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Inverse problems for hyperbolic equations are found in geophysical prospecting and seismology,
and their multidimensional analogues are especially important for applied work. However,
whereas results have been established for the some narrow classes of hyperbolic equations, no
results exist for more general classes. This paper proves the solvability of the inverse problem
for a general class of multidimensional hyperbolic equations. Our approach consists of properly
choosing the shape of the overidentifying condition that is needed to determine the right-hand side
of the hyperbolic PDE and then applying the Fourier series method. We are then able to establish
the results of the existence of solution for the cases when the unknown right-hand side is time-
independent or space independent.

1. Introduction

One key applied informational problem with heavy involvement of advanced mathematical
modelling is the inverse problem. Generally speaking, it can be described as follows: a
physical, biological, or an economic model relates some parameters, via the knowledge
of certain fundamental laws, to observational data. An inverse problem then consists of
recovering the (unknown) parameters of the model from known observational data. Such
problems often emerge and are intensively studied in geophysics and seismology (in physical
sciences, [1–3]), tomography (in biological sciences, [1, 4–6]) and economic geography,
econometrics, and macroeconomics (in economic sciences, [7–10]).

The mathematical problems that emerge in such studies often reduce to the analysis
of linear second-order partial differential equations. For instance, in recent analysis of
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spatial economic development, economists construct models with continuous time and space
dimensions. Capital accumulation in different points of space is modelled via an equation of
motion that becomes a parabolic partial differential equation [11, 12]. An important (inverse)
problem is then recovering the unknown parameters of the aggregate production function of
the economy from observations about the level of capital stock at some moment in time [7].

Instead, inverse problems for hyperbolic equations emerge in the study of the
problems of geophysics and seismology [1–3]. For instance, two major types of problems in
geophysical prospecting are (i) the structural problems that are concerned with the structure
of sedimentary deposits and the Earth’s crust (the structures that have to do with oil and
gas resources) and (ii) the location problems that are concerned with establishing local non-
homogeneities in sedimentary deposits and crust (caused by mineral deposits, e.g., ore).
Both problems basically consists of recovering the Earth’s inner structure from the surface
measurements of physical fields.

In seismology, one of the most important problems is determining the velocity of
propagation of seismic waves within the Earth, given the information about the seismic wave
fronts on the surface (coming from different earthquakes). The velocities of longitudinal and
transverse waves and the elastic properties of the medium are linked through some known
formulae. The determination of the propagation velocities given these formulae reduces
mathematically to an inverse problem known as the Herglotz-Wiechert inverse kinematic
problem of seismics.

In most practical applications, the parameters of the physical model are a multidimen-
sional function (e.g. three-dimensional space plus time). Therefore, considerable attention
has been devoted to the analysis of multidimensional inverse problems. Chapter 8 of [3]
provides a good survey of the current state of the literature for hyperbolic problems, together
with a fine discussion of the mathematical difficulties involved.

So far, however, most of the results have been obtained for relatively narrow classes of
equations: the so-called model equations, that is, including only the wave operator, or only
some of the lower-order derivatives. After the classic study of the inverse problem for the
wave equation [1], some results have been established (and applied techniques developed)
for the hyperbolic equations of the following classes: utt = Δu − p(x)u in [13], utt = Δu +
p(x, t)u in [14], and c(x)utt = Δu in [15]. To the best of our knowledge, no results have
been yet found for more general classes of hyperbolic equations. This paper tries to close this
gap by establishing the existence result for a general class of multidimensional hyperbolic
equations.

Our approach consists of properly choosing the shape of the overidentifying condition
that is needed to determine the right-hand side of the hyperbolic PDE, and then applying the
Fourier series method. We are then able to establish the results of the existence of solution for
the cases when the unknown right-hand side is time independent or space-independent.

2. Setup of the Problem

LetDε be a finite domain of the Euclidean space of Em+1 points (x1, . . . , xm, t) bounded by the
surfaces |x| = t + ε, |x| = 1 − t and the plane t = 0, where |x| denotes the length of the vector
x = (x1, . . . , xm), 0 ≤ t ≤ (1 − ε)/2, and 0 < ε < 1. Moreover, let us denote the parts of these
surfaces that form the boundary ∂Dε of the domain Dε as Sε, S1, and S, respectively.

In this domain, a number of applied problems described in the Introduction can be
described mathematically as some special cases of the following general inverse problem.
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Problem 2.1. Find the functions u(x, t) ∈ C(Dε) ∩ C2(Dε) and g(x, t) that are linked in the
domain Dε by the following equation:

Lu ≡ Δxu − utt +
m∑

i=1

ai(x, t)uxi + b(x, t)ut + c(x, t)u = g(x, t), (2.1)

where the functions u(x, t) should satifsy the conditions

u|S = τ(x), ut|S = v(x), (2.2)

u|Sβ
= σ(x), (2.3)

Δx being the Laplace operator defined over the variables x1, . . . , xm, m ≥ 2 and Sβ being the
cone β|x| = t + ε, 0 < β = const < 1.

Note that in this inverse problem the conditions (2.2) are the conditions of the standard
Cauchy problem, while the condition (2.3) is the overidentification condition, which is
needed to determine the unknown function g(x, t). The appropriate choice of this condition
would allow us to establish the results below.

Before deriving our main results, however, it is useful to switch from the Cartesian
coordinates x1, . . . , xm, t to the spherical ones r, θ1, . . . , θm−1, t, with 0 ≤ θ1 < 2π, r ≥ 0, 0 ≤
θi ≤ π, i = 2, 3, . . . , m − 1.

We need further some additional notation. Let {Yk
n,m(θ)} be a system of linearly

independent spherical functions of degree n, 1 ≤ k ≤ kn, (m − 2)!n!kn = (n +m − 3)!(2n +
m−2), θ = (θ1, . . . , θm−1), Wl

2(Dε), l = 0, 1, . . .—are Sobolev spaces, and S̃β = {(r, θ) ∈ S, ε <
r < (1 + ε)/(1 + β)}.

Also, let us denote as ãk
in(r, t), a

k
n(r, t), b̃

k
n(r, t), c̃kn(r, t), g

k
n(r), ρ

k
n, τ

k
n(r),υ

k
n(r), and

σk
n(r) the coefficients of the decomposition of the series (2.4), respectively, of the functions

ai(r, θ, t)ρ(θ), ai(xi/r)ρ, b(r, θ, t)ρ, c(r, θ, t)ρ, g(r, θ), ρ(θ), i = 1,. . ., m, τ(r, θ), υ(r, θ), and
σ(r, θ), and moreover, ρ(θ) ∈ C∞(Γ), Γ being the unit sphere in Em.

For our analysis, we will exploit the following lemma that has been shown in [16].

Lemma 2.2. Let f(r, θ) ∈ Wl
2(S). If l ≥ m − 1, then the series

f(r, θ) =
∞∑

n=0

kn∑

k=1

fk
n (r)Y

k
n,m(θ), (2.4)

as well as the series obtained through its differentiation of order p ≤ l − m + 1, converges absolutely
and uniformly.



4 Mathematical Problems in Engineering

Next, one introduces the set of functions

Bl(S) =

{
f(r, θ) : f ∈ Wl

2(S),
∞∑

n=0

kn∑

k=1

(∥∥∥fk
n (r)

∥∥∥
2

C2(ε,1)
+
∥∥∥fk

n (r)
∥∥∥
C([ε,1])

)

×exp2
(
n2 + n(m − 2)

)
< ∞, l ≥ m − 1

}
.

(2.5)

Finally, let ai(x, t), b(x, t), c(x, t) ∈ W
p

2 (Dε) ⊂ C(Dε), i = 1, . . . , m, p ≥ m + 1, and
τ(r, θ), υ(r, θ) ∈ Bl(S), σ(r, θ) ∈ BI(S̃β).

3. Main Results

We are now ready to establish our main results. These are theorems of the existence of
solutions of Problem 1, when the unknown right-hand side of (2.1) is time independent or
space independent.

Theorem 3.1. If g(r, θ, t) = g(r, θ) ∈ Wl
2(Dε) ∩ C1(Dε), then the functions u(r, θ, t) and g(r, θ)

always exist.

Theorem 3.2. If g(r, θ, t) = g(t) ∈ C1([0, (1 − ε)/2]), then the functions u(r, θ, t) and g(t) always
exist.

Proof of Theorem 1. The uniqueness of the solution of the (direct) Cauchy problem (2.1), (2.2)
is well known (see, for instance, [17]). We will search for the solution of this problem in the
form of the series

u(r, θ, t) =
∞∑

n=0

kn∑

k=1

uk
n(r, t)Y

k
n,m(θ), (3.1)

where uk
n(r, t) are the functions to be determined later.

Substituting (3.1) into (2.1), and first multiplying the resulting expression by ρ(θ)/= 0
and then integrating over the unit sphere Γ, we get for uk

n (see [18, 19])

ρ10u
1
0rr − ρ10u

1
0tt +

(
m − 1
r

ρ10 +
m∑

i=1

a1
i0

)
u1
0r + b̃10u

1
0t + c̃10u

1
0 − c̃10g

1
0(r)

+
∞∑

n=0

kn∑

k=1

{
ρknu

k
nrr − ρknu

k
ntt +

(
m − 1
r

ρkn +
m∑

i=1

ak
in

)
uk
nr + b̃knu

k
nt

+

[
c̃kn −

λn
r2

ρkn +
m∑

i=1

(
ãk
in−1 − nak

in

)]
uk
n − ρkng

k
n(r)

}
= 0,

λn = n(n +m − 2).

(3.2)
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Next, let us analyze the infinite system of differential equations

ρ10u
1
0rr − ρ10u

1
0tt +

m − 1
r

ρ10u
1
0r = ρ10g

1
0(r), (3.3)

ρk1u
k
1rr − ρk1u

k
1tt +

m − 1
r

ρk1u
k
1r −

λ1
r2

ρk1u
k
1 = ρk1g

k
1 (r)

− 1
k1

(
m∑

i=1

a1
i0u

1
0r + b̃10u

1
0t + c̃10u

1
0

)
, n = 1, k = 1, k1,

(3.4)

ρknu
k
nrr − ρknu

k
ntt +

m − 1
r

ρknu
k
nr −

λn
r2

ρknu
k
n = ρkng

k
n(r)

− 1
kn

kn−1∑

k=1

{
m∑

i=1

ak
in−1u

k
n−1r + b̃kn−1u

k
n−1t

+

[
c̃kn−1 +

m∑

i=1

(
ãk
in−2 − (n − 1)ak

in−1
)]

uk
n−1

}
, k = 1, kn, n = 2, 3, . . . .

(3.5)

Note that if we sum the expression (3.4) from 1 to k1, the expression (3.5) from 1 to
kn, and then add the obtained expressions to (3.3), we obtain (3.2). Therefore, if {uk

n}, k =
1, kn, n = 0, 1, . . . is the solution of the system (3.3)–(3.5), then it is also the solution of (3.2).
The opposite is not true, however; therefore, we cannot show the uniqueness of the solution
of Problem 1.

Now, taking into account the orthogonality of the spherical functions Yk
n,m(θ) ([16])

and given expression (3.1), we obtain, from the boundary-value conditions (2.2), (2.3):

uk
n(r, 0) = τkn(r), uk

nt(r, 0) = υk
n(r), ε ≤ r ≤ 1,

uk
n

(
r, βr + ε

)
= σk

n(r), ε ≤ r ≤ 1 − ε

1 + β
, k = 1, kn, n = 0, 1, . . . .

(3.6)

Thus, we have shown that our inverse problem (2.1)–(2.3) reduces to a system of
inverse problems for the equations (3.3)–(3.5). We can now look for the solution of these
problems.

It is easy to see that each equation of the system (3.3)–(3.5) can be represented in the
form

uk
nrr − uk

ntt +
m − 1
r

uk
nr −

λn
r2

uk
n = gk

n(r) + f
k

n(r, t), (3.7)
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where f
k

n(r, t) are determined from the previous equations of this system and, moreover,

f
1
0(r, t) ≡ 0. From (3.7), having done the substitution of variables uk

n(r, t) = r(1−m)/2uk
n(r, t),

and then setting ξ = (r + t)/2, η = (r − t)/2, we obtain

Mu ≡ uk
nξη +

[(m − 1)(3 −m) − 4λn]

4
(
ξ + η

)2 uk
n = gk

n

(
ξ + η

)
+ fk

n

(
ξ, η

)
,

gk
n

(
ξ + η

)
=
(
ξ + η

)(m−1)/2
gk
n

(
ξ + η

)
, fk

n

(
ξ, η

)
=
(
ξ + η

)(m−1)/2
f
k

n

(
ξ + η, ξ − η

)
,

(3.8)

and, given this result, the boundary-value conditions (3.6)will take the form

uk
n(ξ, ξ) = τkn (ξ),

(
∂uk

n

∂ξ
− ∂uk

n

∂η

)∣∣∣∣∣
ξ=η

= υk
n(ξ),

ε

2
≤ η < ξ ≤ 1

2
,

uk
n

(
ξ, αξ + γ

)
= σk

n(ξ),
ε

2β
≤ ξ ≤ 1

2
,

τkn (ξ) = (2ξ)(m−1)/2τkn(2ξ),

υk
n(ξ) =

√
2(2ξ)(m−1)/2υk

n(2ξ),

σk
n(ξ) =

[
(1 + α)ξ + γ

](m−1)/2
σk
n

× (
(1 + α)ξ + γ

)
,

0 < α =
1 − β

1 + β
< 1, γ =

ε

1 + β
, k = 1, kn, n = 0, 1, . . . .

(3.9)

Using the general solution of the equation (3.8) (see [20]), it is easy to show that the
solution of the Cauchy problem for the equation (3.8) takes the form

uk
n

(
ξ, η

)
=

1
2
τkn

(
η
)
R
(
η, η; ξ, η

)
+
1
2
τkn (ξ)R

(
ξ, ξ; ξ, η

)

+
1√
2

∫ ξ

η

[
υk
n(ξ1)R

(
ξ1, ξ1; ξ, η

)−τkn (ξ1)
∂

∂N
R
(
ξ1, η1; ξ, η

)∣∣∣∣
ξ1=η1

dξ1

]

+
∫ ξ

1/2

∫η

ε/2

[
gk
n

(
ξ1 + η1

)
+ fk

n

(
ξ1, η1

)]
R
(
ξ1, η1; ξ, η

)
dξ1dη1,

(3.10)

where R(ξ1, η1; ξ, η) = Pμ[((ξ1 − η1 )(ξ − η) + (ξ1η1 + ξη))/(ξ1 + η1)(ξ + η)] = Pμ(z) is the
Riemann function of the equation Mu = 0 (see [21]) and Pμ(z) is the Legendre function,
μ = n + (m − 3)/2, (∂/∂N)|ξ=η = (1/

√
2)((∂/∂ξ) − (∂/∂η))|ξ=η.

From (3.10), for η = αξ + γ , using the boundary-value conditions (3.9), we obtain

ϕk
n(ξ) =

∫ ξ

1/2

∫αξ+γ

ε/2
gk
n

(
ξ1 + η1

)
R
(
ξ1, η1; ξ, αξ + γ

)
dξ1dη1,

ε

2
≤ ξ ≤ 1

2
, (3.11)
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where

ϕk
n(ξ) = σk

n(ξ) −
τkn

(
αξ + γ

)

2
R
(
αξ + γ, αξ + γ ; ξ, αξ + γ

) − τkn (ξ)
2

R
(
ξ, ξ; ξ, αξ + γ

)

− 1√
2

∫ ξ

αξ+γ

[
υk
n(ξ1)R

(
ξ1, ξ1; ξ, αξ + γ

)−τkn (ξ1)
∂

∂N
R
(
ξ1, η1; ξ, αξ + γ

)∣∣∣∣
ξ1=η1

dξ1

]

−
∫ ξ

1/2

∫αξ+γ

ε/2
fk
n

(
ξ1 + η1

)
R
(
ξ1, η1; ξ, αξ + γ

)
dξ1dη1,

(3.12)

which, after the double differentiation reduces to the following loaded Volterra integral
equation of the second kind (see [22]):

1
2α

d2ϕk
n

dξ2
gk
n

(
(α + 1)ξ + γ

)
+

1
2α

∫αξ+γ

ε/2

∂

∂ξ

[
gk
n(ξ1 + ξ)R

(
ξ1, ξ; ξ, αξ + γ

)
dξ1

+
1
2α

∫αξ+γ

ε/2
gk
n(ξ1 + ξ)

∂

∂ξ
R
(
ξ1, η1; ξ, αξ + γ

)∣∣∣∣
η1=ξ

dξ1

+
1
2

∫ ξ

1/2

∂

∂ξ

[
gk
n

(
αξ + γ + η1

)
R
(
αξ + γ, η1; ξ, αξ + γ

)
dη1

+
1
2

∫ ξ

1/2
gk
n

(
αξ + γ + η1

) ∂

∂ξ
R
(
ξ1, η1; ξ, αξ + γ

)∣∣∣∣
ξ1=αξ+γ

dη1

+
1
2α

∫ ξ

1/2

∫αξ+γ

ε/2
gk
n

(
ξ1 + η1

) ∂2

∂ξ2
R
(
ξ1, η1; ξ, αξ + γ

)
dξ1dη1.

(3.13)

It is handy to rewrite (3.13) as

gk
n(ξ) = F

(
gk
n

)
. (3.14)

Given that |Pμ(z)| ≤ C, |P ′
μ(z)| ≤ C, |P ′′

μ(z)| ≤ C [23], C = const, the integral operator

F maps the full metric space C1(J) with the norm ‖gk
n‖ = maxJ |gk

n(ξ)| + maxJ |dgk
n/dξ| into

itself, where J is the interval (ε/2, 1/2).



8 Mathematical Problems in Engineering

Next, let gk
1n and gk

2n be arbitrary elements of the space C1(J). It is easy to see that for
gk
n = gk

1n − gk
2n, the following estimate is valid:

∣∣∣F
(
gk
n

)∣∣∣ =

∣∣∣∣∣−
1
2α

∫αξ+γ

ε/2

[(
gk
n(ξ1 + ξ)

)′
R
(
ξ1, ξ; ξ, αξ + γ

)
+ gk

n(ξ1 + ξ)
∂

∂ξ
R
(
ξ1, ξ; ξ, αξ + γ

)]
dξ1

− 1
2α

∫αξ+γ

ε/2
gk
n(ξ1 + ξ)

∂

∂ξ
R
(
ξ1, η1; ξ, αξ + γ

)∣∣∣∣
η1=ξ

dξ1

+
1
2

∫1/2

ξ

[
α
(
gk
n

(
αξ + γ + η1

))′
R
(
αξ + γ, η1; ξ, αξ + γ

)

+gk
n

(
αξ + γ + η1

) ∂

∂ξ
R
(
αξ, η1; ξ, αξ + γ

)]
dη1

+
1
2

∫1/2

ξ

gk
n

(
αξ + γ + η1

) ∂

∂ξ
R
(
ξ1, η1; ξ, αξ + γ

)∣∣∣∣
ξ1=αξ+γ

dη1

+
1
2α

∫ ξ

1/2

∫αξ+γ

ε/2
gk
n

(
ξ1 + η1

) ∂2

∂ξ2
R
(
ξ1, η1; ξ, αξ + γ

)
dξ1dη1

∣∣∣∣∣

≤ 3M
2α

∥∥∥gk
n

∥∥∥
[(

αξ + γ − ε

2

)
+
(
1
2
− ξ

)
+
(
1
2
− ξ

)(
αξ + γ − ε

2

)]
,

M = max

(
max
J∗J

|R|,max
J∗J

∣∣∣∣
∂R

∂ξ

∣∣∣∣, max
J∗J

∣∣∣∣∣
∂2R

∂ξ2

∣∣∣∣∣

)
.

(3.15)

Furthermore, it is evident that

∣∣∣F2
(
gk
n

)∣∣∣ ≤
(

3
2α

M

)2∥∥∥gk
n

∥∥∥
[(

αξ + γ−(ε/2))2
2

+
((1/2)−ξ)2

2
+
((1/2) − ξ)2

2

(
αξ + γ − (ε/2)

)2

2

]
.

(3.16)

Continuing this process, we obtain

∣∣∣Fn
(
gk
n

)∣∣∣ ≤
(

3
2α

M

)n∥∥∥gk
n

∥∥∥
[(

αξ + γ−(ε/2))n
n!

+
((1/2)−ξ)n

n!
+
((1/2)−ξ)n

n!

(
αξ + γ − (ε/2)

)n

n!

]
,

(3.17)

where Fn is the nth degree of the operator F. From here, one can see that we can find such n
that

∣∣∣Fn
(
gk
n

)∣∣∣ ≤ C
∥∥f

∥∥, C = const < 1. (3.18)

The inequality (3.18) implies that the operator Fn is a contraction.
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Thus, the operator F has a fixed point [24]. This fixed point is the solution of (3.14),
that is, (3.13).

Therefore, having first solved the problem (3.3), (3.6), (3.7) (for n = 0), and then (3.4),
(3.6), (3.7) (for n = 1) and so on, we can find sequentially all uk

n(r, t), k = 1, kn, n = 0, 1, . . . .
Thus, we have shown that

∫

Γ
ρ(θ)

(
Lu − g(x)

)
dΓ = 0. (3.19)

Let f(r, θ, t) = R(r)ρ(θ)T(t), and, moreover, R(r) ∈ V0 is dense in L2(t+ε, 1−t), ρ(θ) ∈
C∞(Γ) is dense in L2(Γ), and T(t) ∈ V1 is dense in L2(0, (1 − ε)/2). Then, f(r, θ, t) ∈ V, V =
V0 ⊗ Γ ⊗ V1 is dense in L2(Dε) (see, e.g., [25]).

Thus, from (3.19), it follows that

∫

Dε

f(r, θ, t)
(
Lu − g(x)

)
dDε = 0 Lu = g(x), ∀(x, t) ∈ Dε. (3.20)

Therefore, the problem (2.1)–(2.3) has the solutions of the form

u(r, θ, t) =
∞∑

n=0

kn∑

k=1

r(1−m)/2uk
n(r, t)Y

k
n,m(θ), (3.21)

where uk
n(r, t) are determined from (3.10), in which gk

n(ξ, η) are found from (3.13).
Taking into account the restrictions on the functions τ(r, θ), υ(r, θ), σ(r, θ), one can

analogously prove (as shown, e.g., in [18, 19]) that the obtained solution u(r, θ, t) in the form
(3.21) belongs to the required class.

This completes the proof of Theorem 3.1. Theorem 3.2 is proven analogously.

4. Conclusion

In this paper, we have proven the existence theorems for the solution of the inverse problem
for a general class of multidimensional hyperbolic PDEs, for the cases of time-independent
and space-independent unknown right-hand sides of the equation. The potential importance
of this work comes from the fact that multidimensional inverse problems for hyperbolic
equations are extremely important in applied work, but so far, only the results for relatively
narrow classes of equations have been established.

Turning to the limitations of our work, we should note that so far, we have not been
able show the uniqueness or stability of the solution. Given the importance of the well-
posedness problem in applied fields, we believe that this is an important avenue for future
work.
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