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We present some sufficient global optimality conditions for a special cubic minimization problem
with box constraints or binary constraints by extending the global subdifferential approach
proposed by V. Jeyakumar et al. (2006). The present conditions generalize the results developed in
the work of V. Jeyakumar et al. where a quadratic minimization problem with box constraints or
binary constraints was considered. In addition, a special diagonal matrix is constructed, which is
used to provide a convenient method for justifying the proposed sufficient conditions. Then, the
reformulation of the sufficient conditions follows. It is worth noting that this reformulation is also
applicable to the quadratic minimization problem with box or binary constraints considered in the
works of V. Jeyakumar et al. (2006) and Y. Wang et al. (2010). Finally some examples demonstrate
that our optimality conditions can effectively be used for identifying global minimizers of the
certain nonconvex cubic minimization problem.

1. Introduction

Consider the following cubic minimization problem with box constraints:

min f(x) = bTx3 +
1
2
xTAx + aTx,

s.t. x ∈ D =
n∏

i=1

[ui, vi],
(CP1)

where ui, vi ∈ R, ui ≤ vi, i = 1, 2, . . . , n, and a = (a1, . . . , an)
T ∈ Rn, b = (b1, . . . , bn)

T ∈ Rn,
A ∈ Sn, where Sn is the set of all symmetric n × n matrices. x3 that means (x3

1, . . . , x
3
n)

T .
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The cubic optimization problem has spawned a variety of applications, especially
in cubic polynomial approximation optimization [1], convex optimization [2], engineering
design, and structural optimization [3]. Moreover, research results about cubic optimization
problem can be applied to quadratic programming problems, which have been widely
studied because of their broad applications, to enrich quadratic programming theory.

Several general approaches can be used to establish optimality conditions for solutions
to optimization problems. These approaches can be broadly classified into three groups:
convex duality theory [4], local subdifferentials by linear functions [5–7], and global L-
subdifferential and L-normal cone by quadratic functions [8–11]. The third approach, which
we extend in this paper, is often adopted to develop optimality conditions for special
optimization forms: quadratic minimizations with box or binary constraints, quadratic
minimization with quadratic constraints, bivalent quadratic minimization with inequality
constraints, and so forth.

In this paper, we consider the cubic minimization problem, which generalizes the
quadratic functions frequently considered in the mentioned papers. The proof method is
based on extending the global L-subdifferentials by quadratic functions [8, 12] to cubic
functions. We show how an L-subdifferential can be explicitly calculated for cubic functions
and then develop the global sufficient optimality conditions for (CP1). We also derive the
global optimality conditions for special cubic minimization problemswith binary constraints.
But whenwe use the sufficient conditions, we have to determine whether a diagonal matrixQ
exists. It is hard to identify whether thematrixQ exists. Sowe rewrite the sufficient conditions
in an other way through constructing a certain diagonal matrix. This method is applicable to
the quadratic minimization problem with box or binary constraints considered in [8, 12].

This paper is organized as follows. Section 2 presents the notions of L-subdifferentials
and develops the sufficient global optimality condition for (CP1). The global optimality
condition for special cubic minimization with binary constraints is presented in Section 3.
In Section 4, numerical examples is given to illustrate the effectiveness of the proposed global
optimality conditions.

2. L-Subdifferentials and Sufficient Conditions

In this section, basic definitions and notations that will be used throughout the paper are
given. The real line is denoted by R and the n-dimensional Euclidean space is denoted by
Rn. For vectors x, y ∈ Rn, x ≥ y means that xi ≥ yi, for i = 1, . . . , n. A � B means that the
matrix A − B is a positive semidefinite. A diagonal matrix with diagonal elements α1, . . . , αn

is denoted by diag(α1, . . . , αn). Let L be a set of real-valued functions defined on Rn.

Definition 2.1 (L-subdifferentials [13]). Let L be a set of real-valued functions. Let f : Rn → R.
An element l ∈ L is called an L-subgradient of f at a point x0 ∈ Rn if

f(x) ≥ f(x0) + l(x) − l(x0), ∀x ∈ Rn. (2.1)

The set ∂Lf(x) of all L-subgradients of f at x0 is referred to as L-subdifferential of f at
x0.

Throughout the rest of the paper, we use the specific choice of L defined by

L =
{
bTx3 +

1
2
xTQx + βTx | Q = diag(α1, . . . , αn), αi ∈ R, β ∈ Rn

}
. (2.2)
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Proposition 2.2. Let f(x) = bTx3 + (1/2)xTAx + aTx and x = (x1, . . . , xn)
T ∈ Rn. Then

∂Lf(x) =
{
bTx3 +

1
2
xTQx + βTx

∣∣∣A−Q�0, Q=diag(α1,...,αn)
β=(AQ)x+a, αi∈R

}
. (2.3)

Proof. Suppose that there exists a diagonal matrix Q = diag(α1, . . . , αn), such that A − Q � 0.
Let

l(x) = bTx3 +
1
2
xTQx + βTx, β = (A −Q)x + a. (2.4)

Then it suffices to prove that l(x) ∈ ∂Lf(x). Let

φ(x) = f(x) − l(x) =
1
2
xT (A −Q)x +

(
a − β

)T
x. (2.5)

Since ∇2φ(x) = A −Q � 0, for all x ∈ Rn, we know that φ(x) is a convex function on Rn. Note
that∇φ(x) = (A−Q)x+(a−β) = 0, and so x is a global minimizer of φ(x), that is, φ(x) ≥ φ(x),
for all x ∈ Rn. This means that l(x) ∈ ∂Lf(x).

Next we prove the converse.
Let l(x) ∈ ∂Lf(x), l(x) = bTx3 + (1/2)xTQx + βTx. By definition,

f(x) ≥ f(x) + l(x) − l(x), ∀x ∈ Rn. (2.6)

Hence

φ(x) = f(x) − l(x) =
1
2
xT (A −Q)x +

(
a − β

)T
x ≥ f(x) − l(x), ∀x ∈ Rn. (2.7)

Thus, x is a global minimizer of φ(x). So, ∇φ(x) = 0 and ∇2φ(x) � 0, that is,

A −Q � 0, (A −Q)x +
(
a − β

)
= 0, (2.8)

hence β = (A −Q)x + a.

For x = (x1, . . . , xn)
T ∈ D, define

x̃i =

⎧
⎪⎪⎨

⎪⎪⎩

−1 if xi = ui,

1 if xi = vi,

(Ax)i + ai if xi ∈ (ui, vi).

X̃ = diag(x̃1, . . . , x̃n).

(2.9)



4 Mathematical Problems in Engineering

For Q = diag(α1, . . . , αn), αi ∈ R, i = 1, . . . , n, define

α̂i = min{0, αi},

Q̂ = diag(α̂1, . . . , α̂n).
(2.10)

By Proposition 2.2, we obtain the following sufficient global optimality condition for
(CP1).

Theorem 2.3. For (CP1), let x = (x1, . . . , xn)
T ∈ D and u = (u1, . . . , un)

T , v = (v1, . . . , vn)
T .

Suppose that there exists a diagonal matrix Q = diag(α1, . . . , αn), αi ∈ R, i = 1, . . . , n, such that
A −Q � 0, and for all x ∈ D, bi(xi − xi) ≥ 0, (i = 1, . . . , n). If

X̃(Ax + a) − 1
2
Q̂(v − u) ≤ 0, (2.11)

then x is a global minimizer of problem (CP1).

Proof. Suppose that condition (2.11) holds. Let

l(x) = bTx3 +
1
2
xTQx + βTx,

β = (A −Q)x + a.

(2.12)

Then, by Proposition 2.2, l(x) ∈ ∂Lf(x), that is,

f(x) − f(x) ≥ l(x) − l(x), ∀x ∈ Rn. (2.13)

Obviously if l(x) − l(x) ≥ 0 for each x ∈ D, then x is a global minimizer of (CP1).
Note that

l(x) − l(x) =
n∑

i=1

αi

2
(xi − xi)

2 + (Ax + a)T (x − x) + bT
(
x3 − x3

)
. (2.14)

If each term in the right side of the above equation satisfies

αi

2
(xi − xi)

2 + (Ax + a)i(xi − xi) + bi
(
x3
i − x3

i

)
≥ 0, i = 1, . . . , n, xi ∈ [ui, vi], (2.15)

then, from (2.14), it holds that l(x) − l(x) ≥ 0. So x is a global minimizer of l(x) over box
constraints.

On the other hand, suppose that x is a global minimizer of l(x), x ∈ D. Then it holds
that

l(x) − l(x) =
n∑

i=1

αi

2
(xi − xi)

2 + (Ax + a)T (x − x) + bT
(
x3 − x3

)
≥ 0, ∀x ∈ D. (2.16)
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When x is chosen as a special point x̃ ∈ D as follows:

x̃ = (x1, x2, . . . , xi−1, xi, xi+1, . . . , xn), xi ∈ [ui, vi], xi /=xi, i = 1, . . . , n, (2.17)

we still have

l(x̃) − l(x) =
αi

2
(xi − xi)

2 + (Ax + a)T (x − x) + bT
(
x3 − x3

)
≥ 0, i = 1, . . . , n. (2.18)

This means that if x is a global minimizer of l(x) over box constraints. Then (2.15) holds.
Combining the above discussion, we can conclude that x is a global minimizer of l(x)

over box constraints if and only if (2.15) holds. So next, we just need to prove (2.15) in order
to show that x is a global minimizer of l(x).

We first see from (2.11), for each i = 1, . . . , n, that

− α̂i

2
(vi − ui) + x̃i(Ax + a)i ≤ 0. (2.19)

Since α̂i ≤ 0, then for each xi ∈ [ui, vi], i = 1, . . . , n,

− α̂i

2
(xi − ui) + x̃i(Ax + a)i ≤ 0, (2.20)

and

α̂i

2
(xi − vi) + x̃i(Ax + a)i ≤ 0. (2.21)

For each i = 1, . . . , n, we consider the following three cases.
Case 1. (If xi ∈ (ui, vi), then x̃i = (Ax + a)i). By (2.20),

− α̂i

2
(xi − ui) + (Ax + a)2i ≤ 0. (2.22)

So, α̂i = 0 and (Ax + a)i = 0, and then

αi

2
(xi − xi)

2 + (Ax + a)i(xi − xi) + bi
(
x3
i − x3

i

)

≥ α̂i

2
(xi − xi)

2 + bi
(
x3
i − x3

i

)

= bi(xi − xi)
(
x2
i + xixi + x2

i

)

≥ 0.

(2.23)
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Case 2. (If xi = ui, then x̃i = −1). By (2.20),

α̂i

2
(xi − ui) + (Ax + a)i ≥ 0. (2.24)

So we have

αi

2
(xi − xi)

2 + (Ax + a)i(xi − xi) + bi
(
x3
i − x3

i

)

≥ α̂i

2
(xi − ui)2 + (Ax + a)i(xi − ui) + bi

(
x3
i − u3

i

)

=
{
α̂i

2
(xi − ui) + (Ax + a)i

}
(xi − ui) + bi

(
x3
i − u3

i

)

≥ 0.

(2.25)

Case 3. (If xi = vi, then x̃i = 1). By (2.21),

α̂i

2
(xi − vi) + (Ax + a)i ≤ 0. (2.26)

Then

αi

2
(xi − xi)

2 + (Ax + a)i(xi − xi) + bi
(
x3
i − x3

i

)

≥ α̂i

2
(xi − vi)2 + (Ax + a)i(xi − vi) + bi

(
x3
i − v3

i

)

≥ 0.

(2.27)

So, if condition (2.11) holds, then (2.15) holds. And, from (2.14), we can conclude that
x is a global minimizer of (CP1).

Theorem 2.3 shows that the existence of diagonal matrixQ plays a crucial role because
if this diagonal matrix Q does not exist, then we have no way to use this theorem. If the
diagonal matrixQ exists, then the key problem is how to find it. These questions also exist in
[8, 12].

The following corollary will answer the questions above.

Corollary 2.4. For (CP1), let x ∈ D. Assume that, for all x ∈ D, it holds that bi(xi − xi) ≥ 0 (i =
1, . . . , n). Then one has the following conclusion.

(1) When A is a positive semidefinite matrix, if

X̃(Ax + a) ≤ 0, (2.28)

then x is a global minimizer of (CP1).
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(2) When A is not a positive semidefinite matrix, if there exists an index i0, 1 ≤ i0 ≤ n, such
that

x̃i0(Ax + a)i0 > 0, (2.29)

then there is no such diagonal matrix Q that meets the requirements of the Theorem 2.3.

(3) Let

αi =
2x̃i(Ax + a)i

vi − ui
, i = 1, . . . , n,

Q = diag(α1, . . . , αn).

(2.30)

When A is not a positive semidefinite matrix and the condition X̃(Ax + a) ≤ 0 holds, if
A −Q � 0 holds, then x is a global minimizer of (CP1). Otherwise, one can conclude that there is no
such diagonal matrix Q that meets the requirements of the Theorem 2.3.

Proof. (1) Suppose that A � 0 and the condition X̃(Ax + a) ≤ 0 holds. Choosing Q = Q̂ = 0,
by Theorem 2.3, we can conclude that x is a global minimizer of (CP1).

(2) When A is not a positive semidefinite matrix, if there exists an index i0, 1 ≤ i0 ≤ n,
such that

x̃i0(Ax + a)i0 > 0, (2.31)

then

2x̃i0(Ax + a)i0
vi0 − ui0

> 0. (2.32)

Suppose there exists a diagonal matrix Q that meets all conditions in Theorem 2.3.
Condition (2.11) can be rewritten in the following form:

x̃i(Ax + a)i −
1
2
α̂i(vi − ui) ≤ 0, i = 1, . . . , n. (2.33)

Then it follows that

α̂i ≥
2x̃i(Ax + a)i

vi − ui
, i = 1, . . . , n. (2.34)

For the index i0, we still have the following inequality:

α̂i0 ≥
2x̃i0(Ax + a)i0

vi0 − ui0

> 0. (2.35)

This conflicts with the fact that α̂i = min{0, αi} ≤ 0, i = 1, . . . , n.
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(3) Next we will consider the case that A is not a positive semidefinite matrix, and
condition X̃(Ax + a) ≤ 0 holds.

We construct a diagonal matrix Q = diag(α1, . . . , αn) where αi = 2x̃i(Ax + a)i/(vi −
ui), i = 1, . . . , n, and A −Q � 0. Then it suffices to show that condition (2.11) in Theorem 2.3
hold.

Note that x̃i(Ax + a)i ≤ 0, i = 1, . . . , n, and then

αi =
2x̃i(Ax + a)i

vi − ui
≤ 0, i = 1, . . . , n. (2.36)

Since αi ≤ 0, we have α̂i = αi. So

α̂i =
2x̃i(Ax + a)i

vi − ui
≤ 0, i = 1, . . . , n. (2.37)

Rewriting the above inequality, we have

x̃i(Ax + a)i −
1
2
α̂i(vi − ui) = 0, i = 1, . . . , n. (2.38)

Apparently this means that the constructed diagonal matrix Q also satisfies condition (2.11).
According to Theorem 2.3, we can conclude that x is a global minimizer of (CP1).

If the constructed diagonal matrix Q does not meet the condition A − Q � 0, then
we can conclude that there is no such diagonal matrix Q that can meet the requirements of
Theorem 2.3.

To show this, suppose that there exists a diagonal matrix Q∗ = diag(α∗
1, . . . , α

∗
n), which

satisfies A −Q∗ � 0 and (2.11).
From (2.11), we have

0 ≥ α∗
i ≥

2x̃i(Ax + a)i
vi − ui

= αi, i = 1, . . . , n. (2.39)

Obviously if A − Q∗ � 0, then there must exist a diagonal matrix Q = diag(α1, . . . , αn) such
that A −Q � 0. This conflicts the assumption.

We now consider a special case of (CP1):

min f(x) =
n∑

i=1

bix
3
i +

n∑

i=1

ri
2
x2
i +

n∑

i=1

aixi

s.t. x ∈ D =
n∏

i=1

[ui, vi],

(CP2)

where ui, vi, ai, bi, ri ∈ R and ui ≤ vi, i = 1, 2, . . . , n.
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Corollary 2.5. For (CP2), let x ∈ D. If, for each i = 1, . . . , n,

x̃i(rixi + ai) − 1
2
r̂i(vi − ui) ≤ 0,

bi(xi − xi) ≥ 0,
(2.40)

then x is a global minimizer of (CP2), where r̂i = min{0, ri}.

Proof. For (CP2), choose Q = A = diag(r1, . . . , rn). If (2.40) holds, then, by Theorem 2.3, x is a
global minimizer of (CP2).

3. Sufficient Conditions of Bivalent Programming

In this section, we will consider the following bivalent programming:

min f(x) = bTx3 +
1
2
xTAx + aTx

s.t. x ∈ DB =
n∏

i=1

{ui, vi},
(CP3)

where A, a, b, and ui, vi, i = 1, . . . , n are the same as in (CP1).
Similar to Theorem 2.3, we will obtain the global sufficient optimality conditions for

(CP3).

Theorem 3.1. For (CP3), let x = (x1, . . . , xn)
T ∈ DB. Suppose that there exists a diagonal matrix

Q = diag(α1, . . . , αn), αi ∈ R, i = 1, . . . , n such that A − Q � 0, and for all x ∈ DB, bi(xi − xi) ≥
0 (i = 1, . . . , n). If

X̃(Ax + a) − 1
2
Q(v − u) ≤ 0, (3.1)

then x is a global minimizer of problem (CP3).

Proof. Suppose that condition (3.1) holds. Let

l(x) = bTx3 +
1
2
xTQx + βTx,

β = (A −Q)x + a.

(3.2)

Then

f(x) − f(x) ≥ l(x) − l(x), ∀x ∈ Rn. (3.3)

Obviously if l(x) − l(x) ≥ 0 for each x ∈ DB, then x is a global minimizer of (CP3).
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Note that

l(x) − l(x) =
n∑

i=1

αi

2
(xi − xi)

2 + (Ax + a)T (x − x) + bT
(
x3 − x3

)
. (3.4)

Thus, x is a global minimizer of l(x) with binary constraints if and only if, for each
i = 1, . . . , n, xi ∈ {ui, vi},

αi

2
(xi − xi)

2 + (Ax + a)i(xi − xi) + bi
(
x3
i − x3

i

)
≥ 0. (3.5)

Firstly, we note from (3.1), for each i = 1, . . . , n, that

−αi

2
(vi − ui) + x̃i(Ax + a)i ≤ 0. (3.6)

Next we only show it from the following two cases.

Case 1. (If xi = ui), then (3.6) is equivalent to

αi

2
(vi − ui) + (Ax + a)i ≥ 0. (3.7)

It is obvious that, for each xi ∈ {ui, vi},

αi

2
(xi − ui)2 + bi

(
x3
i − u3

i

)
+ (Ax + a)i(xi − ui) ≥ 0. (3.8)

So (3.5) holds.

Case 2. (If xi = vi), then (3.6) is equivalent to

−αi

2
(vi − ui) + (Ax + a)i ≤ 0. (3.9)

It is obvious that, for each xi ∈ {ui, vi},

αi

2
(vi − xi)2 − bi

(
v3
i − x3

i

)
− (Ax + a)i(vi − xi) ≥ 0. (3.10)

So (3.5) holds.
From (3.5), we can conclude that x is a global minimizer of problem (CP3)

Similar to Corollary 2.4, we have the following corollary.

Corollary 3.2. For (CP3), let x ∈ DB. Suppose that, for all x ∈ DB, bi(xi − xi) ≥ 0 (i = 1, . . . , n).
(1) When A is a positive semidefinite matrix, if

X̃(Ax + a) ≤ 0, (3.11)

then x is a global minimizer of (CP3).
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(2) Let

αi =
2x̃i(Ax + a)i

vi − ui
, i = 1, . . . , n,

Q = diag(α1, . . . , αn).
(3.12)

WhenA is not a positive semidefinite matrix, ifA−Q � 0 holds, then x is a global minimizer of (CP3).
Otherwise, one can conclude that there is no such diagonal matrix Q that meets the requirements of
Theorem 3.1.

We just show the proof of (2).

Proof. We construct the diagonal matrixQ = diag(α1, . . . , αn), where αi = 2x̃i(Ax+a)i/(vi−ui),
i = 1, . . . , n. If A −Q � 0, we just need to test condition (3.1).

Because

αi =
2x̃i(Ax + a)i

vi − ui
, i = 1, . . . , n, (3.13)

then rewriting the above equations, we have

x̃i(Ax + a)i −
1
2
αi(vi − ui) = 0, i = 1, . . . , n. (3.14)

It obviously means that the diagonal matrix Q also satisfies condition (3.1). According to
Theorem 3.1, x is a global minimizer of (CP3).

Note that there is difference between formula (3.1) and formula (2.11). In formula
(3.1), the diagonal elements αi of a diagonal matrix Q are allowed to be positive or
nonpositive. But in formula (2.11), the diagonal elements α̂i of a diagonal matrix Q̂must meet
the conditions α̂i ≤ 0. So we have to discuss the sign of the terms x̃i(Ax + a)i (i = 1, . . . , n) in
Corollary 3.2.

We now consider a special case of (CP3):

min f(x) =
n∑

i=1

bix
3
i +

n∑

i=1

ri
2
x2
i +

n∑

i=1

aixi

s.t. x ∈ DB =
n∏

i=1

{ui, vi},
(CP4)

where bi, ri, ai, ui, vi ∈ R and ui ≤ vi, i = 1, . . . , n.

Corollary 3.3. For (CP4), let x ∈ DB. If, for each i = 1, . . . , n,

x̃i(rixi + ai) − ri
2
(vi − ui) ≤ 0,

bi(xi − xi) ≥ 0,
(3.15)

then x is a global minimizer of (CP4).
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Proof. For (CP4), choose Q = A = diag(r1, . . . , rn). If conditions (3.15) hold, then, by
Theorem 3.1, x is a global minimizer of (CP4).

4. Numerical Examples

In this section, six examples are given to test the proposed global sufficient optimality
condition.

Example 4.1. Consider the following problem:

min
7
3
x3
1 + 5x3

2 + 2x3
3 +

3
2
x2
1 + x2

2 +
1
2
x2
3 + 2x1x2 + x1x3 + x2x3 +

3
2
x1 + 5x2 + 3x3

s.t. x ∈ D =
3∏

i=1

[1, 2].
(4.1)

Let

A =

⎡
⎢⎢⎢⎣

3 2 1

2 2 1

1 1 1

⎤
⎥⎥⎥⎦ (4.2)

and a = (3/2, 5, 3)T , b = (7/3, 5, 2)T . Obviously A is a positive semidefinite matrix.
Considering x = (1, 1, 1)T , obviously we have, for each xi ∈ [1, 2], bi(xi − xi) ≥ 0 (i =

1, 2, 3). Note that Ax + a = (15/2, 10, 6)T and X̃ = diag(−1,−1,−1), and so

X̃(Ax + a) =

⎡
⎢⎢⎢⎢⎢⎣

−15
2

−10
−6

⎤
⎥⎥⎥⎥⎥⎦

< 0. (4.3)

According to Corollary 2.4(1), x = (1, 1, 1) is a global minimizer.

Example 4.2. Consider the following problem:

min −x3
1 − 3x3

2 +
1
2
x3
4 − x2

1 − x2
2 +

3
2
x2
3 −

1
2
x2
4 − 2x1x2 + x1x4 + 2x2x4 − x1 − 4x2 + 5x4

s.t. x ∈ D =
4∏

i=1

[−1, 1].
(4.4)
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Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2 −2 0 1

−2 −2 0 2

0 0 3 0

1 2 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.5)

and a = (−1,−4, 0, 5)T , b = (−1,−3, 0, 1/2)T . ObviouslyA not is a positive semidefinite matrix.
Considering x = (1, 1, 0,−1)T , obviously we have, for each xi ∈ [−1, 1], bi(xi − xi) ≥

0 (i = 1, 2, 3, 4).
Note that Ax + a = (−6,−10, 0, 9)T . Then letting X̃ = diag(1, 1, 0,−1), we have X̃(Ax +

a) = (−6,−10, 0,−9)T ≤ 0. Let α1 = 2x̃1(Ax + a)1/(v1 − u1) = −6, α2 = −10, α3 = 0 and α4 =
−9. Then Q = diag(−6,−10, 0,−9), which satisfies A − Q 
 0. According to Corollary 2.4(3),
x = (1, 1, 0,−1) is a global minimizer.

Example 4.3. Consider the following problem:

min −x3
1 +

2
3
x3
2 − 3x3

3 − 2x2
1 −

3
5
x2
2 − 4x2

3 +
1
2
x2
4 − 2x1 + 5x2 − 3x3

s.t. x ∈ D =
4∏

i=1

[−1, 1].
(4.6)

Let A = diag(−4,−6/5,−8, 1) and a = (−2, 5,−3, 0)T , b = (−1, 2/3,−3, 0)T , r =
(−4,−6/5,−8, 1)T .

Consider x = (1,−1, 1, 0)T .
Let X̃ = diag(1,−1, 1, 0), r̂ = (−4,−6/5,−8, 0)T . Then

x̃1(r1x1 + a1) − 1
2
r̂1(v1 − u1) = −2 < 0,

x̃2(r2x2 + a2) − 1
2
r̂2(v2 − u2) = −5 < 0,

x̃3(r3x3 + a3) − 1
2
r̂3(v3 − u3) = −3 < 0,

x̃4(r4x4 + a4) − 1
2
r̂4(v4 − u4) = 0,

xi ∈ [−1, 1], bi(xi − xi) ≥ 0, (i = 1, 2, 3, 4).

(4.7)

According to Corollary 2.5, x = (1,−1, 1, 0) is a global minimizer.
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Example 4.4. Consider the following problem:

min 4x3
1 +

5
2
x3
2 − 3x3

3 −
8
3
x3
4 −

3
2
x2
1 −

3
2
x2
2 + 3x2

3 − x2
4 + 2x1x2 + x1x4 + x2x3 − x3x4

+ 5x1 +
9
2
x2 − 2x3 − 2x4

s.t. x ∈ DB =
4∏

i=1

{−1, 1}.

(4.8)

Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−3 2 0 1

2 −3 1 0

0 1 6 −1
1 0 −1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.9)

and a = (5, 9/2,−2,−2)T , b = (4, 5/2,−3,−8/3)T . Obviously A not is a positive semidefinite
matrix.

Considering x = (−1,−1, 1, 1)T , it follows that, for each x ∈ DB, bi(xi − xi) ≥
0 (i = 1, 2, 3, 4). Note that Ax + a = (7, 13/2, 2,−6)T and X̃ = diag(−1,−1, 1, 1). Let α1 =
(2x̃1(Ax + a)1)/(v1 − u1) = −7. Similarly we have, α2 = −13/2, α3 = 2 and α4 = −6.
Then Q = diag(−7,−13/2, 2,−6), which satisfies A − Q 
 0. According to Theorem 3.1(2),
x = (−1,−1, 1, 1) is a global minimizer.

Example 4.5. Consider the following problem:

min 3x3
1 − 8x3

2 + 5x3
3 +

1
2
x3
4 − x2

1 + 4x2
2 −

5
3
x2
3 − 3x2

4 + x1 − 2x2 + 3x3 + 4x4

s.t. x ∈ DB =
4∏

i=1

{−1, 0}.
(4.10)

Let a = (1,−2, 3, 4)T , b = (3,−8, 5, 1/2)T , and r = (−2, 8,−10/3,−6)T .
Consider x = (−1, 0,−1,−1)T .
Let X̃ = diag(−1, 1,−1,−1). Then

x̃1(r1x1 + a1) − 1
2
r1(v1 − u1) = −2 < 0,

x̃2(r2x2 + a2) − 1
2
r2(v2 − u2) = −6 < 0,

x̃3(r3x3 + a3) − 1
2
r3(v3 − u3) = −14

3
< 0,
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x̃4(r4x4 + a4) − 1
2
r4(v4 − u4) = −7 < 0,

x ∈ DB, bi(xi − xi) ≥ 0, (i = 1, 2, 3, 4).
(4.11)

According to Corollary 3.3, x = (−1, 0,−1,−1) is a global minimizer.

Example 4.6. Consider the following problem:

min 3x3
1 − 8x3

2 + 5x3
3 +

1
2
x3
4 − x2

1 − 4x2
2 +

5
3
x2
3 − 3x2

4 − x1 + 2x2 + 3x3 + 4x4

s.t. x ∈ DB =
4∏

i=1

{−1, 0}.
(4.12)

Let a = (−1, 2, 3, 4)T , b = (3,−8, 5, 1/2)T and r = (−2,−8, 10/3,−6)T .
Consider x = (−1, 0,−1,−1)T .
Let X̃ = diag(−1, 1,−1,−1). Then

x̃1(r1x1 + a1)− 1
2
r1(v1 − u1) = 0,

x̃2(r2x2 + a2)− 1
2
r2(v2 − u2) = 6 > 0,

x̃3(r3x3 + a3)− 1
2
r3(v3 − u3) = −4

3
< 0,

x̃4(r4x4 + a4)− 1
2
r4(v4 − u4) = −7 < 0.

(4.13)

We can see that the conditions are not true in x = (−1, 0,−1,−1)T in Corollary 3.3. But
x = (−1, 0,−1,−1) is a global minimizer. This fact exactly shows that the conditions are just
sufficient.
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