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This paper concerns the problem of delay-dependent stability criteria for recurrent neural
networks with time varying delays. By taking more information of states and activation functions
as augmented vectors, a new class of the Lyapunov functional is proposed. Then, some less
conservative stability criteria are obtained in terms of linear matrix inequalities (LMIs). Finally,
two numerical examples are given to illustrate the effectiveness of the proposed method.

1. Introduction

In the past few decades, the stability analysis for recurrent neural networks has been
extensively investigated because of their successful applications in various scientific fields,
such as pattern recognition, image processing, associative memories, and fixed-point
computations. It is well known that time delay is frequently encountered in neural networks,
and it is often a major cause of instability and oscillation. Thus, muchmore attention has been
paid to recurrent delayed neural networks. Many interesting stability conditions, including
delay-independent results [1, 2] and delay-dependent results [3–41], have been obtained
for neural networks with time delays. Generally speaking, the delay-dependent stability
criteria are less conservative than delay-independent ones when the size of time delay is
small. For the delay-dependent case, some criteria have been derived by using Lyapunov-
Krasovskii functional (LKF). It is well known that the construction of an appropriate LKF is
crucial for obtaining less conservative stability conditions. Thus, some new methods have
been developed for reducing conservatism, such as free-weighting matrix method [4–8],
augmented LKF [9], discretized LKF [10], delay-partitioning method [12–18], and delay-
slope-dependent method [19]. Some less conservative stability criteria were proposed in
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[6] by considering some useful terms which have been usually neglected in the previous
literature and using the free-weighting matrices method. Recently, a novel method was
proposed forHopfield neural networks in [12], which divides the constant time delay interval
[0, h] into subintervals with the same size. This method utilizes more information about the
delay interval [0, h] to reduce the conservativeness. Very recently, by proposing the idea
of dividing the delay interval with the weighted parameters, the weighting-delay-based
stability criteria for neural networks with time-varying delay were investigated in [15].
The delay-partitioning method proved to be less conservative than most of the previous
results, and the conservatism can be notably reduced by thinning the delay partitioning.
However, the above methods suffer two common shortcomings. First, many matrix variables
are introduced in the obtained results, which brings a large computational burden. Second,
the information of neuron activation function is not adequately considered, which may lead
to much conservatism.

In this paper, the problem of delay-dependent stability analysis for neural networks
with time-varying delays is investigated. Different from the previous methods of [4–8, 12–
18], no delay-partitioning methods or free-weighting matrix methods are utilized. Instead,
by taking more information of states and activation functions as augmented vectors, an
augmented Lyapunov-Krasovskii functional is proposed. Then, inspired by the results of
[19, 42], a less conservative condition is derived to guarantee the asymptotical stablity of
the considered systems. Finally, two numerical examples are given to indicate significant
improvements over some existing results.

2. Problem Formulation

Consider the following neural networks with time-varying delay:

ẋ(t) = −Cx(t) +Ag(x(t)) + Bg(x(t − τ(t))) + μ, (2.1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈ Rn is the neuron state vector, g(x(·)) =

[g1(x1(·)), g2(x2(·)), . . . , gn(xn(·))]T ∈ Rn denotes the neuron activation function, and μ =
(μ1, μ2, . . . , μn)

T ∈ Rn is a constant input vector. A,B ∈ Rn×n are the connection weight
matrix and the delayed connection weight matrix, respectively. C = diag(C1, C2, . . . , Cn)with
Ci > 0, i = 1, 2, . . . , n. τ(t) is a time-varying continuous function that satisfies 0 � τ(t) � h,
τ̇(t) � u, where h and u are constants. In addition, it is assumed that each neuron activation
function in (2.1), gi(·), i = 1, 2, . . . , n, is bounded and satisfies the following condition:

k−
i �

gi(x) − gi
(
y
)

x − y
� k+

i , ∀x, y ∈ R, x /=y, i = 1, 2, . . . , n, (2.2)

where k−
i , k

+
i , i = 1, 2, . . . , n are constants.

Assuming that x∗ = [x∗
1, x

∗
2, . . . , x

∗
n]

T is the equilibrium point of (2.1)whose uniqueness
has been given in [29] and using the transformation z(·) = x(·) − x∗, system (2.1) can be
converted to the following system:

ż(t) = −Cz(t) +Af(z(t)) + Bf(z(t − τ(t))), (2.3)
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where z(t) = [z1(t), z2(t), . . . , zn(t)]
T , f(z(·)) = [f1(z1(·)), f2(z2(·)), . . . , fn(zn(·))]T and

fi(zi(·)) = gi(zi(·) + x∗
i ) − gi(x∗

i ), i = 1, 2, . . . , n. According to the inequality (2.2), one can
obtain that

k−
i � fi(zi(t))

zi(t)
� k+

i fi(0) = 0, i = 1, 2, . . . , n. (2.4)

Thus, under this assumption, the following inequality holds for any diagonal matrix Q4 > 0,

zT (t)KQ4Kz(t) − fT (z(t))Q4f(z(t)) � 0, (2.5)

where K = diag(k1, k2, . . . , kn), ki = max(|k−
i |, |k+

i |).

Lemma 2.1 (see[43]). For any constant matrix Z ∈ Rn×n, Z = ZT > 0, scalars h2 > h1 > 0, such
that the following integrations are well defined, then

−(h2 − h1)
∫ t−h1

t−h2

xT (s)Zx(s)ds � −
∫ t−h1

t−h2

xT (s)dsZ
∫ t−h1

t−h2

x(s)ds. (2.6)

3. Main Results

In this section, a new Lyapunov functional is constructed and a less conservative delay-
dependent stability criterion is obtained.

Theorem 3.1. For given scalars h � 0, u, diagonal matrices K1 = diag(k−
1 , k

−
2 , . . . , k

−
n), K2 =

diag(k+
1 , k

+
2 , . . . , k

+
n), the system (2.3) is globally asymptotically stable if there exist symmetric

positive matrices P = [ Pij ]4×4, Q = [Qij ]2×2, X = [ Xij ]2×2, Y = [ Yij ]2×2, Qi (i = 1, 2, 3),
positive diagonal matrices T1, T2, T3, Q4, Δ = diag(δ1, δ2, . . . , δn),Λ = diag(λ1, λ2, . . . , λn), and
any matrices Si(i = 1, 2, . . . , 5) with appropriate dimensions, such that the following LMIs hold:

⎡

⎢⎢
⎣

Y11 Y12 S1 S2

∗ Y22 S3 S4

∗ ∗ Y11 Y12

∗ ∗ ∗ Y22

⎤

⎥⎥
⎦ > 0, (3.1)

[
Q1 S5

∗ Q1

]
> 0, (3.2)

[
E ATR
∗ −R

]
< 0, (3.3)
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where

E =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E11 E12 E13 E14 E15 −P13 E17 E18 E19 E1,10 E1,11

∗ E22 E23 0 E25 0 0 0 0 0 0
∗ ∗ E33 0 0 E36 −P22 −P22 −P23 −P23 −P24

∗ ∗ ∗ E44 E45 0 E47 E48 E49 E4,10 E4,11

∗ ∗ ∗ ∗ E55 0 BTP12 BTP12 BTP13 BTP13 BTP14

∗ ∗ ∗ ∗ ∗ E66 −PT
23 −PT

23 −P33 −P33 −P34

∗ ∗ ∗ ∗ ∗ ∗ E77 E78 E7,9 E7,10 −P44

∗ ∗ ∗ ∗ ∗ ∗ ∗ E88 E89 E8,10 −P44

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Y22 −S4 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Y22 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

A =
[−C 0 0 A B 0 0 0 0 0 0

]
,

R = h2Q1 +
h4

4
Q2,

E11 = −P11C − CP11 + P12 + PT
12 + h

(
P14 + PT

14

)
+Q11 + 2K1ΛC

− 2K2ΔC +X11 + h2Y11 −Q1 − h2Q2 +KQ4K − 2K2T1K1 +
h4

4
Q3,

E12 = Q1 − S5,

E13 = −P12 + S5,

E14 = P11A + P13 +Q12 − CΛ −K1ΛA +K2ΔA + CΔ +X12 + h2Y12 + T1(K1 +K2),

E15 = P11B −K1ΛB +K2ΔB,

E17 = −CP12 + P22 + hPT
24 − P14 + hQ2,

E18 = −CP12 + P22 + hPT
24 − P14 + hQ2,

E19 = −CP13 + P23 + hPT
34,

E1,10 = −CP13 + P23 + hPT
34,

E1,11 = −CP14 + P24 + hP44,

E22 = −(1 − u)X11 − 2Q1 + S5 + ST
5 − (1 − u)KQ4K − 2K2T2K1,

E23 = Q1 − S5,

E25 = −(1 − u)X12 + T2(K1 +K2),

E33 = −Q11 −Q1 − 2K2T3K1,

E36 = −Q12 + T3(K1 +K2),

E44 = Q22 + ΛA +ATΛ −ΔA −ATΔ +X22 + h2Y22 −Q4 − 2T1,

E45 = ΛB −ΔB,

E47 = ATP12 + PT
23,
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E48 = ATP12 + PT
23,

E49 = ATP13 + P33,

E4,10 = ATP13 + P33,

E4,11 = ATP14 + P34,

E55 = −(1 − u)X22 + (1 − u)Q4 − 2T2,

E66 = −Q22 − 2T3,

E77 = −P24 − PT
24 − Y11 −Q2,

E78 = −P24 − PT
24 − S1 −Q2,

E79 = −PT
34 − Y12,

E7,10 = −PT
34 − S2,

E88 = −P24 − PT
24 − Y11 −Q2,

E89 = −PT
34 − ST

3 ,

E8,10 = −PT
34 − Y12.

(3.4)

Proof. Construct a new Lyapunov functional as follow:

V (zt) =
8∑

i=1

Vi(zt), (3.5)

where

V1(zt) =

⎡

⎢⎢⎢
⎣

z(t)∫ t
t−h z(s)ds∫ t

t−h f(z(s))ds∫0
−h
∫ t
t+θ z(s)dsdθ

⎤

⎥⎥⎥
⎦

T⎡

⎢⎢
⎣

P11 P12 P13 P14

∗ P22 P23 P24

∗ ∗ P33 P34

∗ ∗ ∗ P44

⎤

⎥⎥
⎦

⎡

⎢⎢⎢
⎣

z(t)∫ t
t−h z(s)ds∫ t

t−h f(z(s))ds∫0
−h
∫ t
t+θ z(s)dsdθ

⎤

⎥⎥⎥
⎦
,

V2(zt) =
∫ t

t−h

[
z(s)

f(z(s))

]T[
Q11 Q12

∗ Q22

][
z(s)

f(z(s))

]
ds,

V3(zt) =
∫ t

t−τ(t)

[
z(s)

f(z(s))

]T[
X11 X12

∗ X22

][
z(s)

f(z(s))

]
ds,

V4(zt) = 2
n∑

i=1

{∫zi(t)

0
λi
(
fi(s) − k−

i s
)
ds +
∫zi(t)

0
δi
(
k+
i s − fi(s)

)
ds

}

,
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V5(zt) = h

∫0

−h

∫ t

t+θ

[
z(s)

f(z(s))

]T[
Y11 Y12

∗ Y22

][
z(s)

f(z(s))

]
dsdθ,

V6(zt) = h

∫0

−h

∫ t

t+θ
żT (s)Q1ż(s)dsdθ,

V7(zt) =
h2

2

∫0

−h

∫0

θ

∫ t

t+λ
żT (s)Q2ż(s)dsdλdθ,

V8(zt) =
h2

2

∫0

−h

∫0

θ

∫ t

t+λ
zT (s)Q3z(s)dsdλdθ,

V9(zt) =
∫ t

t−τ(t)

[
zT (s)KQ4Kz(s) − fT (z(s))Q4f(z(s))

]
ds.

(3.6)

Remark 3.2. Since the terms 2
∑n

i=1 δi
∫zi(t)
0 (k+

i s−fi(s))ds in V4(zt) and
∫ t
t−τ(t)[z

T (s)KQ4Kz(s)−
fT (z(s))Q4f(z(s))]ds are taken into account, it is clear that the Lyapunov functional
candidate in this paper is more general than that in [5, 6, 8, 9]. So the stability criteria in
this paper may be more applicable.

The time derivative of V (zt) along the trajectory of system (2.4) is given by:

V̇ (zt) =
8∑

i=1

V̇i(zt), (3.7)

where

V̇1(zt) = 2

⎡

⎢⎢⎢
⎣

z(t)∫ t
t−h z(s)ds∫ t

t−h f(z(s))ds∫0
−h
∫ t
t+θ z(s)dsdθ

⎤

⎥⎥⎥
⎦

T⎡

⎢⎢
⎣

P11 P12 P13 P14

∗ P22 P23 P24

∗ ∗ P33 P34

∗ ∗ ∗ P44

⎤

⎥⎥
⎦

⎡

⎢⎢⎢
⎣

ż(t)
z(t) − z(t − h)

f(z(t)) − f(z(t − h))
hz(t) − ∫ tt−h z(s)ds

⎤

⎥⎥⎥
⎦
, (3.8)

V̇2(zt) =
[

z(t)
f(z(t))

]T[
Q11 Q12

∗ Q22

][
z(t)

f(z(t))

]
−
[

z(t − h)
f(z(t − h))

]T[
Q11 Q12

∗ Q22

][
z(t − h)

f(z(t − h))

]
, (3.9)

V̇3(zt) �
[

z(t)
f(z(t))

]T[
X11 X12

∗ X22

][
z(t)

f(z(t))

]

− (1 − u)
[

z(t − τ(t))
f(z(t − τ(t)))

]T[
X11 X12

∗ X22

][
z(t − τ(t))

f(z(t − τ(t)))

]
,

(3.10)

V̇4(zt) = 2
[
f(z(t)) −K1z(t)

]TΛż(t) + 2
[
K2z(t) − f(z(t))

]TΔż(t),

= 2
[
f(z(t)) −K1z(t)

]TΛ
[−Cz(t) +Af(z(t)) + Bf(z(t − τ(t)))

]

+ 2
[
K2z(t) − f(z(t))

]TΔ
[−Cz(t) +Af(z(t)) + Bf(z(t − τ(t)))

]
.

(3.11)



Mathematical Problems in Engineering 7

By the use of Lemma 2.1 and Theorem 3.1 in [42], one can obtain

V̇5(zt) = h2
[

z(t)
f(z(t))

]T[
Y11 Y12

∗ Y22

][
z(t)

f(z(t))

]
− h

∫ t

t−h

[
z(s)

f(z(s))

]T[
Y11 Y12

∗ Y22

][
z(s)

f(z(s))

]
ds

= h2
[

z(t)
f(z(t))

]T[
Y11 Y12

∗ Y22

][
z(t)

f(z(t))

]
− h

∫ t

t−τ(t)

[
z(s)

f(z(s))

]T[
Y11 Y12

∗ Y22

][
z(s)

f(z(s))

]
ds

− h

∫ t−τ(t)

t−h

[
z(s)

f(z(s))

]T[
Y11 Y12

∗ Y22

][
z(s)

f(z(s))

]
ds

� h2
[

z(t)
f(z(t))

]T[
Y11 Y12

∗ Y22

][
z(t)

f(z(t))

]
− h

τ(t)

∫ t

t−τ(t)

[
z(s)

f(z(s))

]T

× ds

[
Y11 Y12

∗ Y22

] ∫ t

t−τ(t)

[
z(s)

f(z(s))

]
ds

− h

h − τ(t)

∫ t−τ(t)

t−h

[
z(s)

f(z(s))

]T
ds

[
Y11 Y12

∗ Y22

] ∫ t−τ(t)

t−h

[
z(s)

f(z(s))

]
ds

(3.12)

� h2
[

z(t)
f(z(t))

]T[
Y11 Y12

∗ Y22

][
z(t)

f(z(t))

]
−

⎡

⎢⎢⎢⎢
⎣

∫ t
t−τ(t) z(s)ds∫ t

t−τ(t) f(z(s))ds∫ t−τ(t)
t−h z(s)ds

∫ t−τ(t)
t−h f(z(s))ds

⎤

⎥⎥⎥⎥
⎦

T

×

⎡

⎢⎢
⎣

Y11 Y12 S1 S2

∗ Y22 S3 S4

∗ ∗ Y11 Y12

∗ ∗ ∗ Y22

⎤

⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

∫ t
t−τ(t) z(s)ds∫ t

t−τ(t) f(z(s))ds∫ t−τ(t)
t−h z(s)ds

∫ t−τ(t)
t−h f(z(s))ds

⎤

⎥⎥⎥⎥
⎦
,

(3.13)

where

[
Y11 Y12 S1 S2
∗ Y22 S3 S4
∗ ∗ Y11 Y12
∗ ∗ ∗ Y22

]

> 0 should be satisfied. Similar to (3.12), one can obtain

V̇6(zt) � h2żT (t)Q1ż(t) −
[∫ t

t−τ(t) ż(s)ds∫ t−τ(t)
t−h ż(s)ds

]T[
Q1 S5

∗ Q1

][∫ t
t−τ(t) ż(s)ds∫ t−τ(t)
t−h ż(s)ds

]

, (3.14)

where
[
Q1 S5
∗ Q1

]
> 0 should be satisfied.
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Consider the following:

V̇7(zt) =
h4

4
żT (t)Q2ż(t) − h2

2

∫0

−h

∫ t

t+θ
żT (s)Q2ż(s)dsdθ

� h4

4
żT (t)Q2ż(t) −

(∫0

−h

∫ t

t+θ
ż(s)dsdθ

)T

Q2

(∫0

−h

∫ t

t+θ
ż(s)dsdθ

)

,

=
h4

4
żT (t)Q2ż(t) −

(

hz(t) −
∫ t

t−h
z(s)ds

)T

Q2

(

hz(t) −
∫ t

t−h
z(s)ds

)

,

(3.15)

V̇8(zt) =
h4

4
zT (t)Q3z(t) − h2

2

∫0

−h

∫ t

t+θ
zT (s)Q3z(s)dsdθ

� h4

4
zT (t)Q3z(t) −

(∫0

−h

∫ t

t+θ
z(s)dsdθ

)T

Q3

(∫0

−h

∫ t

t+θ
z(s)dsdθ

) (3.16)

V̇9(zt) � zT (t)KQ4Kz(t) − fT (z(t))Q4f(z(t)) − (1 − u)zT (t − τ(t))KQ4Kz(t − τ(t))

+ (1 − u)fT (z(t − τ(t)))Q4f(z(t − τ(t))).
(3.17)

Furthermore, there exist positive diagonal matrices T1, T2, T3, such that the following
inequalities hold based on (2.4):

− 2fT (z(t))T1f(z(t)) + 2zT (t)T1(K1 +K2)f(z(t)) − 2zT (t)K2T1K1z(t) � 0, (3.18)

− 2fT (z(t − τ(t)))T2f(z(t − τ(t))) + 2zT (t − τ(t))T2(K1 +K2)f(z(t − τ(t)))

− 2zT (t − τ(t))K2T2K1z(t − τ(t)) � 0,
(3.19)

− 2fT (z(t − h))T3f(z(t − h)) + 2zT (t − h)T3(K1 +K2)f(z(t − h)),

− 2zT (t − h)K2T3K1z(t − h) � 0.
(3.20)

From (3.8)–(3.20), one can obtain that

V̇ (zt) � ζT (t)
(
E +ATRA

)
ζ(t), (3.21)
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where

ζT (t) =

[

zT (t) zT (t − τ(t)) zT (t − h) fT (z(t)) f
(
zT (t − τ(t))

)
f
(
zT (t − h)

)

∫ t

t−τ(t)
zT (s)ds

∫ t−τ(t)

t−h
zT (s)ds

∫ t

t−τ(t)
fT (z(s))ds

∫ t−τ(t)

t−h
fT (z(s))ds

∫0

−h

∫ t

t+θ
zT (s)dsdθ

]

.

(3.22)

If E +ATRA < 0, then there exists a scalar ε > 0, such that

V̇ (zt) � −εζT (t)ζ(t) � −εzT (t)z(t) < 0, ∀z(t)/= 0. (3.23)

Thus, according to [44], system (2.1) is globally asymptotically stable. By Schur complement,
E +ATRA < 0 is equivalent to (3.3), this completes the proof.

Remark 3.3. By taking the states
∫ t
t−τ(t) f

T (z(s))ds,
∫ t−τ(t)
t−h fT (z(s))ds, as augmented variables,

the stability condition in Theorem 3.1 utilizes more information about f(z(t)) on state
variables, which may lead to less conservative results.

Remark 3.4. Recently, the reciprocally convex optimization technique [42] is used to reduce
the conservatism of stability criteria for systems with time-varying delays. Motivated
by this work, the proposed method of [42] was utilized in (3.12) and (3.14), which
have potential to yield less conservative conditions. However, an augmented vector with
∫ t
t−τ(t) z

T (s)ds,
∫ t−τ(t)
t−h zT (s)ds,

∫ t
t−τ(t) f

T (z(s))ds,
∫ t−τ(t)
t−h fT (z(s))ds,

∫0
−h
∫ t
t+θ z

T (s)dsdθ was used,
which is different from the method of [42].

In many cases, u is unknown. Considering this situation, a rate-independent corollary
for the delay τ(t) satisfying 0 ≤ τ(t) ≤ h is derived by setting X = 0, Q4 = 0 in the proof of
Theorem 3.1.

Corollary 3.5. For given scalar h � 0, diagonal matrices K1 = diag(k−
1 , k

−
2 , . . . , k

−
n), K2 =

diag(k+
1 , k

+
2 , . . . , k

+
n), the system (2.3) is globally asymptotically stable if there exist symmetric

positive matrices P = [ Pij ]4×4, Q = [Qij ]2×2, Y = [ Yij ]2×2, Qi(i = 1, 2, 3), positive diagonal matrices
T1, T2, T3,Δ = diag(δ1, δ2, . . . , δn),Λ = diag(λ1, λ2, . . . , λn), and any matrices Si(i = 1, 2, . . . , 5)
with appropriate dimensions, such that (3.1), (3.2) and the following LMI hold:

[
E ATR
∗ −R

]

< 0, (3.24)
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Table 1: Allowable upper bound of h for different u.

Method u = 0.5 u = 0.9
[3, 4] 2.1502 1.3164
[5] 2.2245 1.5847
[6] 2.5376 2.0853
[11] 2.2261 1.6035
[15] 2.5915 2.1306
[16] (m = 2) 2.6438 2.1349
[17] (m = 2) 2.4530 1.8593
Theorem 3.1 2.7098 2.2055

where

E =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

E11 E12 E13 E14 E15 −P13 E17 E18 E19 E1,10 E1,11

∗ E22 E23 0 E25 0 0 0 0 0 0
∗ ∗ E33 0 0 E36 −P22 −P22 −P23 −P23 −P24

∗ ∗ ∗ E44 E45 0 E47 E48 E49 E4,10 E4,11

∗ ∗ ∗ ∗ −2T2 0 BTP12 BTP12 BTP13 BTP13 BTP14

∗ ∗ ∗ ∗ ∗ E66 −PT
23 −PT

23 −P33 −P33 −P34

∗ ∗ ∗ ∗ ∗ ∗ E77 E78 E7,9 E7,10 −P44

∗ ∗ ∗ ∗ ∗ ∗ ∗ E88 E89 E8,10 −P44

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Y22 −S4 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Y22 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

E11 = −P11C − CP11 + P12 + PT
12 + h

(
P14 + PT

14

)
+Q11 + 2K1ΛC

− 2K2ΔC + h2Y11 −Q1 − h2Q2 +KQ4K − 2K2T1K1 +
h4

4
Q3,

E14 = P11A + P13 +Q12 − CΛ −K1ΛA +K2ΔA + CΔ + h2Y12 + T1(K1 +K2),

E22 = −2Q1 + S5 + ST
5 − 2K2T2K1,

E25 = T2(K1 +K2),

E44 = Q22 + ΛA +ATΛ −ΔA −ATΔ + h2Y22 −Q4 − 2T1.

(3.25)

The other Eij is defined in Theorem 3.1.

4. Numerical Examples

In this section, two numerical examples are given to demonstrate the effectiveness of the
proposed method.
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Figure 1: The dynamical behavior of z(t).

Example 4.1. Consider the system (2.3)with the following parameters:

C =

⎡

⎢⎢
⎣

1.2769 0 0 0
0 0.6231 0 0
0 0 0.9230 0
0 0 0 0.4480

⎤

⎥⎥
⎦, A =

⎡

⎢⎢
⎣

−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.5785
−0.1311 0.3253 −0.9534 −0.5015

⎤

⎥⎥
⎦,

B =

⎡

⎢⎢
⎣

0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428
−2.0413 0.5179 1.1734 −0.2775

⎤

⎥⎥
⎦, K1 = diag{0, 0, 0, 0},

K2 = diag{0.1137, 0.1279, 0.7994, 0.2368},
f1(s) = 0.05685(|s + 1| − |s − 1|), f2(s) = 0.06395(|s + 1| − |s − 1|),
f3(s) = 0.3997(|s + 1| − |s − 1|),
f4(s) = 0.1184(|s + 1| − |s − 1|).

(4.1)

The upper bounds of h for different u are derived by Theorem 3.1 in our paper and the results
in [13–16] are listed in Table 1. According to Table 1, this example shows that the stability
condition in this paper gives much less conservative results than those in the literature. For
h = 2.7098, the global asymptotic stability with the initial state(−0.2, 0.3,−0.4, 0.2)T is shown
in Figure 1.
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Table 2: Allowable upper bound of h for different u.

Method u = 0.8 u = 0.9 Unknown u

[3, 4] 1.2281 0.8636 0.8298
[5] 1.6831 1.1493 1.0880
[6] 2.3534 1.6050 1.5103
[11] 1.5948 1.1323 1.0743
[15] 2.5406 1.7273 —
[16] (m = 2) 2.2495 1.5966 1.4902
[17] (m = 2) 2.1150 1.4286 1.3126
Our results 2.3731 1.6219 1.5103

Example 4.2. Consider the system (2.3)with the following parameters:

C = diag(2, 2), A =
[
1 1
−1 −1

]
, B =

[
0.88 1
1 1

]
, (4.2)

K1 diag{0, 0}, K2 = diag{0.4, 0.8}. (4.3)

Our purpose is to estimate the allowable upper bounds delay h under different u such
that the system (2.3) is globally asymptotically stable. According to the Table 2, this example
is given to indicate significant improvements over some existing results.

5. Conclusions

In this paper, a new Lyapunov functional was proposed to investigate the stability of neural
networks with time-varying delays. Some improved generalized delay-dependent stability
criteria have been established. The obtained criteria are less conservative because a convex
optimization approach is considered. Finally, two numerical examples have shown that these
new stability criteria are less conservative than some existing ones in the literature.
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