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A study of optimal two-impulse trajectories with moderate flight time for Earth-Moon missions is
presented. The optimization criterion is the total characteristic velocity. Three dynamical models
are used to describe the motion of the space vehicle: the well-known patched-conic approximation
and two versions of the planar circular restricted three-body problem (PCR3BP). In the patched-
conic approximation model, the parameters to be optimized are two: initial phase angle of space
vehicle and the first velocity impulse. In the PCR3BP models, the parameters to be optimized are
four: initial phase angle of space vehicle, flight time, and the first and the second velocity impulses.
In all cases, the optimization problem has one degree of freedom and can be solved by means of
an algorithm based on gradient method in conjunction with Newton-Raphson method.

1. Introduction

In the last two decades, new types of trajectories have been proposed to transfer a spacecraft
from an Earth orbit to aMoon orbit which reduce the cost of the traditional Hohmann transfer
based on the two-body dynamics [1]. The new trajectories are designed using more realistic
models of the motion of the spacecraft such as the PCR3BP [2, 3] or the planar bicircular four
body problem [4]. These models describing the motion of the spacecraft exhibit very complex
dynamics that are used to design new Earth-to-Moon trajectories [5–10]. The most of the
proposed approaches to calculate the new trajectories are based on the concept of the weak
stability boundary introduced by Belbruno [11], and, usually, involve large flight time. Only
few works consider the minimization of the total cost or the time for two-impulse trajectories
[8–10, 12, 13].

In this paper, the problem of transferring a space vehicle from a circular low Earth orbit
(LEO) to a circular low Moon orbit (LMO) with minimum fuel consumption is considered.
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It is assumed that the propulsion system delivers infinite thrusts during negligible times
such that the velocity changes are instantaneous, that is, the propulsion system is capable of
delivering impulses. The class of two impulse trajectories is considered: a first accelerating
velocity impulse tangential to the space vehicle velocity relative to Earth is applied at a
circular low Earth orbit and a second braking velocity impulse tangential to the space vehicle
velocity relative to Moon is applied at a circular low Moon orbit [12]. The minimization of
fuel consumption is equivalent to the minimization of the total characteristic velocity which
is defined by the arithmetic sum of velocity changes [14].

Three dynamical models are used to describe the motion of the space vehicle: the well-
known patched-conic approximation [1] and two versions of the planar circular restricted
three-body problem (PCR3BP). One version of PCR3BP assumes the Earth is fixed in space;
this version will be referred as simplified version of PCR3BP, and it is same one used by
Miele andMancuso [12]. The second version of PCR3BP assumes the Earth moves around the
center of mass of the Earth-Moon system, that is, it corresponds to the classical formulation [2,
3]. In the patched-conic approximation model, the parameters to be optimized are two: initial
phase angle of space vehicle and the first velocity impulse. In this approach, the two-point
boundary value problem involves only one final constraint. In this model, the flight time and
the second velocity impulse are determined from the two-body dynamics after solving the
two-point boundary value problem. In the PCR3BP models, the parameters to be optimized
are four: initial phase angle of space vehicle, flight time, and the first and the second
velocity impulses. In these formulations, the two-point boundary value problem involves
three final constraints. In all cases, the optimization problem has one degree of freedom
and can be solved by means of an algorithm based on gradient method [15] in conjunction
with Newton-Raphson method [16]. The analysis of optimal trajectories is then carried out
considering several final altitudes of a clockwise or counterclockwise circular lowMoon orbit.
All trajectories departure from a counterclockwise circular low Earth orbit corresponding
to the altitude of the Space Station. Maneuvers with direct ascent and multiple revolutions
around the Earth are considered in the analysis. The results for maneuvers with direct ascent
are compared to the ones obtained by Miele and Mancuso [12] who used the sequential
gradient-restoration algorithm for solving the optimization problem [15]. The results for
maneuvers with multiple revolutions show that fuel can be saved if a lunar swing-by occurs.

2. Optimization Problem Based on Patched-Conic Approximation

In this section, the optimization problem based on the patched-conic approximation is
formulated. A detailed presentation of the patched-conic approximation can be found in
Bate et al. [1].

The following assumptions are employed.

(1) The Earth is fixed in space.

(2) The eccentricity of the Moon orbit around the Earth is neglected.

(3) The flight of the space vehicle takes place in the Moon orbital plane.

(4) The gravitational fields of Earth and Moon are central and obey the inverse square
law.

(5) The trajectory has two distinct phases: geocentric and selenocentric trajectories. The
geocentric phase corresponds to the portion of the trajectory which begins at the
point of application of the first impulse and extends to the point of entering the
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Figure 1: Geometry of the geocentric phase.

Moon’s sphere of influence. The selenocentric phase corresponds to the portion of
trajectory in the Moon’s sphere of influence and ends at the point of application
of the second impulse. In each one of these phases, the space vehicle is under the
gravitational attraction of only one body, Earth or Moon.

(6) The class of two impulse trajectories is considered. The impulses are applied
tangentially to the space vehicle velocity relative to Earth (first impulse) and Moon
(second impulse).

An Earth-Moon trajectory is completely specified by four quantities: r0—radius of
circular LEO; v0—velocity of the space vehicle at the point of application of the first impulse
after the application of the impulse; ϕ0—flight path angle at the point of application of the
first impulse; γ0—phase angle at departure. These quantities must be determined such that
the space vehicle is injected into a circular LMOwith specified altitude after the application of
the second impulse. It is particularly convenient to replace γ0 by the angle λ1 which specifies
the point at which the geocentric trajectory crosses the Moon’s sphere of influence.

Equations describing each phase of an Earth-Moon trajectory are briefly presented in
what follows. It is assumed that the geocentric trajectory is direct and that lunar arrival occurs
prior to apoapsis of the geocentric orbit. Figure 1 shows the geometry of the geocentric phase.

For a given set of initial conditions (r0,v0, ϕ0), energy and angular momentum of the
geocentric trajectory can be determined from the equations

E =
1
2
v2
0 −

μE

r0
,

h = r0v0 cosϕ0,

(2.1)

where μE is the Earth gravitational parameter.
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Figure 2: Geometry of the selenocentric phase.

From the geometry of the geocentric phase (Figure 1), one finds

r1 =
√
D2 + R2

S − 2DRS cosλ1,

sin γ1 =
RS

r1
sinλ1,

(2.2)

whereD is the distance from the Earth to the Moon and RS is the radius of the Moon’s sphere
of influence. Subscript 1 denotes quantities of the geocentric trajectory calculated at the edge
of the Moon’s sphere of influence.

From energy and angular momentum of the geocentric trajectory, one finds

v1 =

√
2
(
E +

μE

r1

)
,

cosϕ1 =
h

r1v1
.

(2.3)

The selenocentric phase begins at the point at which the geocentric trajectory crosses
the Moon’s sphere of influence. Figure 2 shows the geometry of the selenocentric phase for a
clockwise arrival to LMO. Thus,

r2 = RS, (2.4)

v2 = v1 − vM, (2.5)

where vM is the velocity vector of the Moon relative to the center of the Earth. Subscript 2
denotes quantities of the selenocentric trajectory calculated at the edge of the Moon’s sphere
of influence.
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From (2.5), one finds

v2 =
√
v2
1 + v2

M − 2v1vM cos
(
ϕ1 − γ1

)
,

tan
(
λ1 ± ϕ2

)
= − v2 sin

(
ϕ1 − γ1

)

vM − v2 cos
(
ϕ1 − γ1

) .
(2.6)

The upper sign refers to clockwise arrival to LMO and the lower sign refers to counter-
clockwise to LMO.

The semimajor axis af and eccentricity ef of the selenocentric trajectory are given by

af =
r2

2 −Q2
,

ef =
√
1 +Q2(Q2 − 2)cos2ϕ2,

(2.7)

where Q2 = r2v
2
2/μM and μM is the Moon gravitational parameter.

The second impulse is applied at the periselenium of the selenocentric trajectory such
that the terminal conditions, before the impulse, are defined by

rpM = af

(
1 − ef

)
,

vpM =

√√√√μM

(
1 + ef

)

af

(
1 − ef

) .
(2.8)

Equations (2.1)–(2.8) lead to the following two-point boundary value problem: for a
specified value of λ1 and a given set of initial parameters r0 and ϕ0 = 0◦ (the impulse is
applied tangentially to the space vehicle velocity relative to Earth), determine v0 such that
the final condition rpM = rf is satisfied, where r0 is the radius of LEO and rf is the radius of
LMO (both orbits, LEO and LMO, are circular). This boundary value problem can be solved
by means of Newton-Raphson method [16].

After computing v0, the velocity changes at each impulse can be determined

Δv1 = v0 −
√

μE

r0
,

Δv2 =

√√√√μM

(
1 + ef

)

af

(
1 − ef

) −
√

μM

rf
.

(2.9)

The total characteristic velocity is then given by

ΔvTotal = Δv1 + Δv2. (2.10)

Note that the total characteristic velocity is a function of λ1 for a given set of parameters
(r0, ϕ0 = 0◦, rf). Accordingly, the following optimization problem can be formulated:
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determine λ1 to minimize ΔvTotal. This minimization problem was solved using a classic
gradient method [15]. The results are presented in Section 5.

The total flight time of an Earth-Moon trajectory is given by

T = ΔtE + ΔtM, (2.11)

where ΔtE is the flight time of the geocentric trajectory and ΔtM is the flight time of the
selenocentric trajectory. These flight times are calculated from the well-known time of flight
equations of two-body dynamics as follows:

ΔtE =

√√√ a3
0

μE
(E1 − e0 sinE1),

ΔtM =

√√√√
(−af

)3
μM

(
ef sinhF2 − F2

)
,

(2.12)

with eccentric anomaly E1 and hyperbolic eccentric anomaly F2 obtained, respectively, from

cosE1 =
1
e0

(
1 − r1

a0

)
,

coshF2 =
1
ef

(
1 − r2

af

)
.

(2.13)

Since lunar arrival occurs prior to apoapsis of the geocentric trajectory, 0 < E1 ≤ 180◦, and F2

is positive. So, equations above define E1 and F2 without ambiguity. The semimajor axis and
eccentricity of the geocentric trajectory are given by

a0 =
r0

2 −Q0
,

e0 =
√
1 +Q0(Q0 − 2)cos2ϕ0,

(2.14)

where Q0 = r0v
2
0/μE. Recall that the impulses are applied at the periapses of the geocentric

and selenocentric trajectories.

3. Optimization Problem Based on the Simplified Version of PCR3BP

In this section, the optimization problem based on the simplified PCR3BP is formulated. A
detailed presentation of this problem can be found in Miele and Mancuso [12].

The following assumptions are employed.

(1) The Earth is fixed in space.

(2) The eccentricity of the Moon orbit around the Earth is neglected.

(3) The flight of the space vehicle takes place in the Moon orbital plane.
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(4) The space vehicle is subject to only the gravitational fields of Earth and Moon.

(5) The gravitational fields of Earth and Moon are central and obey the inverse square
law.

(6) The class of two impulse trajectories is considered. The impulses are applied
tangentially to the space vehicle velocity relative to Earth (first impulse) and Moon
(second impulse).

Consider an inertial reference frame Exy contained in theMoon orbital plane: its origin
is the Earth center; the x-axis points towards the Moon position at the initial time t0 = 0 and
the y-axis is perpendicular to the x-axis. Figure 3 shows the inertial reference frame Exy.

In the Exy reference frame, the motion of the space vehicle (P) is described by the
following differential equations:

ẍP = − μE

r3EP
xP − μM

r3MP

(xP − xM),

ÿP = − μE

r3EP
yP − μM

r3MP

(
yP − yM

)
,

(3.1)

where rEP and rMP are, respectively, the radial distances of space vehicle from Earth (E) and
Moon (M), that is, r2EP = (xP −xE)

2+(yP −yE)
2 and r2MP = (xP −xM)2+(yP −yM)2. Because the

origin of the inertial reference frame Exy is the Earth center, the position vector of the Earth
is defined by rE = (0, 0). The position vector of the Moon in the inertial reference frame Exy is
defined by rM = (xM, yM). Since the eccentricity of the Moon orbit around Earth is neglected,
the Moon inertial coordinates are given by

xM(t) = D cos(ωMt),

yM(t) = D sin(ωMt),
(3.2)

where ωM =
√
μE/D3 is the angular velocity of the Moon.

The initial conditions of the system of differential equations correspond to the position
and velocity vectors of the space vehicle after the application of the first impulse. The initial
conditions (t0 = 0) can be written as follows:

xP (0) = xEP (0) = rEP (0) cos θEP (0),

yP (0) = yEP (0) = rEP (0) sin θEP (0),

ẋP (0) = ẋEP (0) = −
[√

μE

rEP (0)
+ Δv1

]
sin θEP (0),

ẏP (0) = ẏEP (0) =

[√
μE

rEP (0)
+ Δv1

]
cos θEP (0),

(3.3)
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Figure 3: Inertial reference frame Exy.

where Δv1 is the velocity change at the first impulse, rEP (0) = rEP0 , and θEP (t) is the angle
defining the position of the space vehicle in the inertial reference frame Exy at time t, more
precisely the angle which the position vector rP forms with x-axis. It should be noted that
rEP (0) and vEP (0) or, equivalently, rP (0) and vP (0) are orthogonal, because the impulse is
applied tangentially to the circular LEO.

The final conditions of the system of differential equations correspond to the position
and velocity vectors of the space vehicle before the application of the second impulse. The
final conditions (tf = T) can be written as follows:

xP (T) = xMP (T) + xM(T) = rMP (T) cos θMP (T) + xM(T), (3.4)

yP (T) = yMP (T) + yM(T) = rMP (T) sin θMP (T) + yM(T), (3.5)

ẋP (T) = ẋMP (T) + ẋM(T) = ±
[√

μM

rMP (T)
+ Δv2

]
sin θMP (T) + ẋM(T), (3.6)

ẏP (T) = ẏMP (T) + ẏM(T) = ∓
[√

μM

rMP (T)
+ Δv2

]
cos θMP (T) + ẏM(T), (3.7)

where Δv2 is the velocity change at the second impulse, rMP (T) = rMPf , and θMP (t) is the
angle which the position vector rMP forms with x-axis. The upper sign refers to clockwise
arrival to LMO and the lower sign refers to counterclockwise to LMO. Since the eccentricity
of the Moon orbit around Earth is neglected, it follows from (3.2) that the components of the
Moon inertial velocity at time T are given by

ẋM(T) = −DωM sin(ωMT),

ẏM(T) = DωM cos(ωMT).
(3.8)
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The angle θMP (T) is free and can be eliminated. After the problem has been solved,
the angle θMP (T) can be calculated from (3.4) and (3.5). So, combining (3.4)–(3.7), the final
conditions can be put in the following form:

(xP (T) − xM(T))2 +
(
yP (T) − yM(T)

)2 = (rMP (T))2, (3.9)

(ẋP (T) − ẋM(T))2 +
(
ẏP (T) − ẏM(T)

)2 =
[√

μM

rMP (T)
+ Δv2

]2

, (3.10)

(xP (T) − xM(T))
(
ẏP (T) − ẏM(T)

) − (
yP (T) − yM(T)

)
(ẋP (T) − ẋM(T))

= ∓ rMP (T)

[√
μM

rMP (T)
+ Δv2

]
.

(3.11)

As before, the upper sign refers to clockwise arrival to LMO and the lower sign refers to
counterclockwise to LMO. It should be noted that constraint defined by (3.11) is derived
from the angular momentum considering a direct (counterclockwise arrival) or a retrograde
(clockwise arrival) orbit around the Moon.

The problem defined by (3.1)–(3.11) involves four unknowns Δv1, Δv2, T , and θEP (0)
that must be determined in order to satisfy the three final conditions (3.9)–(3.11). Since
this problem has one degree of freedom, an optimization problem can be formulated as
follows: determine Δv1, Δv2, T , and θEP (0) which satisfy the final constraints (3.9)–(3.11)
and minimize the total characteristic velocity ΔvTotal = Δv1 + Δv2. This problem was
solved by Miele and Mancuso [12] using the sequential gradient-restoration algorithm for
mathematical programming problems developed by Miele et al. [15].

In this paper, the optimization problem described above is solved by means of an
algorithm based on gradient method [15] in conjunction with Newton-Raphson method
[16], similarly to the one described in the previous section for the problem based on the
patched-conic approximation. The angle θEP (0) has been chosen as the iteration variable in
the gradient phase with Δv1, Δv2, and T calculated through Newton-Raphson method. The
results are presented in Section 5.

4. Optimization Problem Based on the Classical Version of PCR3BP

In this section, the optimization problem based on the classical version of PCR3BP is
formulated. The assumptions employed in this formulation are the same ones previously
presented in Section 3, except for assumption (1) which must be replaced by the following
one: Earth moves around the center of mass of the Earth-Moon system.

4.1. Problem Formulation in Inertial Frame

Consider an inertial reference frame Gxy contained in the Moon orbital plane: its origin is the
center of mass of the Earth-Moon system; the x-axis points towards the Moon position at the
initial time and the y-axis is perpendicular to the x-axis. Figure 4 shows the inertial reference
frame Gxy.
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In the Gxy reference frame, the motion of the space vehicle (P) is described by the
following differential equations:

ẍP = − μE

r3EP
(xP − xE) −

μM

r3MP

(xP − xM),

ÿP = − μE

r3EP

(
yP − yE

) − μM

r3MP

(
yP − yM

)
,

(4.1)

where rEP and rMP are, respectively, the radial distances of space vehicle from Earth (E) and
Moon (M), that is, r2EP = (xP − xE)

2 + (yP − yE)
2 and r2MP = (xP − xM)2 + (yP − yM)2. Because

the origin of the inertial reference frame Gxy is the center of mass of Earth-Moon system,
the position vectors of the Earth and the Moon are, respectively, defined by rE = (xE, yE) and
rM = (xM, yM). Since the eccentricity of the Moon orbit around Earth is neglected, the Earth
and Moon inertial coordinates are given by

xE(t) = −μxM(t),

yE(t) = −μyM(t),

xM(t) =
D

1 + μ
cos(ωt),

yM(t) =
D

1 + μ
sin(ωt),

(4.2)

where μ = μM/μE and ω =
√
(μE + μM)/D3. Note that ω = ωM

√
1 + μ.
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The initial conditions of the system of differential equations correspond to the position
and velocity vectors of the space vehicle after the application of the first impulse. The initial
conditions (t0 = 0) can be written as follows:

xP (0) = xEP (0) + xE(0) = rEP (0) cos θEP (0) + xE(0),

yP (0) = yEP (0) + yE(0) = rEP (0) sin θEP (0) + yE(0),

ẋP (0) = ẋEP (0) + ẋE(0) = −
[√

μE

rEP (0)
+ Δv1

]
sin θEP (0) + ẋE(0),

ẏP (0) = ẏEP (0) + ẏE(0) =

[√
μE

rEP (0)
+ Δv1

]
cos θEP (0) + ẏE(0),

(4.3)

where Δv1, rEP (0), and θEP (t) have the same meaning previously defined in Section 3 and,
from (4.2),

xE(0) = − μD

1 + μ
, yE(0) = 0, ẋE(0) = 0, ẏE(0) = −μDω

1 + μ
. (4.4)

It should be noted that rEP and vEP are orthogonal because the impulse is applied tangentially
to LEO, assumed circular.

The final conditions of the system of differential equations correspond to the position
and velocity vectors of the space vehicle before the application of the second impulse and
they are given by (3.4)–(3.7), with the final position and velocity vectors of Moon obtained
from (4.2), that is, given by

xM(T) =
D

1 + μ
cos(ωT), yM(T) =

D

1 + μ
sin(ωT),

ẋM(T) = − Dω

1 + μ
sin(ωT), ẏM(T) =

Dω

1 + μ
cos(ωT).

(4.5)

Accordingly, the final conditions can be put in the same form defined by (3.9)–(3.11).
Therefore, the optimization problem is the same one defined in Section 3, and it is

solved by the same algorithm previously described. The results are presented in Section 5.

4.2. Transformation to Rotating Frame

Consider a rotating reference frame Gξη contained in the Moon orbital plane: its origin is the
center of mass of the Earth-Moon; the ξ-axis points towards the Moon position at any time
t and the η-axis is perpendicular to the ξ-axis. In this rotating reference frame the Earth and
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the Moon are at rest. Figure 5 shows the inertial and rotating reference frames, Gxy and Gξη.
To write the differential equations of motion of the space vehicle (P) in the rotating reference
frame, consider the coordinate transformation equations:

xk = ξk cos(ωt) − ηk sin(ωt),

yk = ξk sin(ωt) + ηk cos(ωt),
(4.6)

or

ξk = xk cos(ωt) + yk sin(ωt),

ηk = −xk sin(ωt) + yk cos(ωt),
(4.7)

where k = E,M, P . Thus, the new coordinates of the Earth and Moon are

ξE = xE cos(ωt) + yE sin(ωt),

ηE = −xE sin(ωt) + yE cos(ωt),

ξM = xM cos(ωt) + yM sin(ωt),

ηM = −xM sin(ωt) + yM cos(ωt).

(4.8)

Substituting (4.2) into (4.8), one finds the fixed positions of the Earth and the Moon in
the rotating reference frame:

ξE = − μD

1 + μ
,

ηE = 0,

ξM =
D

1 + μ
,

ηM = 0.

(4.9)

Now, consider the inertial coordinates of the space vehicle written in terms of the rotating
coordinates

xP = ξP cos(ωt) − ηP sin(ωt),

yP = ξP sin(ωt) + ηP cos(ωt).
(4.10)

Differentiating each of these equations twice and substituting into (4.1), one finds the new
equations of motion:

ξ̈P − 2ωη̇P −ω2ξP = − μE

r3EP
(ξP − ξE) −

μM

r3MP

(ξP − ξM),

η̈P + 2ωξ̇P −ω2ηP = − μE

r3EP

(
ηP − ηE

) − μM

r3MP

(
ηP − ηM

)
,

(4.11)
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where

r2EP = (ξP − ξE)
2 +

(
ηP − ηE

)2
,

r2MP = (ξP − ξM)2 +
(
ηP − ηM

)2
.

(4.12)

The system of differential equations above has a constant of motion, the so-called Jacobi
integral. In order to determine it, procede as follows. Multiply the first of (4.11) by ξ̇P , the
second by η̇P and add. It results in

ξ̇P ξ̈P + η̇P η̈P −ω2(ξ̇P ξP + η̇PηP
)
= − μE

r3EP
ξ̇P (ξP − ξE) −

μM

r3MP

ξ̇P (ξP − ξM)

− μE

r3EP
η̇P

(
ηP − ηE

) − μM

r3MP

η̇P
(
ηP − ηM

)
.

(4.13)

This equation can be rewritten as

1
2
d

dt

(
ξ̇2P + η̇2

P

)
− 1
2
ω2 d

dt

(
ξ2P + η2

P

)
=

d

dt

(
μE

rEP
+

μM

rMP

)
. (4.14)

Therefore,

v2 = 2Φ
(
ξP , ηP

) − C, (4.15)
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Table 1: Lagrange points for the Earth-Moon system.

ξLk ηLk Ck

(km) (km) (km2/s2)
L1 3.2171 × 105 0 3.3468
L2 4.4424 × 105 0 3.3298
L3 −3.8635 × 105 0 3.1618
L4 1.8753 × 105 3.3290 × 105 3.1365
L5 1.8753 × 105 −3.3290 × 105 3.1365

where

v2 = ξ̇2P + η̇2
P ,

Φ
(
ξP , ηP

)
=

1
2
ω2

(
ξ2P + η2

P

)
+

μE

rEP
+

μM

rMP
,

(4.16)

and C is the so-called Jacobi constant. Therefore, from (4.15) it is seen that the Jacobi integral,

J
(
ξP , ηP , ξ̇P , η̇P

)
= 2Φ

(
ξP , ηP

) − v2, (4.17)

is equal to C during the motion [17].
The system of differential equations (4.11) has five equilibrium points. They are called

Lagrange points and are labelled L1, . . . , L5. The points L1, L2, L3 are located on the ξ-axis while
L4 and L5 form two equilateral triangles with the Earth and Moon in the plane of rotation.
See Figure 6. At each Lk, the corresponding value of Jacobi constant Ck is given by (4.15)
substituting rLk = (ξLk , ηLk) and vLk = (ξ̇Lk , η̇Lk) = (0, 0). These Ck are related to the regions in
the rotating reference frame Gξη where the spacecraft can move. See in Table 1 the position
and the correspondent value of the Jacobi constant per unit mass of each Lagrange point.

Observe that the right-hand side of the (4.15)must be nonnegative, since v2 ≥ 0. Thus,
an initial position (ξP0, ηP0) and an initial velocity (ξ̇P0, η̇P0) yield a Jacobi constant value C
and the motion of the spacecraft is possible only in positions satisfying the relation

2Φ
(
ξP , ηP

) ≥ C. (4.18)

The set of points in the (ξ, η)-plane defined by the inequality (4.18) is called Hill’s regions. See
in Figure 6 how the Hill’s regions (white areas) are related to the Ck values. The shaded areas
are the forbidden regions.

Finally, we note that the transformation to the rotating frame gives a better insight
about swing-by maneuvers with the Moon, as described in the results presented in Section 5.

5. Results

In this section, results are presented for some lunar missions using the three formulations
described in the preceding sections. Analysis of the results is discussed in two subsections:
in the first one, direct ascent maneuvers with flight time about 4.7 days are considered; in
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Table 2: Lunar mission, counterclockwise LMO arrival, major parameters.

LMO altitude Model ΔvTotal Δv1 Δv2 T θEP (0) Feasibility
(km) (km/s) (km/s) (km/s) (days) (deg)

100

Patched-conic 3.8482 3.0655 0.7827 4.794 −115.723 Yes
Simplified PCR3BP 3.8758 3.0649 0.8109 4.564 −116.800 Yes
Classical PCR3BP 3.8777 3.0658 0.8119 4.573 −116.410 Yes

Miele and Mancuso [12] 3.876 3.065 0.811 4.37 −118.98 —

200

Patched-conic 3.8331 3.0654 0.7677 4.794 −115.750 Yes
Simplified PCR3BP 3.8614 3.0648 0.7966 4.562 −116.832 Yes
Classical PCR3BP 3.8634 3.0658 0.7976 4.571 −116.451 Yes

Miele and Mancuso [12] 3.862 3.065 0.797 4.37 −119.00 —

300

Patched-conic 3.8194 3.0654 0.7540 4.793 −115.777 Yes
Simplified PCR3BP 3.8483 3.0648 0.7835 4.560 −116.881 Yes
Classical PCR3BP 3.8502 3.0657 0.7845 4.569 −116.491 Yes

Miele and Mancuso [12] 3.849 3.065 0.784 4.37 −119.03 —

the second subsection, some maneuvers with multiple revolutions and flight time about
14, 24, 32, 40, and 58 days are considered. Three final altitudes hLMO of a clockwise or
counterclockwise circular LMO and a specified altitude hLEO of a counterclockwise circular
LEO, which corresponds to the altitude of the Space Station [12], are considered. The
following data are used:

G = 6.672 × 10−20 km3 kg−1 s−2
(
universal constant of gravitation

)
,

ME = 5.9742 × 1024 kg (mass of the Earth),

MM = 7.3483 × 1022 kg (mass of the Moon),

REM = 384 400 km (mean distance from the Earth to the Moon),

RE = 6 378 km (Earth radius),

RM = 1 738 km (Moon radius),

hLEO = 463 km (altitude of circular LEO),

hLMO = 100, 200, 300 km (altitude of circular LMO).

(5.1)

5.1. Direct Ascent Maneuvers

Table 2 shows the results for lunar missions with counterclockwise arrival at LMO, and
Table 3 shows the results for lunar missions with clockwise arrival at LMO. Recall that the
departure from LEO is counterclockwise for all missions. The major parameters that are
presented in these tables are the velocity changes Δv1 and Δv2 at each impulse, the total
characteristic velocity ΔvTotal = Δv1 +Δv2, the flight time of lunar mission T , and the angular
position of the space vehicle with respect to Earth at the initial time defined by the angle
θEP (0).
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Table 3: Lunar mission, clockwise LMO arrival, major parameters.

LMO altitude Model ΔvTotal Δv1 Δv2 T θEP (0) Feasibility
(km) (km/s) (km/s) (km/s) (days) (deg)

Patched-conic 3.8528 3.0683 0.7845 4.936 −113.681 Yes

100 Simplified PCR3BP 3.8811 3.0677 0.8134 4.750 −114.215 Yes
Classical PCR3BP 3.8829 3.0686 0.8143 4.763 −113.795 Yes

Miele and Mancuso [12] 3.882 3.068 0.814 4.50 −116.88 —

200

Patched-conic 3.8379 3.0683 0.7696 4.941 −113.638 Yes
Simplified PCR3BP 3.8670 3.0677 0.7993 4.757 −114.187 Yes
Classical PCR3BP 3.8688 3.0686 0.8002 4.769 −113.742 Yes

Miele and Mancuso [12] 3.868 3.068 0.800 4.50 −116.88 —

300

Patched-conic 3.8243 3.0683 0.7560 4.944 −113.608 Yes
Simplified PCR3BP 3.8541 3.0678 0.7863 4.760 −114.116 Yes
Classical PCR3BP 3.8559 3.0687 0.7872 4.771 −113.716 Yes

Miele and Mancuso [12] 3.855 3.068 0.787 4.50 −116.88 —

Results in Tables 2 and 3 show good agreement. It should be noted the excellent results
were obtained using the patched-conic approximation model. In all missions, the patched-
conic approximation model yields very accurate estimate for the first impulse in comparison
to the results obtained using the PCR3BP models. For the second impulse, there exists a
small difference between the results given by the patched-conic approximation model and
the PCR3BP models. For all lunar missions, the values of the major parameters ΔvTotal, Δv1,
Δv2, and T obtained using the simplified PCR3BP model are a little lesser than the values
obtained using the classical PCR3BP. In all cases, the trajectories are feasible, that is, the
spacecraft does not collide with the Moon. As described in the next subsection, collisions
can occur for maneuvers with multiple revolutions.

Tables also show a small difference in the flight time T and in the angle θEP (0)
calculated by the three approaches. We suppose that the difference between the values
obtained in this paper and the values presented by [12] for the flight time T and the angle
θEP (0) calculated using the simplified PCR3BP model should be related to the accuracy
in the integration of differential equations and in the solution of the terminal constraints.
The algorithm based on gradient algorithm in conjunction with Newton-Raphson method,
described in this paper, uses a Runge-Kutta-Fehlberg method of orders 4 and 5, with step-size
control and relative error tolerance of 10−10 and absolute error tolerance of 10−11, as described
in Stoer and Bulirsch [16] and Forsythe et al. [18]. The terminal constraints are satisfied with
an error lesser than 10−8. In all simulations the following canonical units are used: 1 distance

unit = RE and 1 time unit =
√
R3

E/μE. On the other hand, the paper by Miele and Mancuso
[12] does not describe the accuracy used in the calculations.

According to the results presented in Tables 2 and 3, we note, regardless the dynamical
model used in the analysis, that

(1) lunar missions with clockwise LMO arrival spend more fuel than lunar missions
with counterclockwise LMO arrival;

(2) the flight time is nearly the same for all lunar missions with clockwise LMO arrival,
independently on the final altitude of LMO. The differences between the flight
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Table 4: Lunar mission, major parameters, hLEO = 463 km, hLMO = 100 km.

Model Maneuver ΔvTotal Δv1 Δv2 T θEP (0) Feasibility
(km/s) (km/s) (km/s) (days) (deg)

3.8758 3.0649 0.8109 4.564 −116.800 Yes
3.8778 3.0653 0.8125 14.175 9.119 Yes

Simplified Counterclockwise 3.8746 3.0647 0.8099 23.832 135.661 Yes
PCR3BP 3.8411 3.0585 0.7826 32.108 232.269 Yes

3.8444 3.0591 0.7853 40.871 347.205 Yes
3.7936 3.0498 0.7438 58.701 220.730 Yes

3.8811 3.0677 0.8134 4.750 −114.215 Yes
3.8829 3.0681 0.8149 14.791 17.307 Yes

Simplified Clockwise 3.8785 3.0672 0.8113 24.916 149.879 Yes
PCR3BP 3.8320 3.0586 0.7734 32.087 232.573 Yes

3.8352 3.0592 0.7760 40.862 347.608 Yes
3.7842 3.0498 0.7444 58.551 220.998 Yes

time of each mission are small, they are approximately lesser tan 0.004 days (5.8
minutes);

(3) the flight time is nearly the same for all lunar missions with counterclockwise LMO
arrival, independently on the final altitude of LMO. The differences between the
flight time of each mission are small; they are approximately lesser than 0.010 days
(14.4 minutes);

(4) the first change velocity Δv1 is nearly independent of the LMO altitude;

(5) the second change velocity Δv2 decreases with the LMO altitude;

(6) the flight time for lunar missions with clockwise LMO arrival is larger than the
flight time for lunar missions with counterclockwise LMO arrival;

(7) for the PCR3BP and patched-conic approximation models, the angle θEP (0) varies
with the LMO altitude for all lunar missions.

We note that some of these general results are quite similar to the ones described by [12].
For hLMO = 100 km, the trajectory is shown in Figure 7 for counterclockwise LMO

arrival and in Figure 8 for clockwise LMO arrival. In both figures, trajectories are shown in
the inertial reference frame Exy and in the rotating reference frameGξη. Only results obtained
through the classical PCR3BP model are depicted.

5.2. Multiple Revolution Ascent Maneuvers

Tables 4, 5, and 6 show the results for lunar missions with clockwise and counterclockwise
arrival at LMO, for hLMO = 100, 200, 300 km, respectively, considering the simplified PCR3BP
model. Tables 7, 8, and 9 show similar results considering the classical PCR3BP model. The
major parameters that are presented in these tables are the same ones presented in Tables 3
and 2. The value of the Jacobi constant per unit mass for each mission is presented in Tables
7, 8, and 9.

For hLMO = 100 km, the trajectories are shown in Figures 9 to 13 for counterclockwise
LMO arrival and in Figures 14 to 18 for clockwise LMO arrival, considering the classical
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Figure 7: Direct ascent, counterclockwise LMO arrival, Δv1 = 3.0658 km/s, Δv2 = 0.8119 km/s, T = 4.573
days, θEP (0) = −116.41 deg.
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Figure 8: Direct ascent, clockwise LMO arrival, Δv1 = 3.0686 km/s, Δv2 = 0.8143 km/s, T = 4.763 days,
θEP (0) = −113.795 deg.
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Table 5: Lunar mission, major parameters, hLEO = 463 km, hLMO = 200 km.

Model Maneuver ΔvTotal Δv1 Δv2 T θEP (0) Feasibility
(km/s) (km/s) (km/s) (days) (deg)

3.8614 3.0648 0.7966 4.562 −116.832 Yes

3.8635 3.0653 0.7983 14.168 9.002 Yes

Simplified Counterclockwise 3.8602 3.0646 0.7956 23.811 135.376 Yes

PCR3BP 3.8263 3.0585 0.7678 32.110 232.270 Yes

3.8296 3.0591 0.7705 40.873 347.204 Yes

3.7826 3.0506 0.7320 58.398 216.284 Yes

3.8670 3.0677 0.7993 4.753 −114.187 Yes

3.8688 3.0681 0.8007 14.798 17.390 Yes

Simplified Clockwise 3.8643 3.0672 0.7971 24.930 150.050 Yes

PCR3BP 3.8167 3.0586 0.7581 32.080 232.475 Yes

3.8200 3.0592 0.7608 40.863 347.613 Yes

3.7679 3.0498 0.7181 58.530 220.726 Yes

Table 6: Lunar mission, major parameters, hLEO = 463 km, hLMO = 300 km.

Model Maneuver ΔvTotal Δv1 Δv2 T θEP (0) Feasibility
(km/s) (km/s) (km/s) (days) (deg)

3.8483 3.0648 0.7835 4.560 −116.881 Yes

3.8504 3.0652 0.7852 14.157 8.851 Yes

Simplified Counterclockwise 3.8471 3.0646 0.7825 23.798 135.197 Yes

PCR3BP 3.8127 3.0585 0.7542 32.111 232.260 Yes

3.8161 3.0591 0.7570 40.874 347.201 Yes

3.7633 3.0498 0.7135 58.685 220.409 Yes

3.8541 3.0678 0.7863 4.760 −114.110 Yes

3.8559 3.0681 0.7878 14.809 17.504 Yes

Simplified Clockwise 3.8513 3.0673 0.7840 24.948 150.265 Yes

PCR3BP 3.8026 3.0586 0.7440 32.080 232.475 Yes

3.8060 3.0592 0.7467 40.864 347.620 Yes

3.7530 3.0498 0.7031 58.488 220.014 Yes

PCR3BPmodel. In both figures, trajectories are shown in the inertial reference frame Exy and
in the rotating reference frame Gξη.

For maneuvers with multiple revolutions, major comments are as follows.

(1) All trajectories, regardless of the flight time, are feasible in the simplified PCR3BP
model.

(2) In the classical PCR3BP model, all trajectories have Jacobi constant less than C4.
Therefore, there are not forbidden regions for the motion of the spacecraft.

(3) Trajectories with two revolutions around the Earth and flight time about 24.0
days collide with the Earth in the classical PCR3BP model. Figures 10 and 15
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Table 7: Lunar mission, major parameters, hLEO = 463 km, hLMO = 100 km.

Model Maneuver ΔvTotal Δv1 Δv2 T θEP (0) C Feasibility
(km/s) (km/s) (km/s) (days) (deg) (km2/s2)

3.8777 3.0658 0.8119 4.573 −116.410 2.4784 Yes

3.8732 3.0650 0.8082 14.330 12.466 2.4965 Yes

Classical Counterclockwise 3.8776 3.0658 0.8118 24.019 140.054 2.4788 No

PCR3BP 3.8428 3.0593 0.7835 31.910 232.464 2.6166 Yes

3.8379 3.0584 0.7795 40.742 348.882 2.6358 Yes

3.8300 3.0570 0.7730 58.415 229.239 2.6668 Yes

3.8829 3.0686 0.8143 4.763 −113.795 2.4187 Yes

3.8785 3.0678 0.8107 14.970 21.069 2.4363 Yes

Classical Clockwise 3.8821 3.0684 0.8136 25.103 154.315 2.4220 No

PCR3BP 3.8337 3.0595 0.7742 31.872 232.674 2.6138 Yes

3.8288 3.0586 0.7702 40.713 349.322 2.6331 Yes

3.7893 3.0513 0.7380 58.420 224.480 2.7871 Yes

Table 8: Lunar mission, major parameters, hLEO = 463 km, hLMO = 200 km.

Model Maneuver ΔvTotal Δv1 Δv2 T θEP (0) C Feasibility
(km/s) (km/s) (km/s) (days) (deg) (km2/s2)

3.8634 3.0658 0.7976 4.571 −116.451 2.4793 Yes

3.8587 3.0649 0.7938 14.322 12.340 2.4974 Yes

Classical Counterclockwise 3.8633 3.0657 0.7975 24.004 139.846 2.4797 No

PCR3BP 3.8280 3.0593 0.7686 31.912 232.461 2.6166 Yes

3.8230 3.0584 0.7645 40.743 348.876 2.6358 Yes

3.8149 3.0570 0.7579 58.417 229.218 2.6669 Yes

3.8688 3.0686 0.8002 4.769 −113.742 2.4178 Yes

3.8643 3.0678 0.7965 14.981 21.198 2.4355 Yes

Classical Clockwise 3.8679 3.0685 0.7994 25.121 154.542 2.4212 No

PCR3BP 3.8184 3.0595 0.7589 31.873 232.676 2.6137 Yes

3.8195 3.0597 0.7598 39.664 353.119 2.6094 Yes

3.7709 3.0509 0.7199 58.361 223.886 2.7957 Yes

depict the collision between the spacecraft and the Earth for lunar missions with
hLMO = 100 km and counterclockwise or clockwise arrival to Moon, respectively.
The remaining trajectories are feasible.

(4) According to the results in Tables 4–9, simplified and classical PCR3BP models
show that the group of trajectories with counterclockwise arrival toMoon is slightly
superior to the group of trajectories with clockwise arrival to Moon in terms of total
characteristic velocity and flight time for maneuvers with flight time smaller than
25.5 days.

(5) According to the results in Tables 4–9, simplified and classical PCR3BP models
show that the group of trajectories with clockwise arrival to Moon is slightly
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Table 9: Lunar mission, major parameters, hLEO = 463 km, hLMO = 300 km.

Model Maneuver ΔvTotal Δv1 Δv2 T θEP (0) C Feasibility
(km/s) (km/s) (km/s) (days) (deg) (km2/s2)

3.8502 3.0657 0.7845 4.569 −116.491 2.4802 Yes

3.8455 3.0649 0.7806 14.313 12.213 2.4983 Yes

Classical Counterclockwise 3.8501 3.0657 0.7844 23.990 139.643 2.4806 No

PCR3BP 3.8144 3.0593 0.7551 31.913 232.461 2.6166 Yes

3.8093 3.0584 0.7509 40.745 348.870 2.6359 Yes

3.8010 3.0570 0.7441 58.422 229.235 2.6671 Yes

3.8559 3.0687 0.7872 4.771 −113.716 2.4170 Yes

3.8513 3.0678 0.7834 14.992 21.336 2.4346 Yes

Classical Clockwise 3.8550 3.0685 0.7865 25.139 154.757 2.4204 No

PCR3BP 3.8043 3.0595 0.7448 31.873 232.676 2.6137 Yes

3.8054 3.0597 0.7458 39.665 353.111 2.6094 Yes

3.7559 3.0509 0.7050 58.361 223.913 2.7957 Yes

superior to the group of trajectories with counterclockwise arrival to Moon in terms
of total characteristic velocity and flight time (excepting trajectories with flight time
about 58.5 days) for maneuvers with flight time larger than 30.0 days.

(6) For lunar missions with hLMO = 100 km, Figures 11, 12, 13, 16, 17, and, 18 show that
the spacecraft carries out one or two close approaches to the Moon before entering
into the low circular orbit around the Moon. Such maneuvers, known as swing-by
maneuvers, reduce the fuel consumption, although the flight time increases (see
results in Table 7).

(7) According to the results in Tables 4–9, the first change velocity Δv1 is nearly
independent of the LMO altitude, and, the second change velocityΔv2 decreases as
the LMO altitude increases, for all group of trajectories with similar flight time and
same sense of arrival to Moon.

(8) The first change velocity Δv1 is nearly the same for maneuvers with flight time
smaller than 25.5 days (the differences in Δv1 are approximately 0.6m/s).

(9) For maneuvers with flight time larger than 30.0 days, the first change velocity Δv1

changes slightly (the differences in Δv1 are approximately 15.0 to 20.0m/s).

6. Conclusion

In this paper, a systematic study of optimal trajectories for Earth-Moon flight of a space
vehicle is presented. The optimization criterion is the total characteristic velocity. The
optimization problem has been formulated using the patched-conic approximation and
two versions of the planar circular restricted three-body problem (PCR3BP) and has been
solved using a gradient algorithm in conjunction with Newton-Raphson method. Results for
direct ascent maneuvers and for maneuvers with multiple revolutions around the Earth are
presented. For direct ascent maneuvers, all models show that lunar missions with clockwise
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Figure 9: Multiple revolution ascent, counterclockwise LMO arrival, Δv1 = 3.065 km/s, Δv2 =
0.8082 km/s, T = 14.33 days, θEP (0) = 12.466 deg.



Mathematical Problems in Engineering 25

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

−3.5
−3

−2.5
−2

−1.5
−1

−0.5
0

0.5

1

y
(1
05

km
)

x (105 km)

(a) Earth-Moon trajectory, inertial coordinate
frame

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

y
(1
05

km
)

x (105 km)

(b) LEO departure, inertial coordinate frame

2.65 2.7 2.75 2.8 2.85 2.9 2.95

−2.75

−2.7

−2.65

−2.6

−2.55

−2.5

y
(1
05

km
)

x (105 km)

(c) LMO arrival, inertial coordinate frame

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5
−4
−3
−2
−1
0

1

2

3

4

5

η
(1
05

km
)

ξ (105 km)

(d) Earth-Moon trajectory, rotating coordinate
frame

−0.3 −0.2 −0.1 0 0.1 0.2
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

η
(1
05

km
)

ξ (105 km)

(e) LEO departure, rotating coordinate frame

3.65 3.7 3.75 3.8 3.85 3.9
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

η
(1
05

km
)

ξ (105 km)

(f) LMO arrival, rotating coordinate frame

Figure 10: Multiple revolution ascent, counterclockwise LMO arrival, Δv1 = 3.0658 km/s, Δv2 =
0.8118 km/s, T = 24.019 days, θEP (0) = 140.054 deg.
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Figure 11: Multiple revolution ascent, counterclockwise LMO arrival, Δv1 = 3.0593 km/s, Δv2 =
0.7835 km/s, T = 31.91 days, θEP (0) = 232.464 deg.
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Figure 12: Multiple revolution ascent, counterclockwise LMO arrival, Δv1 = 3.0584 km/s, Δv2 =
0.7795 km/s, T = 40.742 days, θEP (0) = 348.882 deg.
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Figure 13: Multiple revolution ascent, counterclockwise LMO arrival, Δv1 = 3.057 km/s, Δv2 =
0.7730 km/s, T = 58.415 days, θEP (0) = 229.239 deg.
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Figure 14: Multiple revolution ascent, clockwise LMO arrival, Δv1 = 3.0678 km/s, Δv2 = 0.8107 km/s,
T = 14.97 days, θEP (0) = 21.069 deg.
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Figure 15: Multiple revolution ascent, clockwise LMO arrival, Δv1 = 3.0684 km/s, Δv2 = 0.8136 km/s,
T = 25.103 days, θEP (0) = 154.315 deg.
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Figure 16: Multiple revolution ascent, clockwise LMO arrival, Δv1 = 3.0595 km/s, Δv2 = 0.7742 km/s,
T = 31.872 days, θEP (0) = 232.674 deg.
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Figure 17: Multiple revolution ascent, clockwise LMO arrival, Δv1 = 3.0586 km/s, Δv2 = 0.7702 km/s,
T = 40.713 days, θEP (0) = 349.322 deg.
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Figure 18: Multiple revolution ascent, clockwise LMO arrival, Δv1 = 3.0513 km/s, Δv2 = 0.738 km/s,
T = 58.42 days, θEP (0) = 224.48 deg.
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LMO arrival spend more fuel than lunar missions with counterclockwise LMO arrival. For
maneuvers with multiple revolutions, fuel can be saved if the spacecraft accomplishes a
swing-by maneuver with the Moon before the arrival at LMO.
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