibration and {¢,, n = 1,2,- - -, N} are the
peak times. Our objective is to obtain a (generally nonlinear) damping model based on
these data so that the damped vibration model can reproduce the data.

We2 2are 2looking for a model of the special form (energy type damping)
DO(—QL'X—Z-—FL) X, for which we only need to determine a single variable function, Dy(E).
In other words, we are looking for the damping model only among a smaller class of
damping models, energy type damping models, hence the name Method of Energy
Approximation.

Naturally, the following question arises:

Question # 1: How can you restrict attention to only the smaller class of energy type
damping models? What is the relationship between a general damping model and the
energy type damping models?

We have found the following fact [23]: For any (generally nonlinear) damping model
D(x, x), there is one and only one (for the uniqueness studies, see [24], Section 3)
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22, 2
corresponding energy type damping model Dy(————) X, where the function Dy(*) is
determined by D(x, x) through the following relation:

\/2E

1
D(E) = m j
o(E) T fo D( o i U, \/2E cos ) cos yd 2)

where £ = (m(z}x2 + )12, the total energy. We claim that the corresponding energy type
227, 22

damping model Dy(————) X is an “excellent” approximation of the original damping
model D(x, x). That is, the original damping model and its corresponding energy damping
model are “practically indistinguishable”.

Immediately, two more questions arise:

Question # 2: Where does relation (2) come from? What motivates such a relation?

Quzesztion 2#3: How can we show that the energy type damping model
D0(9£x_2if_)x determined by (2) is such an “excellent” approximation of the original
damping model D(x, x) that they are “practically indistinguishable”? What do we mean by
“excellent” and “practically indistinguishable”?

Question # 3 is more fundamental, but let us answer Question # 2 first.

The reasoning behind relation (2) is as follows: In the case of weak damping, we can
assume that the variation of the vibration amplitude is very small within each cycle
(period), or, approximately, we assume that the vibration amplitude stays at the same level
within each cycle.

Then, within each cycle, the system response can be approximated by

x(1) = a(®)/w, sin wyt
and, consequently,
X(1) =~ a(t) cos wyt

by noticing that the amplitude a(?) is slowly varying. It is assumed to be constant within
each cycle. Then it is easy to verify that

\V/2E = a(t)

Then,

\2E
x(t) =
Wy
x(0) = \/ﬁ cos wyt

Next, for the “true” but unknown damping model D(x, x), our objective is to choose
2.2, 2
+

damping model of the energy form, Dy(——=——) X, where D,(-) is a function of energy.

sin wgt



A DATA-BASED DAMPING MODELING TECHNIQUE 41

The critical question now is how to determine the function Dy(E) in an optimal and unique
fashion. We propose to choose D (E) such that the following error is minimized over each
cycle,
. . X+ K
min |ID(x, X) — DO(—Z—)xlle[Lt +
Dy(*) gy

where the above norm is an L? norm over precisely one cycle.
Then, explicitly, the above minimization becomes

min fZ'rr/mO [D(\/ﬁ

Dy() ¥ 0 O

sin wt, \/EE cos wt) — Dy(E) \/ZTE cos (not]zdt

Making the substitution ¢ = w?, the above minimization is equivalent to

min f 02“ [D(\/Z_E

L)

sin s, \/ﬁi‘ cos ) — Dy(E) \/ﬁ cos Y]*diys

Dy(")

This is a quadratic minimization with respect to Dy(E), and the minimal Dy(E) is exactly
given by (2), thus revealing how (2) is obtained.

Next, in order to answer Question # 3, let us briefly review the so-called Krylov-
Bogoliubov approximation.

The Krylov-Bogoliubov approximation is a method of computing the approximate
solution of a single-DOF nonlinear oscillation with small damping coefficient € > 0:

() + eD(x, ¥) + wix(?) =0
Let the solution sought be of the form
x(®) = a(t) cos(Pot + $(1))

where a(f), the amplitude, and ¢(7), the phase shift, are slow varying functions of ¢. By
perturbation and averaging, Krylov and Bogoliubov [-] established the systems of ordinary
differential equations of a(f) and &(¢) for 0 = ¢ < 1/e.

Simulation studies [26], [27], using the Runge-Kutta method indicate that the Krylov-
Bogoliubov approximation provides a remarkably good approximation of a nonlinear
damping model for all reasonable damping constants. Naturally, we desire that

% + eD(x, %) + wpx = 0 3)

and that

) w + X
i+ €Dy 5 %+ o5 =0 “
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would have the same Krylov-Bogoliubov approximation, that is, they would have
“practically indistinguishable” responses. Fortunately, this is indeed the case [23].

Facr 1 For a nonlinear damping model D(x, ‘X) and its corresponding energy damping
model defined by (2), both (3) and (4) have exactly the same Krylov-Bogoliubov
approximation.
The proof of this conclusion has been given in [23] and will not be repeated here.
Let us look at another supporting fact, again, in terms of the Krylov-Bogoliubov

approximation. To use the corresponding energy type damping model, Dy(————) X, to

approximate the original damping model, D(x, x), is equivalent to dropping off the
22, 2

. N . ..
difference D(x, X) — Dy(——=——) X in the following decomposition
. WX’ + & . wpr” + &
D(x, x) = D"(_z_)x + [D(x, %) — Do(—T-)x] (5)

This is, in fact, an orthogonal decomposition of D(x, X) on energy type damping space and
its orthogonal complement (the transform defined by (2) is a projection operator with

norm 1). Interesting details in this regard can be found in [24]. One may naturally ask:
2.2, .2

X

what is the contribution of the damping difference D(x,X)—DO(—Oz——) X, which has
been dropped off in the approximation? Of course, ideally, its contribution should be
negligible. This is, again, fortunately the case.

Facr 2 The Krylov-Bogoliubov approximation of a vibration with the difference damping

) . wp +&
¥ + D(x, x)—DO(——z——)x+w0x—0

is exactly the same as the response of zero damping vibration

X+ wpx =0

This conclusion will be very clear after reading Section Four, “On the Possibility of
Other Choices of Nonlinear Damping.”

These two facts clearly indicate the following: in the orthogonal decomposition (5), the
energy type damping component contains all the “effective damping” which determines
the decay of the vibration amplitude, while the difference part makes almost no
contribution to the decay of the vibration amplitude.

In order to gain some quantitative intuitions, the following two numerical examples are
in order.

ExampLe 1 Consider a nonlinear damping model of the form, which can be used to model
damping forces resulting from the internal friction of metals [28],

D(x, %) = 2E0y(1 + ex?)i
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By (2), we can have the corresponding energy type damping
Dy(E)x = 28w,(1 + 3/2eE)x

Hence, the difference is given by
N € o 2o
D(x, X) — Dy(E)x-= > (X" — 3wgx)x

The vibration with the above difference does exhibit a sinusoidal behavior (Figure 1),
which confirms the prediction of Fact 2. Its phase plane plot has no visible deviation from
a closed curve (circle) at the scale shown.

ExampLe 2 Consider Coulomb friction damping
D(x, x) = &sign(x)
Calculation from (2) gives the corresponding energy type damping

4¢

Dy(Eyi = ——F—=———=1X

The difference damping is given by

. , 4 Lxi .
D(x, x) — Dy(E)x = &(1 — p —m)ﬂgn()o

The vibration with the above difference damping does exhibit sinusoidal behavior for all
reasonable damping (Figure 2). In other words, this confirms the above prediction that the
vibration with the difference damping is virtually the same as zero damping vibration—
sinusoidal.

Of course, the above facts, although very important, indicate only the closeness of the
free motions of the original damping model and the corresponding energy type damping
model. In order to further validate the MEA, other supporting evidence concerning forced
motions must be sought. In addition, the frequencies of these forcing inputs should span
the entire spectrum of prime interest, which suggests white noise input as an ideal
candidate of forcing inputs because the white noise spectrum covers the entire frequency
range.

Let {on(r), t = 0} be a white noise process with spectral density a? over the entire
frequency range. We investigate the relationship between the two stochastic processes
generated by the following damped vibration systems, respectively,

% + eD(x, %) + wix = on(f) (6)

x+€D(_____w§,x2+x2)_+ 2y = 7
o= % wpx = on(f) Q)



44 W. ZHANG AND S. G. LEE

Time responses of x(t) and x’ (t).
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Figure 1 Time responses and phase plane plot of the vibration with difference damping (Example 1).

We are interested in the quantity Ex?(7), stationary variance, a central problem in the
nonlinear random vibration area. Our question is: for any nonlinear damping model D(x,
x), if we replace it by its corresponding energy type damping model, what will be the
difference between the corresponding stationary variances?
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Time responses of x(t) and x’ (t).
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Figure 2 Time responses and phase plane plot of the vibration with difference damping (Example 2).

To answer this question, we first reformulate our problem as follows: Consider the
following “artificial” damped vibration model

% + (€ — NDy(x, %) + \D(x, ) + wox = on(f) ®)
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where 0 = N\ = e. The motivation behind invoking this model (8) is that when A = ¢, (8)
reduces to the original damping model. When A = 0, (8) reduces to the model with the
corresponding energy type damping. In other words, (8) relates the two models by using
the parameter .

If we agree to use the subscript N to denote the quantities corresponding to (8) with
parameter A, such as x,(¢), then our problem can be restated as “what is the difference
between Ex2(t) and Ex3(t)?”

Let us define the function

V(\) = ExX(t) N € [0, €] )

Then V(0) is the stationary variance corresponding to the original damping model, and
V(e) is the corresponding energy damping model. Therefore, it is important to investigate
the behavior of V(\) over [0, €], in particular the difference V(\) — V(0).

Suppose that V(\) is smooth, then one can write

vy
V(\) = V(0) + V(O)N + —2'— A

where \ belongs to [0, A]. Naturally, we want V'(0) = 0, so that the difference V(\) — V(0)
is of the order O(\?). Fortunately, this is indeed the case, which again supports the MEA.
FACT 3 For the function V(\) defined in (9), there holds

VN — V(0) = O(\?)

Based upon the above investigation, we have realized that to find a damping model is
essentially to find its corresponding energy type damping model, that is, to determine the
function Dy(+). Therefore, our last question is

Question # 4. How do you find the function Dy(-) from experimental data, hence to

®
obtain the damping model DO(TOx2 + #2)%2

Very often, nonlinear damping model is not available and what is available is only the
experimental data of the free response amplitude of a nonlinearly damped vibration
system. In other words, we have the amplitude data a(z,) at time ¢,, n = 1,2,..., N, where
{t, n = 1,2,...,N} are (some of) the peak times. In general, peak times are not evenly
spaced due to the nonlinear nature of the system. Our objective is to obtain the nonlinear
damping model based upon the data available so that the nonlinear damping model
obtained can reproduce the data.

We look for a nonlinear damping model of the form

2.2 .2
wex” + X7
Do(—z——)x

that is, to determine D,(E).



A DATA-BASED DAMPING MODELING TECHNIQUE 47

Krylov-Bogoliubov approximation gives

dat) _ _at) 0’0
a2 Do

)

Equivalently, Dy(-) is given by

wid(®. 2 da()

D 2 a(t) dt

We can numerically approximate da()/dtl,—, by

la(t,) — a2, DV, — 1,-1).

If we let
2 a(t)—a(t,_
¢, = - &) —at) | _ 1,2,....,N (10)
a(tn) tn - tn—l
then, at each ¢,

2 2

woa (¢

Dy(— (")) =c, n=12,.,N

2 n

Notice that {c,, n = 1,2,...,N} can be easily computed from the data available.
Now let

W
fi@ = Dy(=5-)

then we can construct the function fy(a) based upon the correspondence relation

folat)) =c,n=12,...,N 1n

2
Dy(x) = fo(~ / o x)

that is, the damping model is given by
Fo(\V/ 2 + Glog) i

Exampre 3 Let us consider the special case (as always assumed by other methods): if In
a(?) is a downward straight line, say,

Then,

Ina(t) = —&wt
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then,

Dy(E) = Const. = 2Ew,
that is, the damping model is Dy(E)x = 2&wgx%, the linear damping case.

ExampLE 4 This is a simple example, in which we assume that the data available follow the
curve

a(t) = o, B,y>0

(a + B)?

Then, we can use the above expression to compute da(r)/dt,

2 2
it __ 2 dat)
D5 = a(f) dt
= 2yBla(®]"
= fol@)

Therefore,

2
Dyx) = 2B (5 0"
L)

that is, the nonlinear damping is given by
2vBI + (i)"Y

We observe that a(f) decays very slowly (yB << 1) implies the damping coefficient 2y
<< 1. And the damping model D(x, x) is independent of o, which is essentially the initial
condition (a(0) = a™ ).

Exampre 5 The MEA has been successfully applied to the nonlinear damping modeling of
the first mode vibration of the SCOLE (Spacecraft Control Laboratory Experiment)
problem (Figure 3a) [29], [30]. A simplified version of the SCOLE configuration consists
of a uniform Bernoulli beam clamped at one end (the space shuttle end) and equipped with
rate sensors, and force actuators (reaction wheels) and control moment generators at the
antenna end. The uniform beam supporting the antenna undergoes vibration due to the
significant length (approximately 60 meters) and the flexible nature of the supporting
truss.

Figure 3b is the experimental data of the first mode vibration after taking the natural
logarithm. The initial curvature indicates the nonlinearity of the damping mechanism.

By computing {c,,n = 1, 2,- - -, 50}, the fy(a(t,)) = c, relation is then obtained. Then,
by trial and error, we found that a function of the form

Jo) =c¢, + czx7
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will approximate the data. By picking any two points among the data, we can further
determine

¢; = 0.007 ¢, = 0.076

Therefore, we obtain

2
Dy(x) = 0.007 + 0.076 (— x)**
®y

and hence, the damping model is given by
0.007% + 0.076[x* + (¥/wy)’1> %

The damping model obtained is a combination of linear and nonlinear dampings.

4. ON THE POSSIBILITY OF OTHER CHOICES OF NONLINEAR DAMPING

This section gives a thorough investigation of the relation between energy type damping
we have proposed and any other form of damping. A little bit of mathematical rigor is
required for this study.

For further investigations, we need to introduce the following notations:

D= {d(x,y) e C(R? | d(-,+) even w.r.t.x, odd w.rty}

(xo(z)x2 + y2 "
Dg = {f(—z—)y () e CR")}

Then Dy is a subspace in D and D is a subspace in C(R*)—the linear space of all
continuous functions on R? (the real two dimensional space).
Next, let the operator K: D— D be defined by

u)(z)x2 + y2
Kd(x,y) =f (T) y

where

— 1 2w \/_2;‘
f(E)_'n'\/Z_EfO < ®,

sin s, \/Z_E_' cos ) cos Yd
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Figure 3 a. Shuttle Orbiter/Antenna Configuration. b. Nonlinear Logarithmic Decay In a(f), where a(f) =
amplitude of the free response of the first bending mode. (Data provided by NASA Langley Research Center).
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Then, the relation between D(x, y) and D,(x, y) as in the previous sections can be written
as Dy(x, y) = KD(x, y).

For ease of presentation, we first introduce the following

DEFINITION 1 D((x, y), Dy(x, y) € Dare said to be K — B equivalent if the
corresponding nonlinearly damped systems

&) + Dy(x(1), X(1) + wx(®) = 0
é(1) + Dy(x(t), i(t)) + wx(t) = 0

have the same Krylov-Bogoliubov approximation. We will use the notation
K-B
Dl(x, )’) = DZ(x, )’)

Obviously, K — B equivalence is commutative, that is, D,(x,y) =K"BD:x¥) and
D,(x, y) =K-BDix.Y) imply D,(x, y) =K-B Dyx, y).

The objective of this section is to answer the following questions: For any given D(x,
¥) € D, we already know that KD(x, y) = Dy(x, y) is K — B equivalent to the D(x, y), that
is, the free responses of the nonlinearly damped vibrations corresponding to the dampings
D(x, y) and Dy(x, y) have the same Krylov-Bogoliubov approximation. Now the question
is whether there is other D(x, y) in Dor Dy, such that D(x, y) =K~BD(x. »? If yes, what are
they?

First, we establish the following necessary and sufficient condition of K — B
equivalence.

Facr 4 For any Dix,y) € D,j = 1, 2,
K-B
Dl(x’ )’) = D2(x1 y)

if and only if
KD, (x, y) = KDy(x, y)
Proof. “=>” D,(x, y) =K-BDuxy) implies
f 02" D (a sin s, awya cos ) cos Ydis = f 02“ D,(a sin §, awya cos ) cos Yd (12)
for all a = 0. Replacing a by a/w, in (12), we obtain

f 02“ D(alw, sin s, a cos ) cos Yd = f 02“ Dy(alw, sin s, a cos ) cos Yd  (13)
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2.2 2
W, +y .
KD(x, y) = b; (—Ox2 )Y.i=1,2.

Then (13) implies p,(E) = p,(E) for E = 0, that is,

KD, (x, y) = KDy(x, y)

“<=" n; = M, implies (12), and further implies

K-B
Dl(x,y) = Dz(x,)’) .

In order to answer our questions, we desire to show that K is a projection operator from
Dto Dg, for which, of course, an appropriate inner product needs to be introduced on Dto
obtain an inner product space. The motivation for this is that once we can establish that
K is a projector, we can immediately obtain the answers to our questions.

In fact, for any given D(x, y) € D, let D(x, y) be any other nonlinear damping in Dsuch
that D(x, y) =K-BD(x.y). By Fact 4, it is necessary and sufficient for D(x, y) to satisfy

KD(X7 Y) = KD(X, Y) = DO(x, Y)

That is, D(x, y) can be any element in Dsuch that its projection on Dy is Dy(x, y).
Therefore, by the fact that K is a projector, we obtain

D(x,y) = Dy(x,y) + any element € N(K)

Since it is easy to show that
N(K) = {d(x,y) — Kd(x,y) | d(x, y) € D}

we finally conclude that all the D(x, y), which is K — B equivalent to D(x, y), can be
represented by

D(x,y) = KD(x, y) + d(x, y) — Kd(x, y) forany d(x,y) € D (14)

In other words, for any given D(x, y) € D, there exist infinitely many D(x, y) € Dsuch
that D(x, y) =K-BDx.).

However, if we confine our attention to Dy, that is, D(x, y) € Dy, then this D(x, y) is
unique.

In fact, by (14), D(x, y) € D implies d(x, y) € Dg and hence d(x, y) — Kd(x, y) = 0.

Therefore, for any given D(x, y) € D, there exists unique D(x, y) € Dg such that
D(x,y) = K — BD(x.y and this D(x, y) is given by

D(x,y) = KD(x, y) = Dy(x, y)
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Next, what is left is to establish that K is a projection operator. For this purpose, we need
to introduce an inner product in the linear space D.

For any given f(wﬁxz + y2/2)y € Dy, let (x(£),y(f)) be the stationary response of
27 + 3
o OREHE

i 5 )i+ wix = on(f)

with the corresponding stationary probability density pf(m(z,x2 + y%/2). We define the inner
product on Dby

(D), D,] = E{D,(x(), y())D(x(V), y(1))}

(1)(2))(2 + y2

= [ f Doy yp iy

R

for any D, D, € D. We use [,"]; to indicate the dependence of the inner product on the
choice of f(*).

With the introduction of this inner product, we can now show
FACT 5 K D — Dg is a projection operator.

Proof: 1t is sufficient to show that

K* =K
K*=K

In fact, for any D,, D, € D, there holds

[KD,, D,}; = [KD,, D, — KD, + KD,];
= [KD[, KDz]f
= [KD, — D, + D,, KD,];

= [Dl’ KDz]f
that is, K* = K.
For any D € D, let
ngz + y2
KD(x,y) = p(——i——)y
It is easy to show that
2,2 2 2.2 2
wX" +y WX +y
K[M(—O—é——)}’] = P(‘ﬁ—z‘—‘)y



54 W. ZHANG AND S. G. LEE

Then,
K’D(x, y) = K[m@;—yj)y]
_ wéxz + y2
2
= KD(x, y)
that is, K> = K.

Therefore, using Fact 4, one can infer that for any nonlinear damping model D(x, y) €
D, the difference D(x, y) — KD(x, y) is K-B equivalent to 0.

5. CONCLUDING REMARKS

We have presented a novel and systematic method for modeling smart structure damping
mechanisms. This method does not assume the linear damping property of a smart
structure and the resulting model is based upon experimental data, instead of physical
principles. Therefore, this method can be applied to smart structures of different materials
and different geometries. Various supporting facts of the MEA have been presented in this
paper, which contains very interesting theoretical insights into damping mechanisms.

With the establishment of the MEA in the single-DOF case, the crucial problem is now
to extend the MEA to multi-DOF vibrations. This step is crucial, because in practice, smart
structures or other vibration systems are seldom single-DOF. The extension of the MEA
to multi-DOF cases requires tremendous effort because of the following two facts:

1. Multiple instead of single vibration modes are involved. The damping model
should sufficiently describe the vibration amplitude decays for at least all of the
most significant modes. The most significant modes of a smart structure, such as
a helicopter rotor, include those modes of vibration which can potentially exhibit
significant deformation in the operating frequency range, and thus should be
controlled by the embedded actuators.

2. Mode coupling exists due to the existence of damping and the initial condition,
which is usually a combination of more than one mode. In the process of collecting
data, even if one can set the initial condition to be a specific (single) mode, the
response may well involve multiple modes due to damping, especially if the
damping is not weak enough.

The above two facts are the main reasons for the difficulties which will be encountered
in extending the MEA to multi-DOF vibrations.

An initial attempt has been made to extend the MEA. The preliminary research results
on multi- but finite-DOF vibrations have been reported in [31]. Research results on
continuum models have appeared in [32], [33].
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