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A fractal lattice is defined by iterative maps on a simplex. In particular, Sierpinski gasket and von
Koch flake are explicitly obtained by simplex transformations.

1. Introduction

Simplicial calculus [1–3] has been since the beginning a suitable tool for investigating discrete
models in many physical problems such as discrete models in space-time [4–9] complex
networks [10–13], molecular crystals, aggregates and diamond lattices [14–17], computer
graphics [18, 19], and more recently signal processing and computer vision, such as stereo
matching and image segmentation [20, 21].

In some recent papers [22–25], fractals [26–29] generated by simplexes, also called
fractal lattices, were proposed for the analysis of nonconventional materials as some kind of
polymers [24, 25] or nanocomposites [22, 23, 30, 31] having extreme physical and chemical
properties. Moreover, the analysis of complex traffic on networks [32, 33] and image analysis
[20, 21] based on fractal geometry and simplicial lattices has focussed on the importance of
these methods in handling modern challenging problems.

However, only a few attempts were made in order to define the fractal lattice
(structure) by an iterated system of functions on simplexes [34, 35]. The main scheme for
affine contraction has been given in [35], whereas some generation of fractals by simplicial
maps can be found in [34].

In this paper, we define a method based on simple algorithms for the generation
of fractal-like structures by continuously deforming a simplex. This algorithm is based on
a well-defined analytical map, which can be used to finitely describe fractals. Instead of
recursive law, or nested maps (see, e.g., [1, 2, 15]), we propose a method which can be more
easily implemented.
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In the following, we will study an m-dimensional fractal structure defined by the
transformation group of a simplicial complex. Starting from a simplex, it will define the group
of transformation on it, so that the intrinsic (affine)metric remains scale invariant. The group
of transformations (isometries and homotheties) will be characterized by matrices acting on
the skeleton of the simplex. We will derive the basic properties of the fractal lattice and give
a suitable definition of self-similarity on lattices. The concept of self-similarity is shown to
be fulfilled by some classical transformation on simplices (homothety) and, simplicial based,
fractals as the Sierpinski tessellations and the von Koch flake.

2. Euclidean Simplexes

In the ordinary Euclidean space R
n, we assume that there exists a triangulation of R

n, in the
sense that there is at least a finite set of n+1 points geometrically independent (simplexes). A
simplex will be considered both as a set of points and as the convex subspace of R

n, defined
by the geometrical support of the simplex. Union of n-adjacent simplexes is an n-polyhedron
P [4, 18, 19].

The euclidean m-simplex σm, of independent vertices V0, V1, . . . , Vm, is defined [1–3]
as the subset of R

n,

σm def=

{
P ∈ R

n | P
m∑
i=0

λiVi with
m∑
i=0

λi = 1, 0 ≤ λi ≤ 1

}
. (2.1)

Let us denote with [σm] = [V0, V1, . . . , Vm] the set of points which form the skeleton of σm, and
let #σm = m + 1 be the cardinality of the set of points. The p-face of σm, with p ≤ m, is any
simplex σp such that [σp] ∩ [σm]/= ∅, and we write σp � σm.

The number of p-faces of σm is (m+1
p+1 ).

The m-dimensional simplicial complex Σm is defined as the finite set of p simplexes
(p ≤ m) such that

(1) for all σk ∈ Σm if σh � σk, then σh ∈ Σm,
(2) for all σk, σh ∈ Σm, then either [σh] ∩ [σk] = ∅ or [σh] ∩ [σk] = [σj] with σj ∈ Σm.
The set of points P such that P ∈ σp, p ≤ m, and σp ∈ Σm is the geometric support

of Σm also called m-polyhedron Mm. The p-skeleton of Σm is [Σm]p def= [σp] for all σp ∈ Σm.
The boundary ∂Σm of Σm is the complex Σm−1 such that each σm−1 ∈ Σm−1 is face of only one
m-simplex of Σm. A finite set of simplexes is also called lattice (or tessellation).

2.1. Barycentric Coordinates and Barycentric Bases

In each simplex, it is possible to define the barycentric basis as follows: given the m-simplex
σm with vertices V0, . . . , Vm, the barycentric basis is the set of (m + 1) vectors

ei
def= Vi − Gm, (2.2)
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based on the barycenter

Gm def= G(σm) =
m∑
i=0

1
m + 1

Vi. (2.3)

These vectors ei belong to the n-dimensional vector space E isomorphic to R
n. Moreover, they

are linearly dependent, since according to their definition, it is

m∑
i=0

ei = 0. (2.4)

Each point P ∈ σm can be characterized by a set of barycentric coordinates (λ0, . . . , λm)
such that

0 ≤ λi ≤ 1,
m∑
i=0

λi = 1, i = 0, . . . , m, (2.5)

and P − Gm =
∑m

i=0 λ
iei

(2.2),(2.4)
=⇒ P =

∑m
i=0 λ

iVi. Therefore, each point of σm can be formally
expressed as a linear combination of the skeleton [σm].

The dual space is defined as the linear map of the vector space E into R as

〈
ei, ek
〉
=δ̃i

k, (2.6)

with [14]

δ̃i
k

def= δi
k −

1
m + 1

=

⎧⎪⎪⎨
⎪⎪⎩
− 1
m + 1

, i /= k,

+
m

m + 1
, i = k,

(2.7)

δi
k being the Kroneker symbol. According to the definition (2.7), it is

m∑
i=0

δ̃i
k =

m∑
k=0

δ̃i
k = 0. (2.8)

In addition, the metric tensor in σm is defined as [5]

g̃ij
def= −1

2
δ̃h
i δ̃

k
j �

2
hk,

(
i, j, h, k = 0, 1, . . . , m

)
(2.9)

being �2
hk

def= (Vk − Vh)
2 = (ek − eh)

2.
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2.2. Measures of the m-Simplex

Let

Lij
def= Vj − Vi

(
= ej − ei

)
, lij

def=
〈
Lij ,Lij

〉
, (2.10)

by using the ordinary wedge product of the vectors ej1 , . . . , ejp , we can define the p-form ω,

ω =
1
p!

∑
j1,...,jm

ωj1...jpej1 ∧ · · · ∧ ejp , (2.11)

whose affine components are ωj1...jp def= 〈ω, ej1 ∧ ej2 ∧ · · · ∧ ejp〉 [14].
The euclidean measure of them-simplex σ (volume) is [14]

εΩ2 def=
1
m!

|L01 ∧ · · · ∧ L0m|, (2.12)

from where, it follows that

Ω2 =
(

1
m!

)3 ∑
j1 ,...,jm
k1,...,km

εj1...jmεk1...km
m∏
a=1

l2jaka , (2.13)

being

εj1...jm
def= ±1, (2.14)

according to the even/odd permutation j0, j1, . . . , jm of the indices 0, 1, . . . , m.
In particular, the volume of each p-face σi1...im−p (see also [9]) is

Ω2
i1...im−p =

(
−1
2

)p( 1
p!

)3 ∑
j1 ,...,jp
k1,...,kp

εj1...jp εk1...kp
p∏

a=1

l2jaka
(
0 < p ≤ m

)
, (2.15)

where j1, . . . , jp, k1, . . . , kp /= i1, . . . , im−p.

3. m-Dimensional Homothety

Let I(σi) be the subspace of R
m to which σi belongs; it can be easily proved that [14]

∀ v ∈ I(σi)
〈
ni,v
〉
= 0 ( i fixed ), (3.1)
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where the normal vector ni is defined as

ni def= −mΩ
Ωi

ei, hi def=
mΩ
Ωi

. (3.2)

The above definition of vector orthogonal to a (m − 1)-face allows us to characterize
the m-parallelism of simplexes as follows. Let σ,

	
σ be two simplexes in R

m; let σi,
	
σi be the ith

(m − 1)-faces of σ and
	
σ, respectively, and let ni,

	
n
i
be their normal vectors, then we say that

σ ism-parallel to
	
σ ( σ‖m	

σ) if and if only σi‖	σi, that is, ni =
	
n
i
(i = 0, . . . , m).

Let ϕ be a map

ϕ : R
m −→ R

m, σ
ϕ�−→ 	

σ (3.3)

such that
(1) ϕ is a bijective simplicial map on σ,
(2) the s-adjacent faces of σ correspond (under the map ϕ) to s-adjacent faces of

	
σ,

(3) σ and
	
σ are m-parallel.

We also assume that this transformation depends on the edge vectors and in particular
on the edge lengths, so that any quantity, defined on the simplex, transforming under the action of
ϕ, is a function of the edge lengths. Furthermore, we assume the following conditions:

(4) there exists a fixed point under the action of ϕ:

∃O ∈ R
m | ϕ(O) ≡ O, (3.4)

(5) each (m − 1)-face σi translates of an amount t ∈ [0,∞).
Let us choose as a fixed point one of the vertices, for example, V0. We define this

bijective simplicial map applying any P ∈ σ into
	

P ∈ 	
σ (t ∈ [0,∞)) as

	

P
def= P + t

Ω0

mΩ

m∑
i=0

λiL0i; (3.5)

in particular, this function acts on any vertex Vi as

	

V i = Vi + t
Ω0

mΩ
L0i,

(
	

V 0 = V0

)
, (3.6)

so that we can easily prove that all the previous conditions are easily satisfied [14]. According
to the above equations, each edge transforms as

	
Lij =

(
1 + t

Ω0

mΩ

)
Lij , (3.7)

where
	
Lij =

	

V j −
	

V i.
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3.1. Variation Law of the p-Faces of σ

The variation law of the edge lengths, resulting from (3.7), is given by the formula

	

l ij =
(
1 + t

Ω0

mΩ

)
lij , (3.8)

where lij is the length of the edge Lij , and
	

l ij is the length of the edge
	
Lij .

According to (2.13), the volumeΩ is a homogeneous function of degreem of them(m+
1)/2 variable {l2ij}i<j , so that its variation law is

	

Ω =
(
1 + t

Ω0

mΩ

)m

Ω, (3.9)

and for any p-face,

	

Ωi1...im−p =
(
1 + t

Ω0

mΩ

)p

Ωi1...im−p
(
0 < p < m

)
; (3.10)

analogously, taking into account the definition (5.5)2, we have the transformation law of hi:

	

hi = m

(
1 + t

Ω0

mΩ

)
hi. (3.11)

There follows, for the fundamental vectors of
	
σ, that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

	
e i

def=
	

V i −
	

G =
(
1 + t

Ω0

mΩ

)
ei,

	
n
i

= ni,

	
e
i

=

	

Ωi/Ωi
	

Ω/Ω
ei =
(
1 + t

Ω0

mΩ

)−1
ei.

(3.12)

4. Self-Similar Structure

Let (Rn, d) be the complete metric space with the standard Euclidean metric d, and letK(Rn)
be the set

K(Rn) =
{
K ⊆ R

n : K is a nonempty compact set
}
. (4.1)

The iterated function system (IFS)

{wi} = (Rn, d,w1, w2, . . . , wn) (4.2)
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is the finite set of contractions wi on the complete metric space (Rn, d), being the contraction
w defined as

d
(
w(x), w

(
y
)) ≤ cd

(
x, y
)
, ∀x, y ∈ R

n, (4.3)

with c contraction coefficient.
For each A ∈ K(Rn), the (IFS) contracting mapping is

w : A ∈ K(Rn) −→ w1(A)
⋃

· · ·
⋃

wn(A) ∈ K(Rn), (4.4)

with contraction coefficient c = max{c1, . . . , cn}. Each function wi usually is linear, or more
generally an affine transformation, but sometimes it can be nonlinear, including projective
and Möbius transformations [27].

According to the Banach fixed-point theorem (see, e.g., [36]), every contraction
mapping on a nonempty complete metric space has a unique fixed point, so that there exists
a unique compact (i.e., closed and bounded) fixed set A such that A = w(A). The set A is
also known as the fixed set of the Hutchinson operator [28].

One way of constructing such fixed set is to start with an initial set A and by iterating
the actions of w. Hence,

A =
⋃

i1,...,ih=1,...,n

wi1 ◦ · · · ◦wih(A), (4.5)

so that A is a self-similar set, expressed as the finite union of its conformal copies, each one
reduced by a factor ch.

The attractor A of IFS is characterized by a similarity dimension as follows.

Definition 4.1. Given an IFS of n contraction mappings with the same contraction coefficient
c, the similarity dimension is defined as

s =
log n

log 1/c

(
= − log n

log c

)
. (4.6)

Sets having noninteger similarity dimensions are called fractal sets, or simply fractals.
There follows that the iterated function systems are a method of constructing fractals; the
resulting constructions are always self-similar such that w(μx) = μHw(x). Hence, each map
w is also called a self-similar map [27].

5. Fractal Structures from Simplicial Maps

In this section, some examples of self-similar (scale invariant) structures obtained by IFS on
simplexes are given in R

2. In particular, the IFS will be defined by affine transformations, as
conformal maps of the affine metrics.
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In the following, wewill introduce some self-similarmaps defined both on 2-simplexes
and 1-simplexes, so that, from (4.1),

K
(
R

2
)
=
{
σ2; σ1;σ0

}
,

w : K
(
R

2) �−→ K
(
R

2).
(5.1)

In particular, let σ2 be the simplex [V1, V2, V3], then it is

K
(
R

2
)
= {[V1, V2, V3]; [V1, V2], [V1, V3], [V2, V3]; [V1], [V2], [V3]}, (5.2)

so that a map w on K(R2) could be the more general function defined on any face of σ2.

Examples. If the skeleton of σ2 is the set of vertices {V1, V2, V3}with V1 = (x1, y1),V2 = (x2, y2),
and V3 = (x3, y3), the affine map w is defined by the matrix

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.3)

and the constant vector

U = (u1, u2, u3, u4, u5, u6). (5.4)

The function w maps a 2-simplex into a 2-simplex whereas, by a matrix product, the vector

X =
(
x1, y1, x2, y2, x3, y3

)
(5.5)

is mapped into the vector

WX +U, (5.6)
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so that the skeleton of w(σ2) is given by the vector WX + U. For instance, a rotation with
fixed point V1 is given by the matrix

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 a33 a34 0 0

0 0 a43 a44 0 0

0 0 0 0 a55 a56

0 0 0 0 a65 a66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.7)

with

a33a44 − a34a43 = ±1, a55a66 − a56a65 = ±1, (5.8)

and the vector U = {0, 0, 0, 0, 0, 0}.

Some more special maps will be given in the following where, in particular, we
consider, without restriction, some special maps on the 1-faces of σ2 such that

w
(
σ2
)
= w1

(
σ2
1

)
∪w2

(
σ2
2

)
∪w3

(
σ2
3

)
, #w

(
σ2
)
= 3. (5.9)

In this case, the matrix W , acting on σ2, follows from the direct sum of lower-order matrices
acting on σ1 simplexes, as follows:

(a) the first vertex V1 remains fixed, and the map w on σ2 is a consequence of the
transformation of the simplex σ1 = [V2, V3], that is, by defining

I =

(
1 0

0 1

)
, W1 =

⎛
⎜⎜⎜⎜⎜⎝

a33 a34 a35 a36

a43 a44 a45 a46

a53 a54 a55 a56

a63 a64 a65 a66

⎞
⎟⎟⎟⎟⎟⎠, (5.10)

it is

W = I ⊕W1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 a33 a34 a35 a36

0 0 a43 a44 a45 a46

0 0 a53 a54 a55 a56

0 0 a63 a64 a65 a66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.11)
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(b) the second vertex V2 remains fixed, and the map w on σ2 is a consequence of the
transformation of the simplex σ1 = [V1, V3], so that

W2 =

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 a15 a16

a21 a22 a25 a26

a51 a52 a55 a56

a61 a62 a65 a66

⎞
⎟⎟⎟⎟⎟⎠ ,

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 0 0 a15 a16

a21 a22 0 0 a25 a26

0 0 1 0 0 0

0 0 0 1 0 0

a51 a52 0 0 a55 a56

a61 a62 0 0 a65 a66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5.12)

(c) the third vertex V3 remains fixed, and the map w on σ2 is a consequence of the
transformation of the simplex σ1 = [V1, V2], that is,

W = W3 ⊕ I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 a14 0 0

a21 a22 a23 a24 0 0

a31 a32 a33 a34 0 0

a41 a42 a43 a44 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.13)

being

W3 =

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞
⎟⎟⎟⎟⎟⎠. (5.14)

In the following, we will characterize the transformation on a 2-simplex as a result
of iterative maps on its boundary 1-simplexes. These maps on 1-simplexes are defined by
the matrices W1,W2, and W3, applied to the vectors of coordinates of [V2, V3], [V1, V3], and
[V1, V2], respectively.
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C C′

B ′

A

B

C

B

A C′

B ′

Figure 1: Homothety map.

5.1. Homothety

Let us consider the 2-simplex σ2 = {A,B,C} and the map (Figure 1)

σ2 = {A,B,C} =⇒ w
(
σ2
)
=
{
A,B′, C′}, (5.15)

such that nC = ±nC′ . This map, according to (5.9), is obtained as a combination of 3 maps
acting on the faces of σ2, since

w
(
σ2
)
= w1([A,B]) ∪w2([B,C]) ∪w3([A,C]). (5.16)

This map is a scale invariant, since there results

�2AB = λ�2A′B′ , (0 ≤ λ), (5.17)

�2BC = λ�2B′C′ , and �2AC = λ�2A′C′ , as well.
So that when λ < 1, we have a contraction and a dilation when λ > 1.
Moreover, according to (2.9), the metric g̃ ′

ij of the transformed simplex is given by a
conformal transformation g̃ ′

ij = λg̃ij .

5.2. Sierpinski Gasket

As a first example of fractal defined by IFS on simplexes, we will consider the Sierpinski
gasket. To this end, let us introduce an orthogonal coordinate system 0xy in R

2 and three
homothety maps w1, w2, and w3. Each wi is uniquely and completely determined once we
know as it acts on the paired points A = (xA, yA), B = (xB, yB), and C = (xC, yC), vertices of
the 2-simplex [σ2] = [A,B,C].
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In order to define the Sierpinski gasket by IFS of maps, we consider a sequence of
maps that, at each step, shrink the area of σ2 by a factor 0.25 and move the edges by a suitable
homothety (Figure 2). In particular, the 3 maps are explicitly defined as follows:

w1 :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xA

yA

xB

yB

xC

yC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=⇒ M ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xA

yA

xB

yB

xC

yC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

w2 :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xA

yA

xB

yB

xC

yC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=⇒ M ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xA

yA

xB

yB

xC

yC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1/2

0

1/2

0

1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

w3 :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xA

yA

xB

yB

xC

yC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=⇒ M ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xA

yA

xB

yB

xC

yC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/2

0

1/2

0

1/2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5.18)

where M is the matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/2 0 0 0 0 0

0 1/2 0 0 0 0

0 0 1/2 0 0 0

0 0 0 1/2 0 0

0 0 0 0 1/2 0

0 0 0 0 0 1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.19)

Once we get the vertices ofw(σ2), we can easily define the map for each point P of the
σ2 convex domain.
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Figure 2: Fundamental maps.

Comment. In fact, let λ1, λ2, and λ3 be the barycentric coordinates of a given point P inside
σ2, as given by (2.1), then we can write the barycentric expansion of P ≡ (x, y) in terms of the
coordinates of vertices A,B, and C as

x = λ1xA + λ2xB + λ3xC,

y = λ1yA + λ2yB + λ3yC.
(5.20)

Substituting λ3 = 1 − λ1 − λ2 into the above and rearranging, this linear transformation can be
written as

H ·Λ = P − C, (5.21)
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where Λ is the vector of barycentric coordinates, andH is the matrix

H =

(
xA − xC xB − xC

yA − yC yB − yC

)
. (5.22)

Since H is invertible, we can easily obtain the barycentric coordinates of P = (x, y):

λ1 =

(
yB − yC

)
(x − xC) + (xC − xB)

(
y − yC

)
(
yB − yC

)
(xA − xC) + (xC − xB)

(
yA − yC

) ,
λ2 =

(
yC − yA

)
(x − xC) + (xA − xC)

(
y − yC

)
(
yC − yA

)
(xB − xC) + (xA − xC)

(
yB − yC

) ,
λ3 = 1 − λ1 − λ2.

(5.23)

According to (5.9) each map wi, i = {1, 2, 3} is a contraction (dilation) of the σ2 faces,

such that the union gives rise to a 2-simplex (Figure 2). Any P ∈ [σ2] is mapped into
	

P ∈ 	
σ =

wi([σ2]) as

	

P = P − 1
2

m∑
i=0

λiL0i. (5.24)

Moreover, each vertex in the wi([σ2]), i = 1, 2, 3 can be expressed as in (3.6)

	

V i = Vi − 1
2
L0i, (5.25)

so that

	
Lij =

1
2
Lij ,

	

l ij =
1
2
lij ,

	

Ω =
1
4
Ω.

(5.26)

Reiterating this process for each remaining triangle, at the step k, we will obtain the
compact set Tk given by 3k triangles whose edges are contracted by (1/2k). In other words,

	
Lij =

1
2k

Lij ;
	

l ij =
1
2k

lij ,

	

Ω =
1
22k

Ω.

(5.27)

Finally, we note that through the three simplicial maps inR
2, providedwith the natural

metric d, we are able to construct the IFS (R2, d,w1, w2w3) that has the well-known Sierpinski
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Figure 3: Sierpinski gasket.

gasket T =
⋂

k Tk as fractal attractor. So, we have obtained the Sierpinski gasket, as the
combination of homothety maps (Figure 2). The iterating function will generate the known
fractal-shaped curve (Figure 3).

The Sierpinski gasket supplies one of the most simple cases of construction of fractals
through simplicial maps. In fact, the fractal structure is obtained acting on the 2-simplex only
with homothetic transformations. Sometimes a fractal object can be constructed not only
acting on simplexes with one map, but considering the compositions of different suitable
transformations. Hereafter, in order to obtain another fractal object, we will consider, in
details, some more elementary maps: the translation and the rotation (which are special cases
of the matrix W).

6. Von Koch Curve

The von Koch curve [27, 28] can be obtained as a combination of homothety, translation, and
rotation maps, so that the von Koch snowflake is obtained by their iteration.

6.1. Translation

Let the translation operator be defined as the operator

T : R
m −→ R

m, σ
T�−→ 	

σ (6.1)

such that

T(P) = P + v, (6.2)
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where v = (v1, v2, . . . , vm) is a given vector of R
m, then the image of a simplex σ under the

function T is the translation of σ by T so that any vertex Vi is transformed into

	

V i = Vi + v. (6.3)

Since in a Euclidean space, any translation is an isometry, we have no variation of the edge
lengths of σ.

According to the definitions (5.3), (5.4) in R
2, it is

U = (v1, v2, v1, v2, v1, v2), v1 = Cnst., v2 = Cnst., (6.4)

being W the zero matrix.

6.2. Rotation

Rotation is characterized by having a fixed point, however, like the translation which is an
isometry. This is like the previous maps on simplexes that can be defined by a suitable matrix
(5.3). R

2 rotation is defined by (5.7), which however can be expressed by a single parameter
(rotation angle). Hence, in two dimensions, a rotation with fixed point V0 is the operator

R : R
2 −→ R

2, σ
R�−→ 	

σ (6.5)

such that

R(P) = V0 + Rθ(P − V0), (6.6)

where Rθ is the matrix

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
, (6.7)

so that (5.7), when applied to the simplex σ2 = [V0, V1, V2]with one fixed vertex, becomes

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 cos θ − sin θ 0 0

0 0 sin θ cos θ 0 0

0 0 0 0 cos θ − sin θ

0 0 0 0 sin θ cos θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.8)
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With respect to an orthogonal coordinate system with origin O, for any P ∈ σ, we

define the rotation as the bijective simplicial map which applies P ∈ σ into
	

P ∈ 	
σ,

	

P
def= [Rθ(P − v)] + v, (6.9)

where v = V0 −O; in particular, the vertices V0, V1, and V2 are transformed into

	

V 0 = V0,
	

V i = [Rθ(L0i +O)] + (V0 −O), (i = 1, 2). (6.10)

6.3. Von Koch Snowflake

Let 0xy be an orthogonal coordinate system for R
2, and let σ2 = [A,B,C] be a two simplex

under the homothety map. According to (5.16), this map can be realized by a composition of
maps on the 1-simplexes σ1 = [A,B], σ1 = [B,C], and σ1 = [A,C]. The coordinates of vertices
are A = (xA, yA), B = (xB, yB), and C = (xC, yC), respectively. In the following we will
give both the construction of the Koch curve as IFS on σ1 and the construction of the Koch
snowflake as IFS on σ2.

6.3.1. Von Koch Curve

Koch curve can be classically constructed by starting with a line segment, then recursively
altering the shape as follows: divide the line segment into three segments of equal length;
draw an equilateral triangle that has the middle segment from step 1 as its base and points
outward; remove the line segment that is the base of the triangle from step 2 (see Figure 5).

Following the classical construction, we consider the following maps on 1-simplexes:

w1 :

⎛
⎜⎜⎜⎜⎜⎝

xA

yA

xB

yB

⎞
⎟⎟⎟⎟⎟⎠ =⇒ M ·

⎛
⎜⎜⎜⎜⎜⎝

xA

yA

xB

yB

⎞
⎟⎟⎟⎟⎟⎠,

w2 :

⎛
⎜⎜⎜⎜⎜⎝

xA

yA

xB

yB

⎞
⎟⎟⎟⎟⎟⎠ =⇒ M ·

⎛
⎜⎜⎜⎜⎜⎝

xA

yA

xB

yB

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝

2/3

0

2/3

0

⎞
⎟⎟⎟⎟⎟⎠,

(6.11)

where M is the matrix

M =

⎛
⎜⎜⎜⎜⎜⎝

1/3 0 0 0

0 1/3 0 0

0 0 1/3 0

0 0 0 1/3

⎞
⎟⎟⎟⎟⎟⎠. (6.12)
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Hence, w1 is a factor of the homothety w having A as a fixed vertex, while w2 leaves B
unchanged:

w1(P) = P − 2
3
λiL0i, L0i = Vi −A,

w2(P) = P − 2
3
λiL0i, L0i = Vi − B.

(6.13)

Moreover, each vertex in the wi([σ1]), i = 1, 2, can be expressed as in(3.6)

	

V i = Vi − 2
3
L0i. (6.14)

Let us now consider the transformation, on two steps, which first rotates w1([A,B])
of an angle θ = 60◦ around the fixed point A, and then it translates the rotated simplex by a
vector v = (1/3, 0).

So that we obtain

w3 :

⎛
⎜⎜⎜⎜⎜⎝

xA

yA

xB

yB

⎞
⎟⎟⎟⎟⎟⎠ =⇒ M′ ·

⎛
⎜⎜⎜⎜⎜⎝

xA

yA

xB

yB

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝

1/3

0

1/3

0

⎞
⎟⎟⎟⎟⎟⎠, (6.15)

where M′ is the matrix

M′ =

⎛
⎜⎜⎜⎜⎜⎝

1/6 −√3/6 0 0
√
3/6 1/6 0 0

0 0 1/6 −√3/6

0 0
√
3/6 1/6

⎞
⎟⎟⎟⎟⎟⎠. (6.16)

Finally, let us apply the transformation which first rotates w1([A,B]) of an angle θ =
120◦ around the fixed point A, and then it translates the rotated simplex by the vector v =
(2/3, 0). Accordingly, it is

w4 :

⎛
⎜⎜⎜⎜⎜⎝

xA

yA

xB

yB

⎞
⎟⎟⎟⎟⎟⎠ =⇒ M′′ ·

⎛
⎜⎜⎜⎜⎜⎝

xA

yA

xB

yB

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝

2/3

0

2/3

0

⎞
⎟⎟⎟⎟⎟⎠, (6.17)
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Figure 4: Image of w([σ1]) =
⋃

i = 1,...,4 wi([σ1]), where the 1-simplex σ1 is the unitary interval.

where M′′ is the matrix

M′′ =

⎛
⎜⎜⎜⎜⎜⎝

−1/6 −√3/6 0 0
√
3/6 −1/6 0 0

0 0 −1/6 −√3/6

0 0
√
3/6 −1/6

⎞
⎟⎟⎟⎟⎟⎠. (6.18)

Since, as previously shown, rotation and translation are isometries, for each wi([σ1]),
i = 1, 2, 3, 4, we obtain

	
Lij =

1
3
Lij ,

	

l ij =
1
3
lij ,

	

Ω =
1
3
Ω.

(6.19)

In order to visualize the von Koch pattern, let us consider the 1-simplex {A,B} =
{{0, 0}, {1, 0}}; since the point A has been chosen as the origin of the reference system, and
w3 and w4 are obtained as rotation leaving fixed the origin, the transformed instances can be
easily computed so that, at the first step, the IFSmaps on 1-simplexes can be drawn (Figure 4).

Reiterating this process for each remaining segment, at the step k we will obtain the
compact set Tk made of 22k segments whose sides are contracted by a factor (1/3)k. The IFS
map (R1, d,w1, w2, w3, w4) gives us the Koch curve L =

⋂
k Lk with similarity dimension

equal to

s =
log 4

log 1/(1/3)
=

log 4
log 3

. (6.20)

This is also the similarity dimension of the Koch snowflake [27, 28]. So, the Koch curve
(Figure 5) is obtained as a combination of IFS simplicial maps generating the known fractal-
shaped curve.

6.3.2. Koch Flake

According to (5.16) and to the examples previously given, Koch flake (snowflake) can be
constructed in a non-classical approach as IFS of maps on a 2-simplex. Koch snowflake can
be seen as the image of a suitable system of iterated homotheties acting on a 2-simplex, given
by suitable translations of the boundary 1-simplexes.
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Figure 5: Koch curve.

In this process, the total length of each side of a triangle increases by one-third, and
thus, the total length at the kth step will be (4/3)k of the original triangle perimeter.

7. Conclusion

In this paper, a nonclassical approach to fractal generation based on IFS of maps on simplexes
has been given. Some of the most popular fractals, as the Sierpinski gasket and the von Koch
flake, were obtained by iterative maps on simplexes. All maps were also intrinsically defined
by using the affine (barycentric) coordinates and some basic measures on simplexes. The
method proposed in this paper could be used to generate some new classes of fractals in any
dimension, by simply defining suitable IFS on simplexes, thus opening new perspectives in
fractal lattice geometry.
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[17] F. Vögtle, Ed., Dendrimers, Springer, Berlin, Germany, 1998.
[18] C. Cattani and A. Paoluzzi, “Boundary integration over linear polyhedra,” Computer-Aided Design,

vol. 22, no. 2, pp. 130–135, 1990.
[19] C. Cattani and A. Paoluzzi, “Symbolic analysis of linear polyhedra,” Engineering with Computers, vol.

6, no. 1, pp. 17–29, 1990.
[20] S. Y. Chen, H. Tong, and C. Cattani, “Markov models for image labeling,” Mathematical Problems in

Engineering, vol. 2012, Article ID 814356, 18 pages, 2012.
[21] S. Y. Chen, H. Tong, Z. Wang, S. Liu, M. Li, and B. Zhang, “Improved generalized belief propagation

for vision processing,” Mathematical Problems in Engineering, vol. 2011, Article ID 416963, 12 pages,
2011.

[22] J. P. Blondeau, C. Orieux, and L. Allam, “Morphological and fractal studies of silicon nanoaggregates
structures prepared by thermal activated reaction,”Materials Science and Engineering B, vol. 122, no. 1,
pp. 41–48, 2005.

[23] C. C. Doumanidis, “Nanomanufacturing of random branchingmaterial architectures,”Microelectronic
Engineering, vol. 86, no. 4-6, pp. 467–478, 2009.
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