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Discrete cosine transform (DCT) and inverse DCT (IDCT) have been widely used in many image
processing systems and real-time computation of nonlinear time series. In this paper, the unified
DCT/IDCT algorithm based on the subband decompositions of a signal is proposed. It is derived
from the data flow of subband decompositions with factorized coefficient matrices in a recursive
manner. The proposed algorithm only requires (4(log2n)−1 − 1) and (4(log2n)−1 − 1)/3 multiplication
time for n-point DCT and IDCT, with a single multiplier and a single processor, respectively.
Moreover, the peak signal-to-noise ratio (PSNR) of the proposed algorithm outperforms the
conventional DCT/IDCT. As a result, the subband-based approach to DCT/IDCT is preferable
to the conventional approach in terms of computational complexity and system performance. The
proposed reconfigurable architecture of linear array DCT/IDCT processor has been implemented
by FPGA.

1. Introduction

The discrete cosine transform (DCT) first proposed by Ahemd et al. [1] is a Fourier-like
transform. While the Fourier transform decomposes a signal into sine and cosine functions,
DCT only makes use of cosine functions with the property of high energy compaction. As
DCT is preferable for a trade-off between the optimal decorrelation known as the Karhunen-
Loève transform and computational simplicity [2], it has been extensively used in many
applications [3–14]. In particular, two-dimensional (2D) DCT, such as 8 × 8 DCT, has been
adopted in some international standards such as JPEG, MPEG, and H.264 [15]. In MP3
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audio codec, the subband analysis and synthesis filter banks requires the use of 32-point
DCT/integer DCT to expedite computation [16]. Other audio compression standards, for
example, the Dolby Digital AC-3 codec, utilize a modified DCT with 256 or 512 data points.

Many algorithms have been proposed for DCT/IDCT [17–21]. In which, the trans-
portation matrix is factorized into products of simpler matrices. It is noted that, however,
the factorized matrices are no longer as regular as the fast Fourier transform (FFT); thus,
these algorithms can only achieve moderate computational speed. Specifically, the dedicated
data paths deduced from the signal flow graphs (SFGs) of the above algorithms need to
be optimized for performance enhancement, which is computationally intensive, and the
custom-designed DCT is often complicated and cannot be easily scalable for variable data
points.

In this paper, we propose a novel linear-array architecture based on the subband
decomposition of a signal for scalable DCT/IDCT. The remainder of this paper proceeds as
follows. First, the subband-based 8-point DCT/IDCT algorithm [22] is reviewed in Section 2.
Its extension to n-point DCT/IDCT called the unified subband-based algorithm is proposed
in Section 3. Section 4 presents the analysis of system complexity. The reconfigurable architec-
ture of linear-array DCT/IDCT processor implemented by FPGA (field programmable gate
array) is proposed in Section 5, and the conclusion can be found in Section 6.

2. The Subband-Based 8-Point DCT/IDCT Algorithm

The discrete cosine transform (DCT) of an 8-point signal, [8], is defined as

c[k] = α[k]
7∑

n=0

x[n] cos
[
(2n + 1)kπ

16

]
, k = 0, 1, . . . , 7, (2.1)

where α[0] = 1/(2
√
2), and α[k] = 1/2 for k > 0. It can be rewritten in the following matrix

form:

c8 = D8 · x8, (2.2)

where c8 = [c[0] · · · c[7]]T , x8 = [x[0] · · ·x[7]]T , and the transformation matrix D8 is as
follows:

D8 =
1√
8
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

a c d f −f −d −c −a
b e −e −b −b −e e b

c −f −a −d d a f −c
1 −1 −1 1 1 −1 −1 1

d −a f c −c −f a −d
e −b b −e −e b −b e

f −d c −a a −c d −f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.3)
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where a =
√
2 cos(π/16), b =

√
2 cos(2π/16), c =

√
2 cos(3π/16), d =

√
2 cos(5π/16), e =√

2 cos(6π/16), and f =
√
2 cos(7π/16).

Let xL[n] and xH[n] denote the low-frequency and high-frequency subband signals of
x[n], respectively [22], which can be obtained by

xL[n] =
1
2
{x[2n] + x[2n + 1]},

xH[n] =
1
2
{x[2n] − x[2n + 1]},

(2.4)

where n = 0, 1, 2, 3. As one can see, the DCT of x[8] can be rewritten as

c[k] =
3∑

n=0

α[k]x[2n] cos
(
(4n + 1)kπ

16

)
+

3∑

n=0

α[k]x[2n + 1] cos
(
(4n + 3)kπ

16

)

= 2 cos
(
πk

16

) 3∑

n=0

α[k]xL[n] cos
(
(2n + 1)kπ

8

)

︸ ︷︷ ︸
cL[k]

+ 2 sin
(
πk

16

) 3∑

n=0

α[k]xH[n] sin
(
(2n + 1)kπ

8

)

︸ ︷︷ ︸
sH[k]

,

(2.5)

where cL[k] and sH[k] are the subbands DCT and DST (discrete sine transform) of x[n],
respectively. Its vector form is as follows:

c8 =
[
TSB DCT,8 TSB DCT,8

]
8×8 ·M8 · x8

=
[
TSB DCT,8 TSB DCT,8

]
8×8 ·

⎡

⎣
xL

xH

⎤

⎦

8×1

= TSB DCT,8 · xL︸ ︷︷ ︸
ĉL,8

+ TSB DST,8 · xH︸ ︷︷ ︸
ŝH,8

,

(2.6)

where TSB DCT,8 and TSB DST,8 denote the 8 × 4 matrices of the subband DCT and DST,
respectively, xL = [xL[0] · · ·xL[3]]

T , xH = [xH[0] · · ·xH[3]]T and c8 = [c[0] · · · c[7]]T .
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According to (2.4), the 8-point matrix M8 can be written as

M8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.5 0 0 0 0 0 0

0 0 0.5 0.5 0 0 0 0

0 0 0 0 0.5 0.5 0 0

0 0 0 0 0 0 0.5 0.5

0.5 −0.5 0 0 0 0 0 0

0 0 0.5 −0.5 0 0 0 0

0 0 0 0 0.5 −0.5 0 0

0 0 0 0 0 0 0.5 −0.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.7)

Due to the orthogonality between TSB DCT,8 and TSB DST,8, xL[n] and xH[n] can be obtained
from c[k] by

xL[n] =
7∑

n=0

α[k] cos
(
πk

16

)
c[k] cos

(
(2n + 1)kπ

8

)
, n = 0, . . . , 7,

xH[n] =
7∑

n=0

α[k] sin
(
πk

16

)
c[k] sin

(
(2n + 1)kπ

8

)
, n = 0, . . . , 7.

(2.8)

In [22], the multistage subband decomposition is as follows. cL,4 and cH,4 denote the DCTs of
xL and xH , respectively, which can be obtained by cL,4 = D4 · xL and cH,4 = D4 · xH , where D4

is the transformation matrix

D4 =
1√
4
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

√
2 cos

π

8

√
2 cos

3π
8

−√2 cos
3π
8

−√2 cos
π

8
1 −1 −1 1

√
2 cos

3π
8

−√2 cos
π

8

√
2 cos

π

8
−√2 cos

3π
8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.9)
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We have

ĉL,8 = TSB DCT,8 ·D−1
4 · cL,4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.412 0 0 0

0 1.3870 0 0

0 0 1.3066 0

0 0 0 1.1759

0 0 0 0

0 0 0 −0.7857
0 0 −0.5412 0

0 −0.2759 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· cL,4,

ŝH,8 = TSB DST,8 ·D4
−1 · cH,4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0.2549 0 −0.1056 0

0 0.5 0 −0.2071
0.3007 0 0.7259 0

0 0.5412 0 1.3066

0.4500 0 1.0864 0

0 1.2071 0 −0.5
1.2815 0 −0.5308 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· cH,4.

(2.10)

Similarly, the 4-point DCT computations of cL,4 and cH,4 can be obtained by

cL,4 =
[
TSB DCT,4 TSB DCT,4

]
4×4 ·M4 · xL

= TSB DCT,4 · xLL︸ ︷︷ ︸
ĉLL,4

+ TSB DST,4 · xLH︸ ︷︷ ︸
ŝLH,4

, (2.11)

cH,4 =
[
TSB DCT,4 TSB DCT,4

]
4×4 ·M4 · xH

= TSB DCT,4 · xHL︸ ︷︷ ︸
ĉHL,4

+ TSB DST,4 · xHH︸ ︷︷ ︸
ŝHH,4

, (2.12)

where xLL = [xLL[0] xLL[1]]
T , xLH = [xLH[0] xLH[1]]T , xHL = [xHL[0] xHL[1]]

T , xHH =
[xHH[0] xHH[1]]T , and

xLL[n] =
1
2
{xL[2n] + xL[2n + 1]}, (2.13)

xLH[n] =
1
2
{xL[2n] − xL[2n + 1]}, (2.14)
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xHL[n] =
1
2
{xH[2n] + xH[2n + 1]}, (2.15)

xHH[n] =
1
2
{xH[2n] − xH[2n + 1]} (2.16)

for n = 0, 1.
The 4-point distributed matrix M4, can be defined as

M4 =

⎡
⎢⎢⎢⎢⎢⎣

0.5 0.5 0 0

0 0 0.5 0.5

0.5 −0.5 0 0

0 0 0.5 −0.5

⎤
⎥⎥⎥⎥⎥⎦
. (2.17)

Let cLL,2, cLH,2, cHL,2, and cHH,2 be the 2-point DCT of xLL, xLH , xHL, and xHH , respectively,
which can be computed by using the following 2-point transformation matrix, D2:

D2 =
1√
2
·
[
1 1

1 −1

]
. (2.18)

We have

ĉLL,4 = TSB DCT,4 · xLL = TSB DCT,4 ·D−1
2 · cLL,2 =

⎡
⎢⎢⎢⎢⎢⎣

1.4142 0

0 1.3066

0 0

0 −0.5412

⎤
⎥⎥⎥⎥⎥⎦
· cLL,2, (2.19)

ĉHL,4 = TSB DCT,4 · xHL = TSB DCT,4 ·D−1
2 · cHL,2 =

⎡
⎢⎢⎢⎢⎢⎣

1.4142 0

0 1.3066

0 0

0 −0.5412

⎤
⎥⎥⎥⎥⎥⎦
· cHL,2, (2.20)

ŝLH,4 = TSB DST,4 · xLH = TSB DST,4 ·D−1
2 · cLH,2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0

0.5412 0

0 1.4142

1.3066 0

⎤
⎥⎥⎥⎥⎥⎦
· cLH,2, (2.21)
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ŝHH,4 = TSB DST,4 · xHH = TSB DST,4 ·D−1
2 · cHH,2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0

0.5412 0

0 1.4142

1.3066 0

⎤
⎥⎥⎥⎥⎥⎦
· cHH,2. (2.22)

For the 2-point DCT computations of cLL,2, cLH,2, cHL,2, and cHH,2, let

xLLL[n] =
1
2
{xLL[2n] + xLL[2n + 1]}, (2.23)

xLLH[n] =
1
2
{xLL[2n] − xLL[2n + 1]}, (2.24)

xLHL[n] =
1
2
{xLH[2n] + xLH[2n + 1]}, (2.25)

xLHH[n] =
1
2
{xLH[2n] − xLH[2n + 1]}, (2.26)

xHLL[n] =
1
2
{xHL[2n] + xHL[2n + 1]}, (2.27)

xHLH[n] =
1
2
{xHL[2n] − xHL[2n + 1]}, (2.28)

xHHL[n] =
1
2
{xHH[2n] + xHH[2n + 1]}, (2.29)

xHHH[n] =
1
2
{xHH[2n] − xHH[2n + 1]}, (2.30)

where n = 0, we then have

cLL,2 =
[
TSB DCT,2 TSB DCT,2

]
2×2 ·M2 · xLL = TSB DCT,2 · xLLL︸ ︷︷ ︸

ĉLLL,2

+ TSB DST,2 · xLLH︸ ︷︷ ︸
ŝLLH,2

, (2.31)

cLH,2 =
[
TSB DCT,2 TSB DCT,2

]
2×2 ·M2 · xLH = TSB DCT,2 · xLHL︸ ︷︷ ︸

ĉLHL,2

+ TSB DST,2 · xLHH︸ ︷︷ ︸
ŝLHH,2

, (2.32)

cHL,2 =
[
TSB DCT,2 TSB DCT,2

]
2×2 ·M2 · xHL = TSB DCT,2 · xHLL︸ ︷︷ ︸

ĉHLL,2

+ TSB DST,2 · xHLH︸ ︷︷ ︸
ŝHLH,2

, (2.33)

cHH,2 =
[
TSB DCT,22 TSB DCT,2

]
2×2 ·M2 · xHH = TSB DCT,2 · xHHL︸ ︷︷ ︸

ĉHHL,2

+ TSB DST,2 · xHHH︸ ︷︷ ︸
ŝHHH,2

. (2.34)
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M2 is a 2-point matrix defined as

M2 =

[
0.5 0.5

0.5 −0.5

]
. (2.35)

Finally, according to equations (2.6)∼(2.33) together with (2.4), we have

c8 = K̃ · K̂ ·M8 · M̂8 · M̃8 · x8, (2.36)

where

K̃ =
[(
TSB DCT,8 ·D−1

4

)
8×4

(
TSB DCT,8 ·D−1

4

)
8×4

]

8×8
,

K̂ =

[(
TSB DCT,4 ·D−1

2

)
4×2

(
TSB DCT,4 ·D−1

2

)
4×2 04×2 04×2

04×2 04×2
(
TSB DCT,4 ·D−1

2

)
4×2

(
TSB DCT,4 ·D−1

2

)
4×2

]

8×8
.

(2.37)

The following matrix, M̂8, can derived from (2.12)∼(2.15).

M̂8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.5 0 0 0 0 0 0

0 0 0.5 0.5 0 0 0 0

0.5 −0.5 0 0 0 0 0 0

0 0 0.5 −0.5 0 0 0 0

0 0 0 0 0.5 0.5 0 0

0 0 0 0 0 0 0.5 0.5

0 0 0 0 0.5 −0.5 0 0

0 0 0 0 0 0 0.5 −0.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.38)

Similarly, the following matrix, M̃8, can be derived from (2.21)∼(2.28)

M̃8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.5 0 0 0 0 0 0

0.5 −0.5 0 0 0 0 0 0

0 0 0.5 0.5 0 0 0 0

0 0 0.5 −0.5 0 0 0 0

0 0 0 0 0.5 0.5 0 0

0 0 0 0 0.5 −0.5 0 0

0 0 0 0 0 0 0.5 0.5

0 0 0 0 0 0 0.5 −0.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.39)
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The decomposition matrix R8 can be defined as

R8 = 8 ·M8 · M̂8 · M̃8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 −1 −1 1 1

1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1

1 −1 −1 1 1 −1 −1 1

1 −1 −1 1 −1 1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.40)

and the coefficient matrix F8 can be defined as

F8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 0.9061 0.3753 0 0.1802 0 0 −0.0747
0 0 0 0.9239 0 0.3827 0 0

0 −0.3182 0.7682 0 0.2126 0 0 0.5133

0 0 0 0 0 0 1 0

0 0.2126 −0.5133 0 0.3182 0 0 0.7682

0 0 0 −0.3827 0 0.9239 0 0

0 −0.1802 −0.0747 1 0.9061 0 0 −0.3753

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.41)

According to (2.34), (2.38), and (2.39), we have

c8 =
√
2
4

· F8 · R8 · x8. (2.42)

The coefficient matrix F8 can be represented by the reordered coefficient matrix F̂8, preper-
mutation matrix T̂8 and post-permutation matrix T̃8, and can be written as

F8 = T̂8 · F̂8 · T̃8, (2.43)
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where the matrices F̂8, T̂8, and T̃8 can be defined as

F̂8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0.9238 0.3826 0 0 0 0

0 0 −0.3826 0.9238 0 0 0 0

0 0 0 0 0.9061 0.1802 0.3753 −0.0746
0 0 0 0 −0.1802 0.9061 −0.0746 −0.3753
0 0 0 0 0.2126 0.3181 −0.5132 0.7682

0 0 0 0 −0.3181 0.2126 0.7682 0.5132

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

T̂8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

T̃8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.44)

The reordered coefficient matrix F̂8 can be represented as

F̂8 =

⎡
⎢⎢⎢⎢⎢⎣

I 0 0 0

0 A 0 0

0 0 B C

0 0 D E

⎤
⎥⎥⎥⎥⎥⎦
. (2.45)



Mathematical Problems in Engineering 11

The computation of sub-coefficient matrix A can be written as

[
y1

y2

]
= A ·

[
x1

x2

]
=

[
a b

−b a

]
·
[
x1

x2

]
, (2.46)

where a = 0.9239 and b = 0.3827. The above can be rewritten as [20]

y1 = (b − a) · x2 + a · (x1 + x2), (2.47)

y2 = −(a + b) · x1 + a · (x1 + x2). (2.48)

Thus, the number of multiplications can be reduced to 3 for matrix A; this technique can also
be applied to matrices B, C, D, and E. As a result, the total number of multiplications of the
subband-based 8-point DCT is only 15.

Based on (2.40) and (2.41), the corresponding subband-based IDCT can be obtained
by

x8 = 2
√
2 · R−1

8 · T̃−1
8 · F̂−18 · T̂−1

8 · c8, (2.49)

where R−1
8 is the inverse decomposition matrix. As the decomposition matrix R8 is orthonor-

mal, R−1
8 can be derived from the transportation of R8

R−1
8 = RT

8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 −1 −1 1 1

1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1

1 −1 −1 1 1 −1 −1 1

1 −1 −1 1 −1 1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.50)

F̂−18 is the inverse reordered coefficient matrix, T̂−1
8 is the inverse prepermutation matrix

and T̃−1
8 is the inverse post-permutation matrix. Since the reordered coefficient matrix F̂8,

prepermutationmatrix T̂8 and post-permutationmatrix T̃8 are all orthonormal, threematrices
F̂−18 , T̂−1

8 , and T̃−1
8 can be written as
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F̂−18 = F̂T8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0.9238 −0.3826 0 0 0 0

0 0 0.3826 0.9238 0 0 0 0

0 0 0 0 0.9061 −0.1802 0.2126 −0.3181
0 0 0 0 0.1802 0.9061 0.3181 0.2126

0 0 0 0 0.3753 −0.0746 −0.5132 0.7682

0 0 0 0 −0.0746 −0.3753 0.7682 0.5132

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.51)

T̂−1
8 = T̂T

8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.52)

T̃−1
8 = T̃T

8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.53)

The inverse reordered coefficient matrix F̂−18 can be represented as

F̂−18 =

⎡
⎢⎢⎢⎢⎢⎣

I 0 0 0

0 AT 0 0

0 0 BT DT

0 0 CT ET

⎤
⎥⎥⎥⎥⎥⎦
. (2.54)

As a result, the total number of multiplications of the subband based 8-point IDCT is only 15.
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3. The Unified Subband-Based n-Point DCT/IDCT Algorithm

The subband-based DCT algorithm [22] can be unified for n-point DCT/IDCT due to the
inherent regular pattern. For an n-point signal, xn, the unified subband-based discrete cosine
transform can be defined as

cn =
√
n

n
· T̂n · F̂n · T̃n · Rn · xn, (3.1)

where n = {2m|m = 3, 4, 5, . . .}, Rn is the decomposition matrix, F̂n is the reordered coefficient
matrix, T̂n is the pre-permutation matrix, and T̃n is the post-permutation matrix. The unified
decomposition matrix Rn can be written as

Rn = n ·Mn,n×n ·
[
Mn/2,(n/2)×(n/2) 0(n/2)×(n/2)

0(n/2)×(n/2) Mn/2,(n/2)×(n/2)

]

n×n

·

⎡
⎢⎢⎢⎢⎢⎣

Mn/4,(n/4)×(n/4) 0(n/4)×(n/4) 0(n/4)×(n/4) 0(n/4)×(n/4)

0(n/4)×(n/4) Mn/4,(n/4)×(n/4) 0(n/4)×(n/4) 0(n/4)×(n/4)

0(n/4)×(n/4) 0(n/4)×(n/4) Mn/4,[(n/4)×(n/4)] 0(n/4)×(n/4)

0(n/4)×(n/4) 0(n/4)×(n/4) 0(n/4)×(n/4) Mn/4,(n/4)×(n/4)

⎤
⎥⎥⎥⎥⎥⎦

n×n

· · · ·

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M2,2×2 02×2 · · · 02×2

02×2 M2,2×2
...

...
. . . 02×2

02×2 · · · 02×2 M2,2×2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

n×n

,

(3.2)

where the basic 2 × 2 matrix, M2, consists of two submatrices, M′
2,1×2 and M′′

2,1×2

M2 =

[
0.5 0.5

0.5 −0.5

]
=

[
M′

2,1×2
M′′

2,1×2

]
. (3.3)

As noted,M4 can be represented by the sub-matrices ofM2, or sub-matrices,M′
4,2×4 andM′′

4,2×4
as follows:

M4 =

⎡
⎢⎢⎢⎢⎢⎣

0.5 0.5 0 0

0 0 0.5 0.5

0.5 −0.5 0 0

0 0 0.5 −0.5

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

M′
2,1×2 01×2

01×2 M′
2,1×2

M′′
2,1×2 01×2

01×2 M′′
2,1×2

⎤
⎥⎥⎥⎥⎥⎦

=

[
M′

4,2×4
M′′

4,2×4

]
. (3.4)
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According to (3.1) and (3.2), the unified distributed matrix Mn can be derived as

Mn =

⎡
⎢⎢⎢⎢⎢⎣

M′
n/2,(n/4)×(n/2) 0(n/4)×(n/2)

0(n/4)×(n/2) M′
n/2,(n/4)×(n/2)

M′′
n/2,(n/4)×(n/2) 0(n/4)×(n/2)

0(n/4)×(n/2) M′′
n/2,(n/4)×(n/2)

⎤
⎥⎥⎥⎥⎥⎦

=

[
M′

n,(n/2)×n
M′′

n,(n/2)×n

]
. (3.5)

According to (2.2) and (2.40), we have

Fn = Dn · R−1
n . (3.6)

The 4-point reordered coefficient matrix F̂4 can be derived as

F̂4,4×4 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0.9239 0.3827

0 0 −0.3827 0.9239

⎤
⎥⎥⎥⎥⎥⎦

=

⎡

⎣
F̂2,2×2 02×2

02×2 F̂′4,2×2

⎤

⎦. (3.7)

According to (3.5), the 8-point reordered coefficient matrix F̂8 can be derived as

F̂8,8×8 =

⎡
⎢⎢⎣

F̂2,2×2 02×2 02×4

02×2 F̂′4,2×2 02×4

04×2 04×2 F̂′8,4×4

⎤
⎥⎥⎦ =

⎡

⎣
F̂4,4×4 04×4

04×4 F̂′8,4×4

⎤

⎦. (3.8)

Hence, the unified reordered coefficient matrix can be written as

F̂n,n×n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

F̂2,2×2 02×2 · · · 02×n

02×2 F̂′4,2×2
...

...
. . . 0(n/2)×n

0n×2 · · · 0n×(n/2) F̂′
n,(n/2)×(n/2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎣
F̂n/2,(n/2)×(n/2) 0n/2,(n/2)×(n/2)

0n/2,(n/2)×(n/2) F̂′
n,(n/2)×(n/2)

⎤

⎦. (3.9)
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The 4-point pre-permutation matrix T̂4 and post-permutation matrix T̃4 can be written as

T̂4 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

=
[
T̂41,4×1 T̂42,4×1 T̂43,4×1 T̂44,4×1

]
,

T̃4 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

⎤
⎥⎥⎥⎥⎥⎦

=
[
T̃41,4×1 T̃42,4×1 T̃43,4×1 T̃44,4×1

]
.

(3.10)

According to (2.50), (2.51), (3.8), and (3.9), the 8-point pre- and post-permutation matrices
can be written as

T̂8 =

⎡

⎣
T̂41,4×1 04×1 T̂42,4×1 04×1 T̂43,4×1 04×1 T̂44,4×1 04×1

04×1 T̂′
81,4×1 04×1 T̂′

82,4×1 04×1 T̂′
83,4×1 04×1 T̂′

84,4×1

⎤

⎦,

T̃8 =

⎡

⎣
T̃41,4×1 04×1 T̃42,4×1 04×1 T̃43,4×1 04×1 T̃44,4×1 04×1

04×1 T̃′
81,4×1 04×1 T̃′

82,4×1 04×1 T̃′
83,4×1 04×1 T̃′

84,4×1

⎤

⎦.

(3.11)

Hence, the unified pre- and post-permutation matrices can be represented as

T̂n =

⎡

⎣
T̂(n/2)1,A 0A T̂(n/2)2,A 0A T̂(n/2)3,A 0A T̂(n/2)4,A 0A

0A T̂′
n1,A 0A T̂′

n2,A 0A T̂′
n3,A 0A T̂′

n4,A

⎤

⎦,

T̃n =

⎡

⎣
T̃(n/2)1,A 0A T̃(n/2)2,A 0A T̃(n/2)3,A 0A T̃(n/2)4,A 0A

0(n/2)×(n/8) T̃′
(n/2)1,A 0A T̃′

(n/2)2,A 0A T̃′
(n/2)3,A 0A T̃′

(n/2)4,A

⎤

⎦.

(3.12)

where A denotes (n/2) × (n/8).
According to (2.47) and (2.53), the unified subband-based IDCT can be obtained.

xn =
n√
n
· R−1

n · T̃−1
n · F̂−1n · T̂−1

n · cn, (3.13)

where R−1
n is the inverse decomposition matrix, F̂−1n is the inverse coefficient matrix, T̂−1

n is the
inverse pre-transportationmatrix, and T̃−1

n is the inverse post-transportationmatrix. Note that
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x[0] ∼ x[7]

c[0]

c[1]

c[2]

c[3]

c[4]

c[5]

c[6]

c[7]

Addition
Pre-shu e
Multiplication

Addition
Post-shu e
Shift operation

Figure 1: Data flow of the subband-based 8-point DCT with six pipelined stages.

the decomposition matrix, reordered coefficient matrix, pre- and post-permutation matrices
are all orthonormal. Hence, we have

R−1
n = RT

n,

F̂−1n = F̂Tn,

T̂−1
n = T̂T

n,

T̃−1
n = T̃T

n.

(3.14)

4. Analysis of Computation Complexity and System Performance

Based on the 8-point subband-based DCT and IDCT algorithm, the data flow of parallel-
pipelined processing for 8-point DCT and IDCT are described as follows. The data flow of
the subband-based 8-point DCT with six pipelined stages is shown in Figure 1. In which,
y8 = R8 ·x8, z8 = T̂8 · F̂8 · T̃8 ·y8 and c8 = (

√
2/4) ·z8, the matrix-vector multiplication of R8 ·x8 in

the first stage, takes one simple-addition time for each element of y8. The preshuffle performs
the prepermutation matrix T̃8 operation in the second stage. The matrix-vector multiplication
is used to compute F̂8 · y8 in the third and fourth stages. In the fifth stage, the postshuffle is
used for the post-permutation matrix T̂8. The final stage is to compute (

√
2/4) · z8 by using

simple shift operation with the Booth recoded algorithm.
Similarly, Figure 2 shows the data flow of the subband-based 8-point IDCT with seven

pipelined stages.
In which, u8 = (

√
2/4) · c8, w8 = F̂−18 · T̂−1

8 · u8, v8 = T̃−1
8 · w8, and x8 = R8

−1 · v8, it
performs u8 = (

√
2/4) · c8 by using shift operation with the Booth recoded algorithm in the

first stage. The preshuffle performs the pre-permutation matrix T̂−1
8 operation in the second

stage. The matrix-vector multiplication is used to compute w8 in the third and fourth stages.
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Figure 2: Data flow of the subband-based 8-point IDCT with seven pipelined stages.
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Figure 3: Log plot of the number of multiplications versus the number of DCT points.

In the fifth stage, the post-shuffle performs the post-permutation matrix T̃−1
8 . The sixth and

seventh stages are to perform R−1
8 · v8 with simple addition. Both of the subband-based DCT

and IDCT algorithms need one multiplication operation with parallel-pipelined processing,
in comparison to [23] using linear array, which needs five multiplication operations.

Recall that the DCT of a signal, xn, can be represented as cn = (
√
n/n) ·T̂n ·F̂n ·T̃n ·Rn ·xn.

The multiplication time of the unified subband-based algorithm can be derived as

TM = 3 ·
(
40 + 41 + 42 + · · · + 4(log2n)−2

)
= 4(log2n)−1 − 1, (4.1)

where n = {2m | m = 3, 4, 5, . . .}.
The log plot of the subband-based DCT computations versus the number of DCT

points is shown in Figure 3.
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(a) Lena (b) Baboon

(c) Barbara (d) Peppers

(e) Boat

Figure 4: The original image (left side) and the reconstructed image (right side).

The multiplication time of the unified subband-based DCT with single processor can
be derived as follows [23]:

TM = 40 + 41 + 42 + · · · + 4(log2n)−2 =

(
4(log2n)−1 − 1

)

3
. (4.2)

The left side of Figures 4(a), 4(b), 4(c), 4(d), and 4(e) show the original 512×512 Lena,
Baboon, Barbara, Peppers, and Boat images, respectively. The reconstructed Lena, Baboon,
Barbara, Peppers and boat image shown in the right side of Figures 4(a), 4(b), 4(c), 4(d), and
4(e), respectively, are obtained by using the proposed subband based 8-point DCT/IDCT
algorithm with 32-bit fixed-point operands; the peak signal-to-noise ratios (PSNRs) of Lena,
Baboon, Barbara, Peppers, and Boat images are 149.67 dB, 142.12 dB, 143.08 dB, 143.36 dB, and
140.79 dB, respectively.

The PSNR curves of Lena, Baboon, Barbara, Peppers, and Boat images obtained
by using the conventional 8-point DCT and the proposed subband-based 8-point DCT at
various word lengths are shown in Figure 5. Figures 6(a), 6(b), 6(c), 6(d), and 6(e) show
the PSNR curves of Lena, Baboon, Barbara, Peppers, and Boat images obtained by using
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Figure 5: The PSNR curves of (a) Lena, (b) Baboon, (c) Barbara, (d) Peppers, and (e) Boat images obtained
by using the conventional 8-point DCT and the proposed subband-based 8-point DCT at various word
lengths.

the conventional DCT and the proposed subband-based DCT with 32-bit operand at various
DCT points. As one can see, the subband-based DCT is preferable.

5. FPGA Implementation of the Reconfigurable Linear-Array
DCT/IDCT Processor

The reconfigurable architecture of the fast 8-, 16-, 32- and 64-point DCT and IDCT processors
based on the subband-based 8-point DCT is proposed in this section.
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Figure 6: PSNR comparisons of (a) Lena, (b) Baboon, (c) Barbara, (d) Peppers, and (e) Boat images using
the conventional DCT and the subband-based DCT with 32-bit operand at various DCT points.

5.1. The Proposed 8-Point DCT/IDCT Processor

According to the data flow of the subband-based 8-point DCT with six pipelined stages
(Figure 1), the architecture of the proposed 8-point DCT processor is shown in Figure 7.
In which, the adder array (AA) with three CSA(4,2)s performing the matrix-vector
multiplication of R̂8 · x8 is shown in Figure 8. Figure 9 shows the multiplier array (MA)
performing three types of operation, which are needed to compute the subcoefficient matrix
computation of F̂8. The control signals of swap and inv determine the types of operation. The
functions determined by swap and inv are shown in Table 1. Figure 10 shows the hardwired
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Figure 7: The proposed 8-point DCT Processor with six pipelined stages.
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Figure 8: Adder array (AA) for the matrix-vector multiplication of R8 · x8.

shifters used for performing (
√
2/4) ·z8 by the Booth recoded algorithm [23]. Figure 11 shows

the proposed 8-point IDCT processor with seven pipelined stages. In which, the fast adder
arrays, shuffle, multiplier array, CLA, and hardwired shifters for DCT architecture can also be
used for performing IDCT. The latch array for retiming the input data is shown in Figure 12.

The hardware complexity of the proposed subband-based IDCT architecture is the
same as that of the proposed subband-based DCT architecture. Figure 13 shows the proposed
integrated 8-point DCT/IDCT processor.
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Figure 9: Multiplier array (MA) for computing the subcoefficient matrix of F̂8.

Table 1: The functions determined by swap and inv.

Type 1 Type 2 Type 3
swap 0 1 0
inv 0 0 1

5.2. The Proposed Reconfigurable DCT/IDCT Processor

According to the integrated 8-point DCT/IDCT processor (Figure 13), the proposed recon-
figurable 8-, 16-, 32-, and 64-point DCT/IDCT processor is shown in Figure 14. In which, the
integrated adder array (IAA) for the fast computation of 8-, 16-, 32-, and 64-point DCT/IDCT
is shown in Figure 15. The modified hardwired shifter (MHS) for multiplication by

√
n/n

(where n = 8, 16, 32, 64) using the Booth recoded algorithm is shown in Figure 16.



Mathematical Problems in Engineering 23

Hardwired
shifter 2−2

Hardwired
shifter 2−4

Hardwired
shifter 2−5

Hardwired
shifter 2−7

Hardwired
shifter 2−9

CSA (4, 2)

CSA (3, 2)

CLA

Input

Output

Figure 10: The proposed hardwired shifters used for performing (
√
2/4) · z8.

c[0]

c[7]

x[n]

x[n + 1]M
ul
ti
pl
ie
r
ar
ra
y

(M
A
)

CLA

CLA

L
at
ch

ar
ra
y

H
ar
d
w
ir
ed

sh
if
te
rs

(H
S)

Adder array
(AA)

Adder array
(AA)

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage7

Sh
u

e

Sh
u

e

··
·

Figure 11: The proposed 8-point IDCT processor with seven pipelined stages.

In order to improve the computation efficiency, the number of multiplier arrays should
be increased. The log plot of computation cycles versus number of multiplier arrays is shown
in Figure 17.

5.3. FPGA Implementation of the Reconfigurable 2D DCT/IDCT Processor

TheN ×N DCT is defined as [29]

Z[u, v] =
2 · α[u] · α[v]

N
·
N−1∑

m=0

N−1∑

n=0

x[m,n] · cos
(
2m + 1
2N

uπ

)
· cos

(
2n + 1
2N

vπ

)
,

0 ≤ u, v ≤ N − 1,

(5.1)
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where α[k] = 1/
√
2 for k = 0, and α[k] = 1 for k > 0. It can be rewritten as

Z[u, v] =

√
2
N

α[u]
N−1∑

m=0

⎡

⎣
√

2
N

α[v]
N−1∑

n=0

x(m,n) · cos
(
2n + 1
2N

vπ

)⎤

⎦ · cos
(
2m + 1
2N

uπ

)
,

0 ≤ u, v ≤ N − 1.
(5.2)

Thus, the separable 2-D DCT can be obtained by using 1-D DCT as follows:

2-D DCT(X) = 1-D DCT
(
(1-D DCT(X))T

)
. (5.3)

Similarly, the separable 2-D IDCT can be obtained by using 1-D IDCT as follows:

2-D IDCT(Z) = 1-D IDCT
(
(1-D IDCT(Z))T

)
. (5.4)

As a result, the architecture of 2D DCT/IDCT can be implemented by using two successive
1D DCT/IDCT processors with only one transpose memory [29]. The proposed architecture
of 2-D DCT and IDCT is shown in Figure 18. In which, the control signals provided
by the finite state machine (FSM) controller are used to manage the data flow and the
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operation timing for the DCT/IDCT and transpose memory; the transpose memory allows
simultaneous read andwrite operations between the two processors while performingmatrix
transposition. The data read and written timing diagram for 8 × 8 DCT/IDCT system is
shown in Figure 19. In comparison with the conventional two transpose memories based 2-D
DCT/IDCT architectures, the proposed architecture utilizes only one transpose memory.

The platform for architecture development and verification has been designed as
well as implemented in order to evaluate the development cost. The architecture has been
implemented on the Xilinx FPGA emulation board [30]. The Xilinx Spartan-3 FPGA has
been integrated with the microcontroller (MCU) and I/O interface circuit (USB 2.0) to form
the architecture development and verification platform. Figure 20 depicts block diagram
and circuit board of the architecture development and evaluation platform. In which, the
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microcontroller reads data and commands from PC and writes the results back to PC by
USB 2.0; the Xilinx Spartan-3 FPGA implements the proposed 2-D DCT/IDCT processor.
The hardware code written in Verilog is for PC with the ModelSim simulation tool [31] and
Xilinx ISE smart compiler [32]. It is noted that the throughput can be improved by using
the proposed architecture while the computation accuracy is the same as that obtained by
using the conventional one with the same word length. Thus, the proposed programmable
DCT/IDCT architecture is able to improve the power consumption and computation speed
significantly. The proposed processor for 8-, 16-, 32-, and 64-point DCT/IDCT is an extension
of the 8-point DCT/IDCT processor. Moreover, the reusable intellectual property (IP)
DCT/IDCT core has also been implemented in Verilog for the hardware realization. All the
control signals are internally generated on chip. The proposedDCT/IDCT processor provides
both high throughput and low gate count.
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Table 2: Comparisons between the proposed algorithm and architecture and other commonly used algo-
rithms and architectures.

DCT/IDCT Jeong et al.
[24]

Gong et al.
[25]

Dimitrov et al.
[26]

Alam et al.
[27]

Hsiao and
Tseng [28] This Work 2011

Computation
complexity

O(N −
log2N + 1)

O(N −
log2N + 1)

O(N −
log2N + 1)

O(N −
log2N + 1) O(logN) O(1)

Hardware
complexity O(2N) O(2N) O(2N) O(2N) O(N logN) O(

4log2N−1 − 1
3

)

Pipelinability no no no no no good

Scalability poor poor poor poor good better

6. Conclusion

With the advantages of the subband decomposition of a signal, a high-efficiency algorithm
with pipelined stages has been proposed for fast DCT/IDCT computations. It is noted
that the proposed DCT/IDCT algorithm not only simplifies computation complexity but
also improves system performance. The PSNR and system complexity of the proposed
algorithm is better than those of the previous algorithms [33–36]. Table 2 shows comparisons
between the proposed algorithm and architecture and other commonly used algorithms and
architectures [24–28]. Thus, the proposed subband-based DCT/IDCT algorithm is suitable
for the real-time signal processing applications. The proposed DCT/IDCT processor provides
both high throughput and low gate count and has been applied to various images with great
satisfactions.
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