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In this paper we offer a general theory of rotorcraft trim. The theory is set in the context of control theory. It
allows for completely arbitrary trim controls and trim settings for multi-rotor aircraft with tests to ensure that a
system is trimmable. In addition, the theory allows for “optimal trim” in which some variable is minimized or
maximized rather than set to a specified value. The theory shows that sequential trim cannot work for free flight.
The theory is not tied to any particular trim algorithm; but, in this paper, it is exercised with periodic shooting
to show how free-flying rotorcraft can be trimmed in a variety of ways (zero yaw, zero pitch, zero roll, minimum
power, etc.) by use of the general theory. The paper also discusses applications to harmonic balance and
auto-pilot trim techniques.
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1. INTRODUCTION

1.1. Background

The word “trim” is derived from the Middle English word “trimmen” which means to
“prepare” or “put in order” [1]. The term came to be used in a maritime context for
adjusting the sails or the cargo of a ship in order to achieve the best attitude and velocity
moving through the sea. Later yet, the word “trim” was adopted by the aviation
community to imply the correct adjustment of aircraft controls, attitude, and cargo in order
to obtain a desired steady flight condition. For rotorcraft, the concept of a trimmed flight
condition is quite more complicated than it is for a fixed-wing aircraft. A rotorcraft has
aerodynamic components that rotate with respect to each other and with respect to the air
mass. Thus, periodic forces and periodic coefficients enter the dynamic equations; and
these cannot be eliminated by a time average. (For example, time-averaging blade flapping
would eliminate important roll and pitch moments.) Thus, a rotorcraft trim implies a
periodic dynamic solution to a system of nonlinear equations with unknown parameters
(e.g., controls or airframe attitudes). The parameters must be adjusted such that this
periodic solution satisfies some constraints that reflect a desired flight condition. The
resulting solution then gives controls, attitudes, and power required for that flight
condition.

In rotorcraft dynamic analysis, however, the importance of trim is much more than just
the calculation of the controls and power required for a given flight path. The accurate
calculation of trim is also crucial to the determination of flight mechanics and handling
qualities since conventional stability derivatives are related in a strong, nonlinear way to
the flight condition. Furthermore, the aeroelastic stability of a rotorcraft is strongly
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influenced by the trim settings and periodic trimmed solution [2]. This is because the rotor
blade equations are highly nonlinear. Thus, the Floquet perturbation stability analysis
depends on the periodic orbit (i.e., solution) that is perturbed. In fact, the entire set of
perturbation equations (upon which stability, handling qualities, and control system
designs are based) is predicated upon the successful solution of the trim problem in such
a way that a set of state-space perturbation equations can be obtained about the trimmed
solution. Lastly, the trimmed solution is important in that it provides the vibratory rotor
loads and airframe vibrations.

One might wonder why the solution of this complicated problem might not be by-passed
by a simple substitution of measured or approximate controls into the equations followed
by a time-history solution. The reason that such a procedure does not work is that any
mathematical model is only an approximation to the actual system. Thus, the measured
controls from a flight test (or approximate controls) will not trim the mathematical model
of the rotor. As a result, the time history produced by these approximate controls will drift
away from the desired solution. For a free-flight condition, this drifting will be unstable
or neutrally stable. Given this uncertainty, one must compute the trim for every specific
mathematical model and flight condition that is to be studied.

1.2. Types of Trim

Until now, there has not been a unified theory of rotor trim. One reason for this has been
the large number of types of trim that various investigators have utilized. Reference [2]
introduces the concept of “moment trim” for a fixed-hub rotor in which collective and
cyclic pitch are used to give a specified thrust (or coning angle) and specified pitching and
rolling moments (or tip-path-plane tilts), the latter usually being zero. Reference [2] also
introduces the concept of “propulsive trim” in which the fixed hub has an unspecified
forward tilt which is used to balance the fuselage drag. Reference [3] mentions moment
trim (p. 758) but also uses “trim” in other contexts. Page 132 discusses trim as a force
equilibrium in order to find an unknown climb rate. Page 182 discusses power required as
part of the trim solution. Pages 243-249 discuss force, moment, and power as trim
variables to be balanced. Pages 758-759 mention a six-degree-of-freedom trim in which
three forces and three moments are balanced by collective pitch, the two cyclic pitches,
tail rotor pitch, and body pitch and roll angles (yaw defined).

In general, trim constraints are usually placed on some combination of either forces (to
place a body in equilibrium) or displacements (to place a body in a desired position). The
unknown “controls” that must be adjusted to effect the trim constraints can involve rotor
controls, external aerodynamic surface movements, body attitudes, or unknown velocities
(such as climb rate). In simple systems, the constraints can involve forces at a single point
or deflections of a single node. In general, however, there may not be, for example,
well-defined structural nodes that correspond to given body angles. Similarly, the
“control” parameters can be difficult to define. Thus, one of the tasks in unifying trim is
to develop a mathematical framework that is independent of the details of the mathemati-
cal model (e.g., rigid bodies, modes, finite elements, etc.)

Other variations also exist in definitions of trim. Most analysis codes have trim
methodologies in which the user must choose among different types of trim [4]-[8].
Usually, one must choose between a fixed-hub (or wind-tunnel) trim and a so-called
“free-flight” trim. In [8], the “free-flight” trim is actually a fixed-hub trim in which the



THEORY OF ROTORCRAFT TRIM 3

fixed geometric angles of the hub are taken as controls. This is a very useful concept, but
it does have disadvantages. First, in a comprehensive analysis, there may not be a well
defined hub. Second, it ignores vibrations of the hub which can couple with the periodic
coefficients to create steady loads [9]. Third, this approach suppresses the body dynamics.
This implies that one cannot do an integrated stability and handling qualities analysis with
such a trim. Reference [10] attempts to represent fuselage motions through a sweeping
technique in which the rigid-body modes are removed from the finite-element solution at
each time step. There is also trim in hover which requires specification of an average yaw
position. These many ways of looking at trim reflect the special difficulties and seemingly
fundamental differences between trim definitions. In this paper we will try to resolve
these.

1.3. Solution Strategies

The purpose of this paper is not to introduce a unified trim solution technique. It is rather
to introduce a unified theory of trim around which solution techniques can be designed.
Nevertheless, the theory has implications concerning the general applicability of any trim
strategy. Thus, it is useful to survey existing strategies in the literature. Perhaps the oldest
trim strategy is the harmonic balance [11]-[13]. This methodology has been extended to
a general numerical technique [14] and is used in industrial codes [7]. Reference [15]
discusses the numerical efficiency of the method. When harmonic balance is used for the
states, the controls are usually found in parallel by addition of augmented equations, [3]
pages 772-774 and [16]. Harmonic balance has also been used in an iterative fashion
between rotor and body substructures [17], [18].

Another popular method of finding trim is to guess controls, time march until transients
decay, and then check the trim-constraint errors. A Newton-Raphson (or secant-method)
procedure is used to iterate on the controls. This is the method used in C-81 [5], and has
been the method of choice on most trim programs [11], [4]. However, when trimming a
free-flight case, artificial springs to ground must be added in order for convergence to be
reached, such as in 2GCHAS [4], [19]. Furthermore, this method cannot trim unstable
systems.

A third type of solution strategy is periodic shooting in which the initial conditions and
controls necessary for a trimmed solution are found by an integration through one period
(to obtain errors) followed by Newton-Raphson iteration [20]. The method can be applied
either sequentially or in parallel and in a “damped” version [21], and it has been used in
DYSCO [22]-[23]. Other methods based on the transition matrix [24]-[25] are variations
of periodic shooting.

A fourth strategy is finite elements in time [26]-[27]. Actually, finite elements in time
is simply an alternative time-marching strategy that could be used in periodic shooting or
marching until transients decay. However, when the periodicity constraint is enforced by
assembly, the method becomes akin to a harmonic balance approach because periodicity
is constrained [28]-[29]; and this is what most authors imply by a finite-element trim. In
fact, [30] uses a harmonic balance for the equation solution but Newton-Raphson iteration
(in a sequential, nested approach) for controls and unknown attitudes. The rotor and body
are uncoupled such that the effects of hub vibration on the rotor are neglected. Thus, it is
just like the model and solution strategy of [8] and [29] but with harmonic balance used
rather than time finite elements.
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The last strategy to be discussed is that of auto-pilots. These can only be used for stable
systems. A set of auto-pilot equations augments the system equations such that controls are
“flown” to trim [31]-[32].

Later in this paper, we will further categorize these methods based on the theorems and
results of the unified trim theory.

1.4. Scope of Work

In this paper, we set out to offer a unified mathematical description of the trim problem
that can include a wide range of trim possibilities. In addition, it will include trimming to
steady-acceleration maneuvers [33], the new concept of multi-blade trim [34]-[35], and
the concept of optimum trim in which a trim parameter is minimized rather than set to
zero. This general formulation will allow the development of trimmability conditions to
determine if a trim problem is well formulated. It will also allow assessment and
categorization of trim techniques on a more solid mathematical basis, based on the
theoretical trim structure. Numerical examples will illustrate the theory.

Most important is the fact that the trim theory developed here is not limited to particular
mathematical models. Thus, equations can be implicit or explicit; the formulation can be
first-order, second-order, mixed, or multi-body; and there can be any number of rotors
rotating at various speeds including unsteady RPM due to engine, drive-train dynamics.
Included is the case in which RPM is not known a priori. Thus, the theory should form
a basis for evaluation of trim methodologies.

2. GENERAL FORMULATION

2.1. State Equations

The first element of a trim formulation is the equations that define the states. A general
form for these equations is

xi =f; (xja )\m9 ek)’ l 9j = 1’ N (l)
m=1,J, k=1K
0=F (N, 00 =17 @

where x; are the states, \,, are Lagrange multipliers associated with multi-body
formulations, and the 6, are controls. The states can include displacements, velocities,
rotations, angular velocities, damper states, control states (voltages, etc), and engine states
(including temperature, pressure, and other thermodynamic properties).

Aerodynamic quantities can also be states. For example, [36] defines lift coefficients as
states, [37] shows how vortex lattice codes can be defined as state models, and [38] defines
inflow states. Any CFD analysis code is state-space, and [39] shows how the number of
CFD states can be reduced for dynamic analysis. In short, any system property governed
by differential equation can be a state.
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The Lagrange multipliers, \,,, are generally the internal forces associated with
multi-body formulations, and Eq. (2) represents the internal force balance that must be
satisfied at every time step. In displacement methods, the \,, are eliminated explicitly
leaving

5=flx, 0, i=1N 3)

Here, however, we keep the more general form of Egs. (1)—(2). The 6, are any unknown
parameters (not functions of time) that appear in the equations and that must be chosen so
as to satisfy trim constraints. These we call “controls”, although they can include unknown
velocities, angular rates, body attitudes, throttle position or any other unknown parameter.
The controls are constant parameters (not functions of time) and, therefore, cannot depend
on the states.

The fact that Eqs. (1)—-(2) are written in first-order form does not preclude any solution
strategy that capitalizes on the second-order form. However, since velocities (or momenta)
in second-order formulations can always be defined as states, Egs. (1)—(2) are simply the
most general form and the form we will use for this development.

Similarly, the above does not preclude equations in completely implicit form

F;(xy, %,,0,)=0; i,j=1N @)

When equations are in this form and the x;’s cannot be found explicitly, one can simply
define \,, by

%,=\,; m=1LN )

Equation (5) thus takes the form of Eq. (1) with f,, = \,,, and Eq. (4) takes the form of Eq.
(2) with J = N. Thus, we see that Eqs. (1)—(2) are a completely general description of
rotorcraft equations that can accommodate first-order forms, second-order forms, implicit
forms, explicit forms, displacement versions, and multi-body versions. These equations
have a solution that depends on the controls 6, and the initial conditions x,0). No
independent initial conditions are allowed for the \,, (except to distinguish between
multi-valued solutions) since Eq. (2) provides the \,,(0) given x; (0).

2.2. Quasi-Periodicity Conditions

As we have seen above, the system solution will require proper choice of the N unknowns,
x10). The N equations that help to specify these unknowns are the periodicity conditions.
For simple rotor models, these conditions are straightforward.

x; (T) = x; (0) (simplest) (6)

where T = 2/(Q is the rotor period. However, for a general formulation, we require a more
general definition of this condition. First, there is the definition of T. For systems with
many rotors and with drive-train dynamics, T can be defined rigorously in terms of an
average rate of rotation at subsystem interfaces, as described in Appendix A. There
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is always a minimum time T after which every subsystem interface will have completed
an integer number of complete revolutions. Of course, one must remember that T (or {2)
may not always be known a priori. Thus, T must also be considered to be a function of
the unknown controls (i.e., T or {) can be one of the 6,).

Appendix A also points out that, when the rotor subsystems have Q, sectors of symmetry
each (i.e., Q; identical blades), there can be an even smaller common period T after which
every rotor has returned to a symmetric position that is an integer multiple of 1/Q; periods.
As pointed out in [35], a periodicity condition can be written based on this shorter time
interval; and, thus, the shorter period is sufficient for determination of trim and Floquet
stability. The multi-blade periodicity conditions can be expressed as

x; (T) = P;x;(0) (multi—blade) )

The matrix [P] is made up of smaller diagonal partitions. For x;’s on nonrotating
components, [P] = [I] (or P; = ;). For x;'s on “attached” rotating substructures, the matrix
[P] is given by

[P]=[p]" ®)

where [ p] is the permutation matrix, Appendix B, and N; is the number of sector passages
during the interval 0 to T (also defined in Appendix A). It should be noted that the
designations 0 and T are arbitrary. Any two times that differ by T can be used as the
reference values.

A final generalization of periodicity must be made because rotor equations can be
written in global coordinates. Therefore, since a rotorcraft trim can include average,
rigid-body velocities (or angular velocities), the difference in x; (T) and x; (0) can be
proportional to a product of velocity and time rather than zero. This we call “quasi-
periodic” (uniform motion plus periodic motion). The general, quasi-periodic conditions
thus become

x(T)=P ij %j (0) + z (6,) (general) &)
where z; are the differences between the quasi-periodic states at the beginning and end of
one period. The z; must be written as possible functions of the controls 6, because the
rigid-body velocities can sometimes be unknown parameters. An example would be
trimming a rotor with a given RPM and a given collective pitch to an unknown rate of
climb, U. Since U is unknown, it must be defined as one of the controls 0,; and UT (the
difference in vertical position) will thus depend on the controls.

Equation (9) is the general form of the quasi-periodicity conditions. However, because
of the state equations, Eq. (1), it is possible to eliminate x; (T) and rewrite these as

T
S 508, 00a1

+ [Sij - Pij] X; (0) = z(6,) (10)
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where ; is the Kronecker delta (or identity matrix). This alternative form of the
quasi-periodicity conditions is also useful in the derivations to follow. (Here, and through
this paper, repeated subscripts imply summation.)

2.3. Trim Constraints

The final development in the general formulation is the expression of the L trim
constraints that will complete the set of N + L equations in N + K unknown, x; (0) and 0,.
Although the quantities to be trimmed might include forces, displacements, or power,
these can always be written in terms of the states. Thus, any quantity to be trimmed can
be expressed as g,(x;, A,,, 0,). If the values to be trimmed should depend on a derivative
of a state, Eq. (1) can always be used to express that derivative in terms of the states and
controls.

Usually, one would be interested in specifying the time average of any g, However, it
might also be desirable to trim to a specific value of g; at some reference time ¢ = 0. For
example, one might want a particular blade to be pointed in a particular direction at ¢ =
0. To distinguish quantities trimmed at a point from those to be time-averaged, we call the
latter h(x;, N, 6,) implying that they are evaluated at ¢ = 0. Thus, the general trim
constraints can be written as

1 pr
;‘f() g,(xj, )\m, Ok)dt + hl(x,-, Am, ek) = Gl’ l = 1, L (1 1)

where G, is the desired value of the left-hand side. In most cases, either g, or 4, would be
zero for any particular value of /. However, Eq. (11) would also allow for trimming to a
linear combination of time-averaged and point values. Of course, in Eq. (11), one could
always eliminate G, by incorporating it into the left-hand-side integral with no loss of
generality. Similarly, g, = T3(¢)h; can be used to incorporate #, into the same integral.
Nevertheless, here we leave the constraints in the form of Eq. (11) for convenience of use
of the formulation.

It is interesting to note the similarities between Eqgs. (10) and (11). One can see that the
periodicity constraints , Eq. (10), have the same form as the trim constraints, Eq. (11). In
particular, g, = T f;, G, = z/(8,) gives them the same form. Thus, all constraints (both
periodicity and trim) have a common form. This correspondence also leads to the
conclusion that no g, can be a linear combination of the f;. If it were, then the condition
in Eq. (11) would become a linear combination of periodicity conditions and not an
independent equation. In other words, no g; should be a combination of the derivatives of
the states. Any constraint of that form would already be included in Eq. (9) or (10). An
equivalent way of stating this is that no g, should be the sum of all forces on any free-body
since that is equivalent to a state-variable derivative.

2.4. Summary

Equations (1) and (2), (9) or (10), and (11) form the basis of a general trim theory. Of
course, one is always free to pursue simplifications. For example, if the \,, can be
eliminated, then Eq. (2) is not necessary. For periodicity, Eq. (9), the change of variable
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X; = x; + z(0,)¢/T can always eliminate the z; from the periodicity condition; and one can
further choose not to use multiblade trim, leaving Eq. (6) as the simplified periodicity
condition. Also, the change of time variable t= Q¢ can be used to eliminate the unknown
controls from T, (T = 2m). Lastly, G, and h, can be incorporated into g, in the trim
constraints, Eq. (11). Although these simplifications can, in general, always be made. It is
not always convenient to do so. Thus, we leave them in the most general formulation.

3. TRIMMABILITY

To trim, one must solve Egs. (1) and (2) subject to the constraints implied by Egs. (9) and
(11). An important point, therefore, is whether or not any such formulation is well posed.
That is, can a solution be found? The property that ensures that a solution does exist, we
call “trimmability.” In this section, we will develop tests on the equations, periodicity
constraints, and trim constraints that are necessary for trimmability.

3.1. Solvability

First we address the equations of motion, Egs. (1) and (2). Given initial conditions, a set
of equations like Eq. (1) can always be time-stepped from 0 to T provided that the \,, can
be found from Eq. (2) at each time step. The condition on Eq. (2) that will ensure the
ability to move towards an iterative solution is found from the Jacobian.

[D;1=T[8F/a\ ] (12)

For the system to be solvable, the matrix D must remain invertible at every time step and
every \ iteration. This J X J matrix we call the solvability matrix. Thus, the number of
F’s must equal the number of \’s; and D must be nonsingular.

The next step in testing the trimmability of any system is to study the nature of the
solution to Egs. (1) and (2). Virtually all methods of finding a solution to nonlinear
equations are based on some type of quasi-linearization about the last guess [24]. Thus, to
test the ability to move toward a desired solution, we investigate the perturbation of Egs.
(1) and (2).

{8x;} = [ofi/ax] {dx} + [afi/0N,, ] {dN,,.} + [fi/96,] {36,} (13)
{0} = [9F/ox;] {dx;} + [0F,/aN,] {8\, } + [0F,/96,] {86,} (14)
These can be combined to eliminate 3\,

o} = [9f/0x]{Bx} + [0£/90,}00,} (15)

where
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[9f;/ax] = [9f/9x,]
~ [9f/0N,1[9 F/oN,, 17" [9F /ox)] (16)

[8f/90,] = [8f/96,]
— [of./oN,, ] [9F/aN,,]” " [0F,/96,] a7

where all matrices are periodic with 7. Equations (15)—(17) cannot be formed unless the
solvability matrix, D;;, can be inverted. Thus, solvability is a prerequisite both for time
marching and for system perturbation, each of which is necessary to trim.

3.2. Periodic Solution

Next, we consider the conditions required to find a periodic solution to the perturbation
equations. This section is not offering a solution strategy. It is merely offering proofs about
solutions.

Consider, first, the homogeneous solution to Eq. (15), 86, = 0. This system can be
solved by Floquet theory [25] in which one forms the Floquet transition matrix, ®(7),
finds its eigenvalues A;, forms the characteristic exponents, m; = log (A))/T, and then
computes periodic eigenvectors ¢ ;. This homogeneous solution can be used to uncouple
the nonhomogeneous Eq. (15) as:

{7 =[] {7} + W00 £/96,1 {86} (18)
where
B =[o1{r}, [WI=[4]" (19)

We assume, with no loss of generality, that multi-blade trim is not used and that
quasi-periodicity has been reduced to periodicity, Eq. (6), by the appropriate change of
variable. Because the right-hand side of Eq. (18) is periodic, we can form its Fourier
coefficients and solve Eq. (18) by harmonic balance, provided that no m; = 0 (i.e., no A;
= 1) and provided that there are no repeated roots. (We will return to these special cases
later.)

The complex Fourier coefficients are

1 T p. —in{)
Ch = 7 f . U0 fi/ 90, dt

—o<pn< 4o (20)

where the repeated subscripts imply summation. The periodic solution for ; (z) follows
immediately

o . ar;
(1) = —E— ¥ 59, = —L 59 21
r; (@) inQ—nje k00, ¢ @b
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The initial condition leading to this periodic solution is immediately found from Eq. (21).

8x(0) = d;(0)r(0) 22)

Thus, when no m; # 0, the N initial conditions are found uniquely from the N periodicity
constraints without consideration of the trim constraints.

When one or more m; = 0, however, Eq. (21) has an indeterminacy at n = 0. That is, the
average part of r;(¢) is singular for any j for which m; = 0 unless the secular term at n =
0 is set equal to zero by the condition

Cy36,=0; j=1,8 (23)

(No other integer indeterminacy need be considered since one can always choose
—/2 < Im(n;) < /2 based on the log(A,).) Equation (23) implies an extra constraint on
the 86,, but there is a balancing extra undetermined constant, the average portion of 7; (f).
Thus, the number of equations and unknowns remains balanced; but the periodicity
condition becomes cross-coupled with the trim constraints (i.e., 86, affects periodicity;
and r;(0), which determines the average r(?), affects trim constraints).

For repeated roots with nondistinct eigenvectors, the above conclusions remain
unchanged. The Jordan vectors can be used to obtain a Jordan Canonical form of Eq. (18).
For m; # 0, a unique periodic solution is obtained. For m; = 0 as a repeated root, only the
C?kSOk due to the original eigenvector must be zero in Eqgs. (20) and (23). The equations
formed by the Jordan vectors will consequently give a unique solution. Thus, in general,
for a periodic solution to exist, Eq. (23) must hold for every independent eigenvector (not
Jordan vector) for which m; = 0.

There is a direct consequence of this result on trimming techniques. When trimming a
free-flight condition or a case with engine drive-train dynamics, there are always
rigid-body (zero frequency) modes. Thus, in those cases, the periodic constraints and trim
constraints are cross-coupled. It follows that a completely sequential trim strategy cannot
be used for a free-flight condition, as will become clear below. This is true for
time-marching, harmonic balance, time finite elements, or any other solution technique.
This is why springs to ground or fixed hubs must be utilized in the literature for such cases

[4].
3.3. Trim Constraints

The last piece of trimmability deals with the trim constraints, Eq. (11). As before, we
consider the perturbation of those equations about a periodic guess that may not satisfy the
constraints. We also assume (without loss of generality) that all 6, dependence has been
removed from 7, and that k; has been included in g,. First, consider the problem with no
zero eigenvalues. For that case, the entire periodic solution has been found as a function
of 80,, Eq. (21), and the constraint equations become

1 pr
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where ¢, is the error in G, for the periodic guess, and g, is g; with \,, removed as it was
done for f; in Egs. (16)—(17). For Eq. (24) to have a solution that can reduce ¢;, the
trimmability matrix, A,, must be invertible, where:

1
an =7 [T (ograx1 1,1 10r/00 + (9890, ai 25)

For A, to be invertible, it must at least be square. Thus, the number of controls must equal
the number of trim constraints, and A, must not be singular. Because dr/06, depends upon
af /00, it follows that, if any g, is a linear combination of f,, then A, will be singular.

The physical interpretation of this condition is that of controllability. The 6, must be
capable of controlling the g,. If K = L and the row and column ranks of A, are equal to
K, then the system is exactly trimmable. If the row rank of A, is greater than its column
rank, it is untrimmable. If the row rank is less than the column rank, it is overtrimmable,
the subject of the next section.

Last, we consider the case for which there are S zero eigenvalues, m;, with independent
eigenvectors ¢,; and corresponding left-hand vectors ;. In that case, for those values of
Jj that give m; = 0, the average values of r;, given by

_ % f r(1) dt (26)

<M

remain unknowns along with the 86,; and Eq. (23) must also be satisfied. Thus, the
coupled periodicity-trimmability conditions can be written from Egs. (24) and (26) as

Ay Hy 56, _Jé
s -]

1 A
¢ == w0 dr @8)

where i, j =1, S and

1
H; = T f OT [08/9x,] [dy,] dt (29)

The A partition is found from Eq. (25), but the n = 0 coefficients for m; = 0 terms in Eq.
(21) are replaced by the corresponding secular terms,

c
?f" 86, — C5100,
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The still undetermined constant terms, 7;, appear on the left-hand side of Eq. (24) as

1
A NC oI e <o)

J=1S5

which results in Eq. (29).
Equation (27) can be inverted if both A, and Bj;; can be inverted, where

B, = Cy[A,]" H; @31)

Thus, the trimmability condition (that A, be non-singular) remains as with no zero
eigenvalues; but, with zero eigenvalues, an extra matrix (the secular term matrix, B;;) must
also be invertible. It is a square matrix of order equal to the number of eigenvalues at the
origin, S.

The Bj;; matrix also has physical significance. In particular, the 6, must be capable of
cancelling the forces on the secular terms (C(}k); and the undetermined constants, 7;, must
be included in the trim constants H;;. This implies that the normal rigid body translations,
that usually have zero eigenvalues, should be included as constraints on position in the
form of g, The same is true for the rotor azimuth angle when there are drive-train
dynamics. Rigid-body rotations usually couple with translations as non-zero eigenvalue,
flight-mechanics modes so that they do not result in zero eigenvalues. Other zero
eigenvalues, associated with N/rev parametric instabilities would not be trimmable unless
a control and a g; were placed on the unstable mode.

3.4. Summary

For a system to be trimmable, the following matrices must be non-singular:

1. L X L Solvability matrix, D;;, Eq. (12), where L = number of Lagrange multipliers.

ij>

2. K X K trimmability matrix, Ay, Eq. (25), where K = both the number of controls
and the number of trim constraints.

3. § X S secular-term matrix, Bj;,

independent eigenvectors, ¢,

Eq. (31), where S = number of zero poles with

Of course, as a nonlinear iteration progresses toward a “solution”, these matrices may
become singular as physical limits are approached. Thus, we can say that, if a trimmed
solution exists, these matrices will be invertible for perturbations about that solution.

Last, it is easily seen from Eq. (27) why a sequential trim cannot converge for free flight.
In a sequential scheme, the off-diagonal matrices are neglected, and the upper and lower
diagonal partitions are solved in sequence. If any roots exist with zero eigenvalues, the
lower-left portion is singular. Therefore, any general trim algorithm must consider
periodicity and trim constraints in parallel.
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4. OPTIMAL TRIM

4.1. Background

In the previous section, we developed trimmability conditions. Two of those conditions
were that the number of controls must equal the number of control constraints and that the
trimmability matrix, A;, must be non-singular. When the number of controls is greater
than the number of trim constraints (K > L) and the row rank and column rank of A, are
L and K, respectively, the problem is “over-trimmable” and there are an infinite numbers
of ways to trim. This opens up the possibility of trimming with some additional quantity
maximized or minimized. Thus, in this section, we consider trimming a rotor subject to
finding an extremum for some functional, the optimum value being G,,.

1
G, = }f oT 80(xj, My Bi)dt + ho(x;, Ny, 6)) 32)

The functional is taken in the same form as the trim constraints in Eq. (11) where the
average of g, is to be optimized (such as power, climb rate, attitude, etc.); or A is any
point value to be optimized at ¢ = O (although this latter case would not be common).

4.2. Formulation

The formulation of the problem is based on the calculus of variations. Although this is not
optimal control in the usual sense [41] (since the “controls” are not functions of time), the
formulation takes on the flavor of optimal control. To begin, we adjoin the differential
equations, Eq. (1), the multi-body constraints, Eq. (2), the quasi-periodicity conditions,
Eq. (9), and the trim constraints, Eq. (11), to the functional in Eq. (32). This forms the
optimality functional, W;

T T
W= [T (=2 0+ %0 (D) = Py 0) = 5 + [ F (i
1 pr
+rL['7__‘fO gldt+hl_Gl] l,j=1,N, m = 1,]; l=0,L (33)

where y(f) are introduced Lagrange multipliers (called co-states), Y; are constant
co-periodicity multipliers, the u,,(f) are co-multipliers corresponding to the \ ,,, o, are
co-controls, and oy = 1.

Next, we take the variation of Eq. (33) and set it to zero. Collection of terms with like
variations gives the optimality conditions. The 8y; () terms and 3y,,(¢) terms recover the
original differential equations and multi-body constraints, Egs. (1) and (2). The 8Y; terms
recover the periodicity conditions, Eq. (9); and the 30, conditions recover the trim
constraints, Eq. (11). Thus, these are the same as in the conventional trim. The added
equations for optimal trim arise from the 3x;, 3x; (0), dx; (T), 86,, and 3\, terms. To do
this, the 8x; terms in Eq. (33) must be integrated by parts as follows:
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14
T T
J7 = st = 50 — 85w + [y (34)
When this is done, we can collect the appropriate terms.
First, we look at the &x; equations. From Eqgs. (33) and (34), these are
. af; oF,, ag, 1
Vi ox; Y™ b ox; % ox; T
(35)

i=1LN; 1=0,L; m=1,7

These are the co-state differential equations. Next, we consider the 3\; equations with the

same repeated-index sums as in Eq. (35).

o, O, 1og_ )
Yion, " Enan, T %o,

These are the co-multiplier equations. Third, we take the 3x; (T) and &x; (0) equations

3, (1): Y, —y,(T1)=0,Y, =y, (T) 37

oh
8x; (0): —y; (T)P; + y; (0) + o, 5;‘—(6—) =0 (38)

However, since P” = P™', we can rewrite Eq. (38) in the same form as the x; equations.

oh
v (D)= Pyy; (0) + Pyoy 2= (39)
J

Equation (39) then becomes a periodicity constraint on y«(#) just as Eq. (9) is for x; (¢).
Last, we have the 80, equations. These involve some terms arising from the fact that T

can depend on 6, (e.g., when () is one of the controls).
1 pr
= [ @05, 1080+ T, (9 F, 108

—0g[3T/06,)/T + a,[0g, /98,]) dt + [92,/06,] [P;]1[y,(0) + o, (3h,/6x/0))]

+ o, (T)[0T/06,)/T =0 (40)
4.3. Interpretation

Equations (35), (36), (39), and (40) form the additional equations that are the optimal trim
conditions. Fortunately, these equations are an exact analog to Egs. (1), (2), (9), and (11)
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such that optimal trim can be treated as a conventional trim but with 2N states (x; and y,),
2 J multipliers (A,, and y,, ), and K + L controls (8, and o). The added equations are linear
in the co-variables, and the co-variables do not affect the original equations. This can lead
to numerical advantages.

In Eq. (35) we see the co-state equations. The right-hand side is the equivalent of f;.
Note that the matrix multiplying y; is the negative transpose of the corresponding matrix
in the 3x; equations, Eq. (13). Thus, the eigenvalues of the co-states are the negatives of
those of the states. Thus, stable x; imply unstable y; (and vice versa); and y; will have the
same number of zero roots at the origin as does x;. (This implies it can be advantageous
to time march from 7T to 0 when solving for y,(#)). Equation (36), the co-multiplier
equations, is exactly in the form of the F;.

For periodicity, we have already seen that Eq. (39) is in the form of Eq. (9) with the last
term (a function of ¢;) being the analog of z,(6,), quasi-periodicity. Last, Eq. (40) is seen
as the sum of integral and point constraints like the g; and A, of Eq. (11).

Since optimum trim cam be put in the same form as conventional trim (even for
multi-blade trim), the same solvability and trimmability conditions can be applied. Also,
since there are K + L controls and K + L trim constraints, the trimmability matrix is always
square. When it is invertible, it implies that the controls are capable of enforcing the trim
constraints and of finding an extremum of the function to be optimized.

Of course, the practicality of optimum trim is dependent upon the ability to take the
derivatives required. Because many solution techniques will compute Jacobians anyway,
these derivatives may be available numerically without too much extra work. Otherwise,
explicit analytic derivatives or finite-difference derivatives would be required.

5. APPLICATIONS

5.1. Classes of Solution Methods

The natural division of the trim equations into four categories implies that solution
techniques can be organized on the basis of how they approach each condition. That is
what we will do in this section. Since optimal trim can be written in the same form as
conventional trim, we consider conventional trim with no loss of generality. The four types
of equations are: 1) differential equations, Eq. (1); implicit equations, Eq. (2); quasi-
periodicity conditions, Eq. (9); and trim constraints, Eq. (11). Every general trim
algorithm must address each of these.

In essence, any solution method for the differential equations is some version of the
method of weighted residuals [26]. That is, one takes trial functions as approximations to
X; and test functions Vi and forms residual error functionals, e;.

e= [T (- xma @1)

By limiting the functional spaces of x; and y;;, one can set the e; to zero. In conventional
time marching, the test and trial function are of the order of the method (e.g., fourth-order
Runge-Kutta) and are defined over short intervals. The same is true of h-version time finite



16 D. A. PETERS AND D. BARWEY

elements. In some methods, Eq. (41) may be integrated by parts to make x; weak or strong
[28] or to obtain an action or a Hamiltonian. In some methods, the test and trial functions
are defined over the entire range, such as in p-version time finite elements. Reference [28]
shows that the Fourier series method is a special case of a strong p-version finite element.

In addition to the choice of functions, methods based on Eq. (41) must have an
algorithm for iteration. In essence, one needs a Jacobian of the derivatives of e; with
respect to the unknown coefficients of the trial functions. This can be done either
numerically (by finite differences), analytically (when possible), or approximately by
segregation of some linear terms to form a matrix which is an approximation to the
Jacobian. All methods (whether Fourier series, predictor-corrector, time finite elements,
etc.) use some form of exact or approximate Jacobian in this way. Thus, all equation
solvers are defined by the answers to the questions: 1) what are the trial functions, 2) what
are the test functions, and 3) how is the Jacobian formed? When equations are implicit or
involve multi-body constraints, there are trial and test functions for \,, and in Eq. (2) just
as in Eq. (41).

Next, we consider solution methods for satisfaction of periodicity. Although many
methods exists, they can all be categorized as either enforced periodicity (i.e., periodicity
by assembly) or transfer-matrix methods (i.e., periodicity by iteration on initial condi-
tions). In the former method, the class of trial functions is restricted to those which are
periodic. For example, all Fourier test functions are periodic; and time finite elements
assemble the + = 0 and ¢ = T elements to enforce periodicity. Methods weak in
displacement add the periodicity weakly to Eq. (41) [28].

In transition matrix approaches (such as periodic shooting or transfer-matrix time
marching), periodicity is also weakly enforced; and the new guess on initial conditions is
based on the inversion of a Jacobian that is the identity matrix (/) minus the transition
matrix ®(7). The transfer matrix approach has an advantage over assembly in that the
Floquet transition matrix is automatically obtained from the trim iteration. Although there
is also a Jacobian for assembly methods (usually done approximately by segregation of
linearized terms), the periodicity constraint eliminates the Floquet information.

The computational trade-offs involve the solution of smaller dense matrices (p-version
and Fourier) versus larger sparse matrices (h-version with enforcement by assembly), or
versus very small transfer matrices but with multiple solutions due to iteration (shooting).
The “best” method depends on the size of the problem, nonlinearity of the problem, and
codes available.

The solution methods for the trim constraints also must involve some sort of Jacobian.
Trim values are either integrated or point values; thus, no weighted residuals are required.
Instead, one needs the Jacobian of the error in each G, due to changes in each 6,. However,
since 0, affects the solution x; (which also appears in g, or &), the solution of the trim
equations must be coupled with the solution of the differential equation. As with the other
parts of the problem, solution strategies can be classified as to how they compute this
Jacobian.

5.2. Sequence of Analyses

Methods may also be categorized by the sequence of the various analyses. This concept
has already been introduced above in the analysis of periodicity conditions. Assembly
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methods are parallel solutions of the differential equations and periodicity. Thus, initial
conditions are found simultaneously with the solution. Transition-matrix methods, on the
other hand, solve the equations and initial conditions sequentially. For systems with a zero
eigenvalue (i.e., an eigenvalue of ®(f) equal to unity), neither method can converge to a
periodic solution (when used in sequence with trim constraints) due to the singularity of
the Jacobian, Eq. (27). Thus, it would seem that general methods must place initial
conditions and controls in parallel (although the differential equations may be solved in
series). Based on Eq. (27), it might be possible to separate only the zero-eigenvalue modes
into the parallel algorithm, leaving all other initial conditions sequential. For example, one
could do a singular value decomposition of the initial-condition Jacobian and move the
zero-frequency initial conditions to the control iteration. This idea is an example of how
the theory here offers a theoretical framework for designing trim approaches.

The presence of zero-frequency modes also impacts methods that use assembly, since
such modes may be only quasi-periodic and not truly periodic. Thus, the assembly of ¢ =
0 and ¢ = T for such systems must include an offset, z;. In Fourier methods, this implies
addition of an extra term in the series

x; = ag + by(t/T — 1/2) + Xa, cos(nd) + b, sin(nds) 42)

where b, = z; unless the offset is removed by a suitable change of variable.

The method of time marching until all transients decay is a method of iteration on initial
conditions with a very approximate Jacobian. (The values of x,(7) are used as the next
guess for x,(0)). It also diverges for zero eigenvalues or when any eigenvalue has a
negative real part. However, for stable systems without instabilities it can be very efficient.
For numerical comparison of some of these methods, see [42].

5.3. Auto-Pilot Trim

The method of auto-pilot trim is to take some or all of the controls and allow them to be
functions of time. Thus, they cease to be control parameters and become states. Then, the
corresponding trim constraints are removed and replaced with differential equations for
the new states (i.e., new f;’s). These state equations must be such as to eliminate the errors
in the lost trim conditions. Thus, one simple auto-pilot model is

9, + 0, = a[A,] ' {G, — g} (43)

where T is an optional time constant (usually of the order of T') and “a” is a gain (usually
of the order of 1/T, [32]. Since auto-pilots require the inverse of Ay, the trimmability
matrix is an important aspect of auto-pilots. This suggests that a combination of auto-pilot
and periodic shooting could be made in which the Jacobian from a periodic-shooting cycle
could then be used for the auto-pilot.

When the system contains zero eigenvalues, the auto-pilot in Eq. (43) will not converge
because it is basically an integral controller. Proportional control must be added for a zero
root, rate control for a once-repeated zero root (no spring or damper), etc.

0, + 6, =[A,]"" {aG, — ag, — bg, — c&} 44)
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However, the b and ¢ terms need only be added to g, that are either damped rigid-body
translations or undamped rigid-body translations, respectively.

It should be noted, however, that the auto-pilot method of trim changes the flight-
mechanics dynamics. Thus, it cannot be used if the flight mechanics modes are desired.
However, the auto-pilot could be used to get close to exact trim and then followed by
periodic shooting with the auto-pilot removed to finalize the trim. This offers the
possibility of a combined approach in which periodic shooting and auto-pilot are used
iteratively to adaptively change A,, (through the Jacobian) and then complete trim with the
auto-pilot off.

6. NUMERICAL EXAMPLES

6.1. Model

In order to demonstrate the various aspects of the trim theory and to test various trim
strategies, we have set up a trim test bed program. A schematic of the model is shown in
Fig. 1. The example helicopter consists of a four-bladed main rotor, four-bladed tail
rotor, fuselage, engine/drive-train system, and a horizontal stabilizer. The ratio of tail rotor
Q) to main-rotor () is 5. The elasticity of rotor blades is represented at the root by a set of

poTTmTeessssssssessesssseccccccosncess. TAII ROTOR

' MAIN ROTOR: 4 StaleslBlade ( Flap-Lag Dynauncs) ' """"""""""" ~

. y Stall Aerody H 2 Slnles / Blade (Flap Dyuamlcs) [

. ‘ Q y Stall Acrody H
.
’

OPTIONAL : Same as Main Rotor

........................

1 INFLOW STATE

Horizontal

COLLECTIVE Stabilizer

I.EV?

......................................

.‘ ENGINE/DRIVE-TRAIN : Up to 6 States
ﬁvcl,lc STICK . (Temperature, Pressures, RPM, Angle of Rotation)

......................................

Semwe

PADDLES FUSELAGE STATES = 12 ( 6=Angular motion about three body axes,
6= Translations along the three inertial axes
AERODYNAMICS : Lift, Vertical Drag, Hor. Drag, Pitch Moment

Side Force, Yaw Moment, Roll Moment. J

Figure 1 Schematic of rotor-body trim model.
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flap and lag springs, and the fuselage is considered rigid. The main-rotor blades have flap
and lag degrees of freedom, but the tail-rotor blades have only flap degrees of freedom.
The fuselage has three large-angle degrees of freedom for orientations (A, ®, ®) and three
degrees of freedom for translations.

The drive train has either 0 states (fixed (2) or 2 states (angle ® and rotation rate €} of
the hub), and the engine has from 0 to 4 states depending on the model. A zero-state engine
has only torque as input or output. Higher-order models can include temperatures,
pressures, and compressor speeds as states [43], [44]. There are 3 dynamic inflow states
for the main rotor and 1 uniform dynamic inflow state for the tail rotor. Thus, the total
count of state variables is:

Main Rotor 16
Tail rotor 8
Inflow 4
Fuselage 12
Drive Train 0-2
Engine 04
TOTAL 4046

The rotor blades have NACA 0012 airfoils with quasi-steady aerodynamics including stall.
The fuselage has full 3-D aerodynamics including inflow impingement from the main
rotor. Other aerodynamic interferences are neglected. The numerical values chosen for the
examples resemble the example helicopters of Ref. [40]. They are typical of existing
helicopters and are given in Table 1. Finally, the effects of altitude on air density have been
included in the computations.

6.2. Trim Conditions

The control parameters are collective pitch (8,), cyclic pitch (8, 8.), tail rotor pitch, (8;),
throttle position (0,), and rotor period (7). With no engine-drive-train dynamics, the
throttle position is eliminated and there is constant RPM; but, with these dynamics, there
is an unsteady RPM and there are four possible combinations of the engine variables,
throttle and RPM:

1. T and 6, both specified (untrimmable)
2. T specified, 6, unknown (trimmable)

3. T unknown, 6, specified (trimmable)
4

T and 6, unspecified (overtrimmable)

Condition 1 is not feasible. Condition 4 can be made into an optimal trim problem, for
example, by minimization of power.

For the trimmable cases (2 and 3 above), the entire rotorcraft system has 5 controls (8,
0., 0., 01, and 0, or 7). These would be the usual controls for a conventional helicopter.
It follows from trimmability that there must be 5 trim constraints. Furthermore, since this
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Table I Basic Parameters in Trim Calculations of Example Helicopter

Ambient Air Density at MSL, slugs/ft"3 =
Vehicle Gross Weight, Ibs =
Vehicle C.G. from Fuselag C.G., ft

0.002378
20000

{0.205, 0.007, 0.597}

Desired Linear speeds, knots = {115, 0, 0}
Description Rotor-1 Rotor-2
Number of blades 4 4
Radial stations 8 8
Nominal rotor speed, rpm 210.000 1050.000
Blade radius, ft 30.000 6.000
Aerodynamic root-cutout, ft 4.500 0.900
Effective flap-lag hinge location, ft 3.000 0.800
Blade chord, ft 2.000 0.810
Blade inertia about hinge, slugs-ft"2 2870.000 6.250
Spring stiffness (flap), ft-Ibfirad 100000.000 15800.000
Spring stiffness (lag), fi-Ibflrad 450000.000 152500.000
Lag-damping coeff., ft-Ibfirad-sec 1500.000 40.000
Linear twist, deg -10.000 -5.000
Airfoil static stall angle, deg 12.000 12.000
(Airfoil lift-curve slope, I/rad 5.730 5.730
Airfoil minimum drag coeff. 0.008 0.008
Distance of rotor center from fus. C.G, ft {0.5,0,7.5} {37.5,1.5,6}
Rotor weight, Ibf 1521.218 89.312
Fuselage Data
Characteristic aerodynamic drag area, ft"2 = {20, 120, 100}
Characteristic aero. volume {roll, pitch, yaw}, ft2 = {230, 1800, 810}
Characteristic area for lift in z-direction, ft2 = 75.00
Incidence at zero lift, deg = 5.000
Characteristic area for side force, ft"2 = 300.0
Aspect ratio of hor. stabilizer = 4.000
Aero. area of hor. stabilizer, f1"2 = 20.000
Lift-curve slope for hor. stab., //rad = 5.730
Min. drag coeff. for hor. stab. = 0.008
Distance of H. S. from fus. C.G., ft = {35,0,-1.5}
Fuselage weight, Ibf = 18389.470
Engine/drive-train inertia, slugs-ft"2 = 1500.000
Engine/drive-train damping factor m = 0.667
Fuselage inertia matrix, slugs-ft’2 = 4300 0 0
0 37900 0
0 0 33600

{or o 2} = {-Y, X, Z}

is a free-flight model, the system has 4 roots at the origin (3 body translations and the
relative rotation between rotor and body). Therefore, 4 of the 5 trim constraints must
involve these 4 quantities. The most natural choice for these 4 trim constraints would
consequently be the time-average of the X, Y, Z fuselage positions (set to zero) and a point
constraint that (0) = 0. This leaves one more necessary trim constraint for trimmability.
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For this, one might choose the time average of either roll, pitch, or yaw (although, in
hover, yaw is the only choice). In forward flight, one might rather choose some function
to be optimized, such as the Euclidean norm of roll-pitch-yaw or the power required. Here,
we investigate all of these possibilities.

The periodicity conditions are of the simple variety, Eq. (6), except for one of the
fuselage degrees of freedom. For level flight, the Y component (forward speed) would
have Y(T) — Y(0) = VT as quasi-periodicity. A constant-acceleration case (such as a steady
descending turn) would probably best be handled in two steps. First, use point constraints
rather than time averages for the Z, Y, Z constraints (i.e., use initial conditions). Then, use
the forward speed, V, the descent speed, U, and the radius of the turn, R, to define the
quasi-periodicity conditions as shown in Fig. 2. The periodicity conditions and the
fuselage velocity states (X, Y, Z, A ,0, ®) are of the simple kind, the state at ¢ = 0 equals
the state at # = 7. As in level flight, the additional constraint could be placed on roll, pitch,
or yaw; or one could choose to minimize power. For a coordinated turn, the extra
constraint would be placed on roll angle, Fig. 2. It should also be noted that, for some
definitions of Euler angles (in a turning trim), the periodicity constraints on A, ®, ® might
become nonlinear so that z,(6,) would become z/(6,, x;). Although we did not include this
case in the preceding proofs, it is easily incorporated. The same effect could occur in
multi-body formulations with a single global frame [45].

6.3. Test Cases

All of the numerical results to follow are from the method of periodic shooting. These
involve 4042 states and 46 controls for regular trim and 80-84 states and 7-11 controls
(including co-controls) for optimal trim. Thus, the shooting Jacobian is of order 44 to 95
depending on the case. Figures 3 and 4 show the results of a level-flight trim with a
prescribed time-averaged yaw angle, A. Plotted in Fig. 3 are the resultant controls (there
are no engine dynamics); and plotted in Fig. 4 are the resultant pitch angle, roll angle, and
two angle norms.

Notice that there are two different zero-pitch solutions, —30" and +28°. If A is continued
to + 180’ there are actually four such solutions. Therefore, as a test, we attempted to trim
with the condition @ = 0 rather than with a specified yaw angle. As expected, the periodic
shooting could settle on any one of the four possible solutions, depending on the first
guess. This is in agreement with [33] which notes the existence of multiple trim points.
Also, a case was run in which roll angle was constrained to be zero (a probable pilot’s
choice). Two possible solutions can be found. One is A = 2.0°, as seen in Fig. 4, and the
other is a rearward flight case. Notice that Figs. 3 and 4 are not symmetric with A due to
the tail-rotor inflow dynamics. We have also successfully trimmed for the case of lost tail
rotor in which 6, and tail rotor thrust are removed along with the trim constraint on pitch,
roll, or yaw.

Next, we ran optimal trim cases for this same configuration with several different
functionals, G,. For functionals, we chose, \/ 0’ + ¢, \/ A% + 0% + &%, and power
required. In precise agreement with Fig. 4, the optimal trim algorithm found minima for
the first two functionals at A = 2.0° and A = 0.5°, respectively. When power required was
taken as the functional, the optimal trim provided a minima at A = +0.5° in confirmation
of Fig. 5, which shows power versus yaw angle A.
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Figure 2 Quasi-periodicity for steady descending turn.

The final cases to be presented are with two-state drive-train dynamics of the form

=0 (45)

Q=-n1+6,-0, (46)

Trim problems have been solved for T known and 6, unknown; as well as for 6, and T both
unknown for a specified power; and optimal trim problems have been solved with neither
known. Figures 6-8 show results for trimming to a prescribed average value of ) (i.e., T
known). The average yaw angle is constrained to be zero. As RPM decreases, 0, increases;
and the blades begin to stall, Fig. 6. Thus, below 175 RPM the system is untrimmable.
Figure 7 shows that pitch and roll angles also begin to diverge as 175 RPM is approached.
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(4]

Angle

Yaw Angle A’

Figure 3 Trimmed pilot controls versus fuselage yaw angle at nominal rotor RPM.

Figure 8 shows the power required from the engine at each case. The power also becomes
large as () approaches 175 RPM due to the increase in drag associated with stall. The same
results would be found for 6, given, () unknown. Thus, if one were to trim to minimum
power (or to a fixed power) with () as the unknown, these low RPM values would never
be reached.

Figure 8 shows that power also increases at high RPM due to the fact that 6, decreases
as () increases. In other words, induced power remains fairly constant with €}, while
profile power increases as . Thus, there is an optimum RPM. To test the optimal trim
theory, we ran an optimal trim case with power as the objective function. The minimum
point at 200 RPM is reached when periodic shooting is applied to the optimal trim
equations. When A = 0 is removed as a constraint, the optimal trim equations find the
combination of A and () that gives minimum power.

6.4. Numerical Issues

All of the computations were performed on a SGI-INDY workstation in double-precision.
For numerical integration of dynamic equations, a predictor-corrector algorithm (with
variable order and variable step-size) was employed. The CPU time requirement for one
iteration of the Newton-Raphson algorithm, is 20 minutes for non-optimal trim and 360
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Angle®

Yaw Angle A’

Figure 4 Trimmed fuselage angles versus fuselage yaw angle at nominal rotor RPM.

minutes for optimal trim. These CPU requirements are governed by the accuracy of the
sought solution. The number of iterations required to reach the final solution depends on
the initial guess and the trim-definition. For example, trimming to zero fuselage pitch
angle is much more difficult with an arbitrary initial guess than is trimming to zero yaw
angle. Similarly, optimal trim is much more difficult with an arbitrary initial guess.
However, with a judicious initial guess based on previously found trim-solutions of zero
yaw angle, trimming takes about 5-7 iterations. In our applications, we non-
dimensionalize time which simplifies the optimum trim. Considering the fact that we did
not take advantage of multi-blade trim (which would give another factor of 4 savings in
CPU), and also considering the complexity of trim solutions we are trying to achieve, the
computational requirements are reasonable. Moreover, the trimming algorithm is readily
amenable to parallel computing, which could bring in tremendous reduction in CPU time
as demonstrated in [46] with respect to Floquet stability analysis.

We also used Floquet theory (on the partition of the periodic-shooting Jacobian that is
the transition matrix) to find system eigenvalues. These included the four zero-frequency
modes (three translations and engine angle) as well as the other 3 flight mechanics modes,
some of which are unstable. (Actually, the vertical translation mode is not exactly at the
origin due to the dependency of air density on altitude.) These, however, were no problem
to trim as long as we used the parallel approach. This is similar to the results of [33] in
which a parallel trim method (harmonic balance with augmented trim equations) allowed
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Figure 6 Pilot control angles versus main rotor RPM with drive-train dynamics.
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Figure 7 Trimmed fuselage angles versus main rotor RPM with drive-train dynamics.
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a unified handling-qualities and aeroelasticity analysis. Also, because flapping states are
highly damped, the flapping co-states are highly unstable. Thus, we found it useful
(although not necessary) to time march co-states from T to O rather than from O to T to
suppress the instabilities.

7. SUMMARY AND CONCLUSIONS

The problem of rotorcraft trim has been set in a general mathematical formulation in terms
of explicit equations, implicit equations, quasi-periodic conditions, and trim constraints,
Egs. (1), (2), (9), and (11). In order for trim to be achievable, the solvability matrix, the
trimmability matrix, and the secular term matrices must be square and non-singular, Egs.
(12), (25), and (31). This implies that free-flight conditions cannot be trimmed by
sequential strategies in which periodicity and controls are nested. A parallel trim strategy
is required. Optimal trim, in which a parameter is minimized or maximized, can be placed
in a form identical to that of conventional trim but with twice as many states. The above
hold true independent of the types of equations or of the particular solution strategies.

All trim algorithms can be classified by how they treat each of the aspects of trim. For
the solution to the differential equations and implicit equations, all methods are variations
on the method of weighted residuals. For periodicity, all methods employ either
constrained periodicity or transfer-matrix iteration. For trimmability, all are weighted-
residual methods either in parallel or in sequence. Auto-pilot methods are a means of
changing controls to state variables after which the above theorems still apply. Numerical
results with periodic shooting demonstrate some of these conclusions.

One important aspect of the trim theory presented here is that it allows multi-blade trim
for single- or multi-rotor aircraft, and this can result in a significant savings in computer
time. Another important point is that, although this trim theory is very general, it does not
mandate that every trim methodology need be completely general. Special cases that allow
simplifications should certainly be utilized, and the theory here does not preclude such
simplifications.
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9. NOMENCLATURE

a, b, c auto-pilot gains
a, b, Fourier coefficients
Ay trimmability matrix

B; secular-term matrix
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Fourier coefficients

solvability matrix

error vector

explicit state functions

implicit state functions, multi-body constraints
acceleration of gravity, ft/sec”
constraint functions

desired values of constraints

point constraints (t = 0)

zero-pole constraint matrix

/=1 except when used as subscript
identity matrix

indices

number of Lagrange multipliers
number of controls

number of trim constraints

number of harmonics

smallest factors

harmonic number

number of states

permutation matrix

total power, h.p.

multiblade matrix

rotor torque/engine inertia, 1/sec’
number of symmetric sectors, ith rotor
transformed, perturbed states
number of rotating interfaces

radius of turn, ft

number of zero eigenvalues with discrete eigenvectors
time, sec

period, sec

rate of descent, ft/sec

horizontal velocity, ft/sec

adjoined functional

body translations, ft

states

co-states

quasi-periodicity movements

angle of turn, rad

impulse function

Kronecker delta

drive-train damping

characteristic exponents

control variables

pitch angle, positive nose down, rad
collective pitch, deg

cyclic pitch, deg
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0 tail rotor pitch, deg

0, engine control (throttle)

A, Lagrange multipliers

A yaw angle, positive counter-clockwise, rad
A; eigenvalues of Floquet Transition matrix
M co-multipliers

O co-controls

T time constant, sec

¢ right-hand eigenvectors

) roll angle, positive advancing side up, rad
D7) Floquet transition matrix

(1) hub rotation angle, rad

Ui left-hand eigenvectors

O 0 average system rotation rate, rad/sec

0, average speed of ith rotor

0, multiblade Q;;Q); = Q)

() () with \; removed explicitly

8() perturbation of ()

(") d()/dt
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APPENDIX A: DETERMINATION OF PERIOD

The determination of the period of motion is rather trivial for simplified analyses in which
there is a body attached to a constant-velocity rotor, T = 2m/(). However, when one
considers general systems with several rotating substructures and elastic engine-drive-
train dynamics, the concept of the period of motion demands special attention and the
introduction of general concepts. The first concept is that of average angular velocity.
Because we are looking for a periodic motion, every interface between rotating
substructures will have an average angular velocity equal to 27/T, where T is the time it
takes for the relative rotation between the two structures to make a complete revolution.

The second concept is that, in order for periodicity to exist, all rotating interfaces must
have average angular rates that are commensurate. For rotors driven by engines through
transmissions, this will always be the case because one can count the relative number of
gear teeth [30]. Thus, for a system with R rotating interfaces, the relative {)’s at each
interface can always be written as

N, N N N,
—lﬂlz_znzz_s.ﬂaz...:_RQR @7
Dl D2 D3 DR

where N; and D; are integers. The highest common € (Iowest common T) can be found
by the following steps:

a) Divide Eq. (47) by the smallest number evenly divisible by every N; (i.e., the
lowest common numerator).

b) Multiply the resultant equation by the largest common factor of the resulting
denominators.

The resultant equation gives the largest common ().

9 _ 9 O
=1="=2=...=2% (48)

M, M, My
where the M; are the resulting denominators having no common divisor. The smallest
common period is then T = 2mw/(), and M, is the number of revolutions of the ith interface
for0 =¢<T.

As pointed out in [30], the resultant period can be so large as to be impractical for
computations. However, there are methods that can greatly reduce the minimum 7. First,
there is the method of multi-blade trim [35]. This concept can be applied if there is one
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non-rotating substructure to which the other rotating substructures are attached. In that
case, each (); in Eq. (48) becomes an absolute angular velocity of a substructure.
Reference [35] shows that, for such systems, the trim and Floquet stability can be
determined from solutions over a much shorter time period, 7.

Consider that the i-th substructure has Q; symmetric sectors. For example, a 6-bladed
rotor with identical blades would have Q = 6; a 4-bladed x-rotor [40] with two
non-orthogonal teetering blades would have Q = 2; or a multi-bladed rotor with one
differing blade would have Q = 1. Thus, a sector is not necessarily a blade, it is simply a
geometric partitioning of the rotating structure. Now, {}; = Q) is the equivalent rotation
rate for which T; = 2m/(); gives a periodic position for the i-th rotor. Thus, we can rewrite
Eq. (48) as

o _ O Qe

oM OM,  OxMg

(49)

When Eq. (49) is multiplied by the largest common factor of the denominators, Q,M;, the
result is the largest common angular velocity of the multi-blade system, ():

_ O
-

Q

0 _9
—=— (50)
N, N,
where N; are the resulting denominators having no common factor. The smallest common
multi-blade period is T = 27/(), and N, is the number of sectors of the i-th substructure that
rotate past a given point during one period, 7. If the denominators of Eq. (49) have any
common factors, then T can be reduced by those factors.

For example, consider the Aerospatiale AS332L1 [40]. There are two rotating
substructures, the main rotor and the tail rotor. The ratio 2,/(); = 4.80 so that the largest
Qis

Q_9
= —_—= 1
@ 5 24 ©h

Thus, the shortest period is 5 main rotor revolutions (or 24 tail-rotor revolutions).
However, this helicopter has Q, = 4, Q, = 5. Thus, for multi-blade trim

—=—  —=—==0 (52)

Equation (52) implies one can do a multi-blade trim with a period of only one main-rotor
blade passage (one-fourth revolution) which is 6 tail-rotor blade passages (five-fourths of
a revolution). Thus, the multi-blade trim gives a savings of a factor of 20 in the trim and
Floquet solution.
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A second method of reducing the common period is to approximate the exact ratios
(N/D,) in Eq. (47) with ratios of smaller integers. When coupled with the multi-blade
method discussed above, this can result in very reasonable periods with negligible error
in the tail-rotor position at ¢ = T. Table II demonstrates this technique for 11 helicopters
given in [40]. The first four columns give the helicopter designation, main rotor sectors,
tail rotor sectors, and approximate integer ratio of tail rotor to main rotor RPM. (Note that
the 4-bladed AH64 tail x-rotor has only 2 repeating sectors.) The column “error” is the
relative error in {),/(); between the “exact” RPM ratios and the integer ratios given in the
table, (exact-approximate)/exact. The sixth column is the ratio of {0’s which gives the
smallest multi-blade period. The last four columns give the number of main-rotor
revolutions both for normal trim and for multi-blade trim, the number of tail-rotor
revolutions for multi-blade trim, and the error (in degrees) of the final tail-rotor position
due to the approximate (),/(), ratio. Note that this error can be kept to 1% to 2% of a rotor
revolution (4 to 7°). For example, the 206 L-3 helicopter can be trimmed in 2 main rotor
revolutions if one can accept a 14.6° tail-rotor error at the end of the 2 main-rotor
rotations. However, if more accuracy is desired, the tail-rotor error can be reduced to 4
by utilizing 13 main-rotor revolutions.

In summary, the common period can be found by simple analysis of gear ratios; and this
period can be greatly reduced by use of approximate gear ratios and multi-blade trim.
Rotating components with full symmetry (such as engine rotors and compressors) do not
need to be considered in this computation since Q is effectively infinity, making any T
acceptable. Thus, there is no barrier to trimming multi-engine rotorcraft with unequal
engine RPM (e.g., engines geared to the rotors by a differential).

APPENDIX B: MULTI-BLADE PERMUTATION MATRIX

Let the state variables of Q identical sectors of a rotating substructure be partitioned by
sector number, where sectors are numbered in the direction of rotation.

Table II Determination of common period for typical rotors

Helicopter Q, 0, 0,/Q, Errorin Q,{,/ Main Rotor = Main Rotor Tail Rotor  Tail Rotor
RPM  Q,, Full Revs Multi-Blade Revs Revs  Azimuth Error

atT

AS 332L1 4 5 24/5 00004 6/1 5 0.25 1.20 0.3°
AH 64 4 2% 34/7 00020 1777 7 1.75 8.50 5.1°
UH 60A 4 4 23/5 0.0020 23/5 5 1.25 4.75 1.0°
Westland 30 4 4 5/1 0.0080  5/1 1 0.25 1.25 3.5°
S-76A 4 4 112 00010 1112 2 0.50 2.75 1.4°
AH-1S 2 2 41/8 0.0006 41/8 8 4.00 20.50 4.2°
SA 365N 4 13* 69/5 0.0002 899/20 5 5.00 69.00 4.6°
AS 350B 3 2 102/19 0.0002 68/19 19 6.33 34.00 2.6°
A 109 4 2 38/7 00020 1977 7 1.75 9.50 7.0°
65/12  0.0001 65/24 12 6.00 32.50 1.6°

206 L-3 2 2 13/2 0.0060 1372 2 1.00 6.50 14.6°
84/13 0.0002 84/13 13 6.50 42.50 4.1°

BO-105 4 2 21/4 0.0020 21/8 4 2.00 10.50 6.5°

*4-Bladed x-rotor.
*Fenestron.
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{xh
155 i=1,N
{xj} = : j=1,0N (53)
{xi}Q
The permutation matrix for these states is defined by
— 0 0 0 0 ---001, |
0 I, 0 O -000
0o o0 Iy 0 ---000
[p]= 0O 0 0 Iy ---000 54)
-000
o o 0 0 - ---Iy00
| 0 0 0 0 ---01Iy0 _]

where I, are identity matrices of order N X N. For systems expressed in multiblade
coordinates, the permutation matrix is I, except for the even-bladed differential
coordinate, a;, for which the permutation matrix is — I.



