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This paper addresses the short-term scheduling problem of hydrothermal power systems, which
results in a large-scale mixed-integer nonlinear programming problem. The objective consists in
minimizing the operation cost over a two-day horizon with a one-hour time resolution. To solve
this difficult problem, a Lagrangian Relaxation (LR) based on variable splitting is designed where
the resulting dual problem is solved by a Bundle method. Given that the LR usually fails to find
a feasible solution, we use an inexact Augmented Lagrangian method to improve the quality
of the solution supplied by the LR. We assess our approach by using a real-life hydrothermal
configuration extracted from the Brazilian power system, proving the conceptual and practical
feasibility of the proposed algorithm. In summary, the main contributions of this paper are (i) a
detailed and compatiblemodelling for this problem is presented; (ii) in order to solve efficiently the
entire problem, a suitable decomposition strategy is presented. As a result of these contributions,
the proposed model is able to find practical solutions with moderate computational burden, which
is absolutely necessary in the modern power industry.

1. Introduction

The operation coordination of a hydrothermal system requires the use of several models
given that a single model cannot accommodate all the complexities involved in this problem.
Usually the problem is divided into scheduling problems with different modeling and plan-
ning horizons. The long-term scheduling model results are used as input for medium-term
model which, in turn, feed their results to the short-term scheduling model. In the Short-Term
Scheduling (STS) problem, a detailed modeling is necessary so that practical solutions can be
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found. To address this problem, a large-scale optimization problemwith a mix of discrete and
continuous variables needs to be formulated.

Some primal methods have been proposed for the STS based on, for example, pro-
gressive optimality [1], network flow [2], Benders decomposition [3], and mixed integer pro-
gramming [4–6]. However, considering the detailed model used in our problem formulation
and considering its constraints structure, dual decomposition appears as an approach for
the problem. In this sense, Lagrangian Relaxation (LR) [7–19] and Augmented Lagrangian
(AL) [20–22] have been extensively used. The main advantages of the LR are as follows:
the original problem can be split into a sequence of smaller easy-to-solve subproblems,
and a lower-bound for the optimal objective function is supplied. However, there is an
important disadvantage: for nonconvex problems, the LR fails to find a feasible solution. On
the other hand, with AL, it is possible to obtain a feasible solution or a near-feasible solution.
However, the problem is not separable and it is necessary to use some inexact variant of this
methodology.

Although almost all works which use dual decomposition in the STS problem are
based on either LR [7–18] or AL [20–22], in this work we propose a two-phase approach
similar to [23, 24] but contrasting to these references we introduced contributions, which are
presented at end of this section. In the first phase, we use the LR to obtain (infeasible) primal
solution, and in the second phase we use the AL to obtain a solution whose quality can be
assessed by the LR. In [23], a two-phase approach is used, where the problem is decomposed
into thermal unit commitment and linear hydrothermal scheduling subproblems. This
decomposition is not efficient when the hydroproduction function is modeled by a nonlinear
function and hydro-mixed-integer constraints are included in the STS problem. Aiming to
deal with nonlinearities and binary variables of the hydrosystem, in our previous works
[18, 19], a suitable decomposition was presented. In this paper, we use the LR of [18, 19] but
including the AL second-phase optimization in order to achieve primal feasibility, modeling
all nonlinearities and binary variables related to hydro- and thermal units.

Typically, LR technique relaxes coupling constraints such as demand and reserve
requirements. Nevertheless, using this strategy, the hydro-subproblem remains coupled in
time and space. An alternative approach consists in combining LR with Variable Splitting-
LRVS method [25, 26], where the decomposition is achieved by duplicating some variables.
In this paper, the LRVS is used to duplicate thermal and hydrovariables, as well as the
turbined outflow and spillage variables. Thus, we obtain four subproblems: thermal, hy-
dro, hydrothermal, and hydraulic. The first two subproblems take into account the unit com-
mitment constraints (thermal and hydro). The hydrothermal subproblem considers demand
reserve and transmission constraints. Finally, all the reservoir constraints are modelled into
the hydraulic subproblem.

Given that the LRVS fails to find a feasible solution, an AL approach is used in
attempt to overcome this issue. The artificial constraints relaxed in the LRVS are taken into
account in the AL function. In order to maintain the decomposition, the Auxiliary Problem
Principle (APP) [27] is employed. We assess our approach by using a real-life hydrothermal
configuration extracted from the Brazilian power system, proving the conceptual and
practical feasibility of the proposed algorithm.

The main contributions of this paper are the following.
(i) Although [18, 19] present a detailed modelling for this problem, these works did

not solve the entire STS problem. Actually, in the works [18, 19], only the hydroelectric
subproblem was solved and considering only the LR phase. It was shown explicitly the
necessity of a robust primal recovery phase since the primal solution supplied by the LR



Mathematical Problems in Engineering 3

cannot be applied in real-life decisions. Furthermore, the presented results shown in [18, 19]
did not take into account the Future Cost Function, which makes the problem more difficult
to be solved since all reservoirs, even in different cascades, are mathematically coupled.
In this paper, we solved the entire problem, which includes the thermal unit commitment
subproblem and constraints to satisfy the demand.

(ii) Regarding [23], which proposes a two-phase approach to solve the entire problem,
it is worth to point out that in this paper the problem related to the hydroelectric system is
modelled as continuous linear problem, which can lead to nonpractical solutions, given that
the power production function is clearly nonlinear. Furthermore, it is necessary to include 0-1
variables in the problem to take into account the on/off unit’s status as well as the forbidden
zones. This issue is very important for a hydro-dominated system and all these issues are
considered in this paper.

(iii) Furthermore, in terms of solution strategy, differently of [18, 19, 23, 24], in this
paper we include the pseudoprimal point strategy [28] as a warm starting by the APP. This
strategy improves dramatically the performance of the APP algorithm.

Given that the problem under consideration is classified as a large-scale one and it is
very complex due to several nonlinearities associated with hydro- and thermal technologies,
this work focuses on dual decomposition algorithms. Alternative techniques, based onMixed
Integer Linear Programming (MILP), have been used in other applications, especially for
mid-sized problems with thermal predominance or small-size hydroproblems [6, 29–32].

This paper is organized as follows. Sections 2 and 3 present the mathematical
formulation and the solution strategy, respectively. Section 4 reports the numerical results
and Section 5 provides some concluding remarks. The nomenclature is represented in the
end of paper.

2. Problem Modeling

The problem to be solved in real life occurs in the context of a very tense operational process.
Usually, in the power industry, the latest data collection phase ends close to 10:00AM and a
feasible schedule have to be computed by the Independent System Operator (SO) as soon
as possible. On the other hand the solution of this problem needs to be unambiguous,
which requires a detailed modelling so that postoptimization adjustments, involving human
expertise, should be avoided. Thus, based on these requirements we present in the following
a detail model for our problem; therefore, as consequence a suitable strategy solution is
necessary aiming to reduce the computational burden.

The objective function for the STS problem is

minFSTS =
T∑

t=1

I∑

i=1

uit

[(
a0i + a1iptit + a2ipt

2
it

)
+
(
boi

(
1 − exi,t−1/ωi

)
+ b1i

)
(1 − ui,t−1)

]
+ α. (2.1)

The objective function (2.1) seeks to minimize the total operating cost, which is
composed by the immediate cost from stage 1 to T plus the expected future cost from the
stage T + 1 on. The immediate cost is composed by the variable, start-up, and fixed thermal
costs [14]. On the other hand, the last term in (2.1), supplied by a medium-term model [33],
is the expected future cost from the stage T + 1 on. This cost is modeled by a multivariate
piecewise linear function, which is dependent on the final volumes of the reservoirs at the
stage T , as detailed ahead.
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2.1. Hydraulic Constraints (CH)

Consider the following equations:

vr,t+1 − vrt +A

⎛

⎝Qrt + srt −
∑

m∈�(r)
+

(Qm,t−τmr + sm,t−τmr ) − yrt

⎞

⎠ = 0, (2.2)

vmin
r ≤ vrt ≤ vmax

r , 0 ≤ srt ≤ smax
r , (2.3)

α +
R∑

r=1

π
(p)
r vr,T+1 ≥ α

(p)
0 , (2.4)

Qrt −
J(r)∑

j=1

qjrt = 0. (2.5)

Constraints (2.2), (2.3), (2.4), and (2.5) represent the stream-flow balance equations,
the volume and spillage limits, the Future Cost Function (FCF), and the penstock water
balance, respectively,

Φjr∑

k=1

phmin
jkrtzjkrt ≤ phjrt

(
qjrt, Qrt, srt

) ≤
Φjr∑

k=1

phmax
jkrtzjkrt. (2.6)

Constraints (2.6) describe the output limits for the hydro-units nonforbidden zones. In
(2.6), phjrt(·) is a high-order nonconvex polynomial, which allows to model hydraulic losses,
nonlinear tailrace levels, and nonlinear turbine-generator efficiencies. More details about this
function can be found in [18, 19]

⎛

⎝
J(r)∑

j=1

phmax
j1rt − PHrt

⎞

⎠ ≥ rhrt, PHrt =
J(r)∑

j=1

phjrt

(
qjrt, Qrt, srt

)
. (2.7)

Constraints (2.7) model the hydroreserve requirement and the reservoir power
balance. Typically, in hydrothermal systems dominated by hydroplants, these plants provide
spinning reserve better than thermal units. Hydrounits respond faster than thermal units to
system disturbs given that they can increase or decrease their outputs quickly. Nevertheless,
if the physical nature of the power system requires also thermal spinning, we do not see
difficulty to include reserve constraints which consider additionally the thermal plants

zjkrt ∈ {0, 1},
Φjr∑

k=1

zjkrt ≤ 1. (2.8)

Finally, (2.8) represents the integrality constraints.
We write constraints CH above in the compact form CH = CHH(α,Q, s, V ) ∩

CHUC(z, q,Q, s, PH). The vectors z, q, Q, s, PH, and V gather the respective variables. The
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set CHH(·) represents constraints given by (2.2)–(2.4), while CHUC(·) represents (2.5)–(2.8).
The objective function is given by fT (pt, u, x) + fH(α), where u and pt are vectors gathering
all binary and continuous thermal variables, respectively.

2.2. Thermal Constraints (CT)

Let us consider the following equations:

ptmin
i uit ≤ ptit ≤ ptmax

i uit (2.9)

Constraints (2.9) describe the output limits for each unit.

uit =

⎧
⎪⎪⎨

⎪⎪⎩

1 if 1 ≤ xit < t
up
i ,

0 if − 1 ≥ xit > −tdown
i

0 or 1 otherwise,

,

xit =

{
max(xi,t−1, 0) + 1 if uit = 1,
min(xi,t−1, 0) − 1 if uit = 0.

(2.10)

Equation (2.10) represent the minimum uptime and downtime constraints

δi(ui,t−1, xit) ≤ ptit − pti,t−1 ≤ Δi(ui,t−1, xit). (2.11)

Equation (2.11) represent the ramp constraints. In a compact formulation, constraints
in the set (CT ) correspond to CT (pt, u, x).

2.3. Hydrothermal Constraints (CHT)

We have the following equations:

∑

i∈Ie
ptit +

∑

r∈Re

PHrt +
∑

l∈Ωe

(Intelt − Intelt) = Det. (2.12)

These constraints represent the balance between supply and demand, for each time
stage, and subsystem

0 ≤ In tlet ≤ In tmax
let , 0 ≤ In telt ≤ Intmax

elt . (2.13)

Constraints (2.13) model the subsystems power exchange limits. This type of
simplification is adopted in real life given the huge size of the Brazilian transmission system
and its corresponding complexity, and they are supplied by power flow and transitory
stability studies. The set (CHT ) is written as CHT = (pt, PH,Int), where the vector Int gathers
the exchanges variables.
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3. Solution Strategy

Phase 1 (Decomposition by Lagrangian Relaxation). The STS problem (2.1)–(2.13) is given by

min fT
(
pt, u, x

)
+ fH(α),

s.t.: CT

(
pt, u, x

) ∩ CHT

(
pt, PH, Int

) ∩ CHH(α,Q, s, V ) ∩ CHUC

(
z, q,Q, s, PH

)
.

(3.1)

We introduce artificial variables pta and PHa, which duplicate pt and PH, respectively.
pta and PHa are used in constraints CHT (·) to substitute pt and PH. Variables Qa and sa
duplicate Q and s, respectively. Qa and sa replace Q and s in CHH(·)

min fT
(
pt, u, x

)
+ fH(α),

s.t.: CT

(
pt, u, x

) ∩ CHT

(
pta, PHa, Int

) ∩ CHH(α,Qa, sa, V ) ∩ CHUC

(
z, q,Q, s, PH

)
,

pt = pta, PH = PHa, Q = Qa, s = sa.

(3.2)

Now, the artificial constraints that keep coupling are relaxed by introducing Lagrange
multipliers λPT , λPH , λQ, λS:

maxΘ
(
λPT,λPH,λQ,λS

)
, (3.3)

Θ(·) = min fT
(
pt, u, x

)
+ fH(α) +

〈
λPT , pt − pta

〉
+ 〈λHT , PH − PHa〉

+
〈
λQ,Q −Qa

〉
+ 〈λs, s − sa〉,

s.t.: CT

(
pt, u, x

) ∩ CHT

(
pta, PHa, Int

) ∩ CHH(Qa, sa, V ) ∩ CHUC

(
z, q,Q, s, PH

)
.

(3.4)

Above 〈·, ·〉 denotes the dot product. The dual function (3.4) can be split as the sum of four
separable terms, as follows:

Θ(·) : = θT + θHT + θHH + θHUC, (3.5)

θT = min fT
(
pt, u, x

)
+
〈
λPT , pt

〉
,

s.t.: CT

(
pt, u, x

)
,

(3.6)

θHT = min−〈λPT , pta
〉 − 〈λPH, PHa〉,

s.t.: CHT

(
pta, PHa, Int

)
,

(3.7)

θHH = min fH(α) − 〈
λQ,Qa

〉 − 〈λs, sa〉,
s.t.: CHH(α,Qa, sa, V ),

(3.8)

θHUC = min〈λPH, PH〉 + 〈
λQ,Q

〉
+ 〈λs, s〉,

s.t.: CHUC

(
z, q,Q, s, PH

)
.

(3.9)

Subproblem (3.6) is a nonlinear mixed 0-1 optimization problem, which corresponds to the
thermal unit commitment, and is solved by a dynamic programming algorithm similar to
described in [34]. In this algorithm, the generation level was discretized in steps of 1% and
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this strategy has shown coherency with the practical expectation. However, this approach
can lead to suboptimal results as shown in [35], and for different systems it is interesting
to use other solution strategies to solve the thermal unit commitment subproblems such as
presented in [35].
Subproblems (3.7) and (3.8) are Linear Programming (LP) problems, which can be solved by
any LP solver.
Subproblem (3.9) is a nonlinear mixed 0-1 optimization problem, and it corresponds to the
hydrounit commitment. In (3.9), all feasible unit combinations of a hydro r and stage t are
solved aiming to find an optimal solution. To solve the continuous problems, we use a se-
quential quadratic programming (SQP) algorithm. Additional details of this algorithm can
be seen in [18, 19].
Since our contributions are not focused on the maximization of the dual function (3.4), we
use the N1CV2 Bundle subroutine [36] whose main algorithm does not take into account
the disaggregated version of Bundle method which, as it can be seen in [37], can improve
the LR performance. Additionally, the SQP algorithm used to solve (3.9) may supply not-
globally solutions and, as a consequence, the dual function and subgradient vector values
can be evaluated inexactly. In this sense, there are more efficient Bundle methods which can
deal with this inaccuracy, as it can be seen in [38] and references therein.

Phase 2 (Primal Recovery by Augmented). In order to search a primal feasible solution, we
use an inexact Augmented Lagrangian-AL, similar to [23, 39]. Starting from (3.2), the same
artificial constraints are relaxed, and the new dual function is presented below

Φ := min fT
(
pt, u, x

)
+ fH(α)

+
〈
λPT , pt − pta

〉
+ 〈λHT , PH − PHa〉 + 〈

λQ,Q −Qa
〉
+ 〈λs, s − sa〉

+ c
∥∥pt − pta

∥∥2 + c‖PH − PHa‖2 + c‖Q −Qa‖2 + c‖s − sa‖2,
s.t.: CT

(
pt, u, x

) ∩ CHT

(
pta, PHa, Int

) ∩ CHH(α,Qa, sa, V ) ∩ CHUC

(
z, q,Q, s, PH

)
.

(3.10)

Above c is the penalty parameter. Notice that the quadratic term makes the dual function
nonseparable. By applying the APP [27], the following approximations are carried out:

∥∥pt − pta
∥∥2 ≈

∥∥∥∥∥pt −
ptaξ + ptξ

2

∥∥∥∥∥

2

+

∥∥∥∥∥
ptaξ + ptξ

2
− pta

∥∥∥∥∥

2

, (3.11)

where the variables with ξ correspond to the values obtained at the previous iteration.
Similarly, the same strategy (3.11)must be done for the other quadratic terms in (3.10). Then,
the dual problem related to AL can be rewritten as follows:

maxΦ := φT + φHT + φHH + φHUC, (3.12)

φT = min fT
(
pt, u, x

)
+
〈
λPT , pt

〉
+ c

∥∥∥∥∥pt −
ptaξ + ptξ

2

∥∥∥∥∥

2

,

s.t.: CT

(
pt, u, x

)
,

(3.13)
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φHT = min−〈λPT , pta
〉 − 〈λPH, PHa〉

+ c

∥∥∥∥∥
ptaξ + ptξ

2
− pta

∥∥∥∥∥

2

+ c

∥∥∥∥∥
PHaξ + PHξ

2
− PHa

∥∥∥∥∥

2

,

s.t.: CHT

(
pta, PHa, Int

)
,

(3.14)

φHH = min fH(α) − 〈
λQ,Qa

〉 − 〈λs, sa〉

+ c

∥∥∥∥∥
Qaξ +Qξ

2
−Qa

∥∥∥∥∥

2

+ c

∥∥∥∥∥
saξ + sξ

2
− sa

∥∥∥∥∥

2

,

s.t.: CHH(α,Qa, sa, V ),

(3.15)

φHUC = min〈λPH, PH〉 + 〈
λQ,Q

〉
+ 〈λs, s〉 + c

∥∥∥∥∥Q − Qaξ +Qξ

2

∥∥∥∥∥

2

+ c

∥∥∥∥∥s −
saξ + sξ

2

∥∥∥∥∥

2

+ c

∥∥∥∥∥PH − PHaξ + PHξ

2

∥∥∥∥∥

2

,

s.t.: CHUC

(
z, q,Q, s, PH

)
.

(3.16)

It can be observed that the subproblems (3.13)–(3.16) present the same structure as
in the LR phase, but with an important difference; now the LPs (3.7) and (3.8) are transformed
into quadratic programming problems (3.14) and (3.15) (In the Appendix, we show how in
detail the proposed two-phase approach works.).
Given that the APP approach is valid only locally, it is essential to have a good primal starting
point available. In this paper, we use the pseudoprimal point found by convex combination
of the Bundle actives cuts [28]. In general terms, the pseudoprimal point y is obtained in the
following way:

y =
∑

k

δkxk. (3.17)

In (3.17), k is the number of Bundle actives cut, δ is a constant, between 0 and 1 of the convex
combination (the sum of all values of vector δ is 1), and xk is a vector with the solution of all
variables for each k.

4. Numerical Results

We assess the solution strategy on a real-life hydrothermal configuration extracted from the
Brazilian power system.More precisely, we consider a systemwith 121 hydro- and 12 thermal
units whose maximum installed capacity is 38.227GW. Five cascades make up the system;
the largest one possesses seven plants with 58 units and the smallest one is composed of two
plants with 12 units. Detailed data for the hydrosystem are too lengthy to list in this paper
and can be found in [19, 40]. We show the data for the thermal plants in Table 1. The two-day
planning horizon is discretized hourly. Initial reservoir volumes were taken at 50% of usable
volumes. The interconnected hydrothermal system is divided into four subsystems.
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Table 1: Thermal data.

Plant Fuel Fuel costs Start-up costs Power limits Min. times Ramp
a0 a1 a2 b0 b1 ω ptmin ptmax tup tdown δ Δ

01 NUCLEAR 5,624.0 20.9 0.0002 45,000 12,500 4 70 657 9 9 150 180
02 NUCLEAR 5,624.0 16.3 0.0002 56,000 21,000 6 125 1,350 9 9 200 250
03 GAS 4,000.0 153.8 0.0005 420 250 1 200 923 2 2 70 35
04 GAS 1,200.0 117.0 0.0009 285 150 1 80 670 1 1 100 250
05 GAS 657.0 74.4 0.0052 85 42 1 90 869 1 2 100 300
06 GAS 723.0 11.8 0.0043 98 6 1 60 480 1 1 120 200
07 COAL 986.0 170.5 0.0089 3,226 1,613 7 12 132 4 6 50 70
08 COAL 1,183.0 129.0 0.0077 3,895 1,945 8 25 262 5 8 60 75
09 COAL 1,540.0 75.0 0.0062 4,691 2,345 9 20 100 10 20 50 50
10 GAS 755.3 143.0 0.0065 88 50 1 65 638 2 2 150 250
11 GAS 529.0 70.2 0.0051 61 35 1 71 638 2 2 150 250
12 GAS 866.0 80.6 0.0066 97 48 1 23 347 1 1 100 200

In the PR phase, the initial value of c0 is equal to 1 × 10−4 and it is increased along the
iterations ξ as follows:

cξ+1 =

{
β1c

ξ if cξ ≥ β3c
0,

cξ + β2c
0 if cξ ≥ β3c

0,
(4.1)

where β1 = 1.5, β2 = 200, and β3 = 104. An important practical question is how to select
the penalty parameter sequence. In this sense, the main considerations for selecting the
parameter sequence are the following [41]: (i) 1 < β1 ≤ 2 when in the AL maximization
there are hard-to-solve primal subproblems; (ii) the penalty parameter should be increased
exponentially in the initial iterations and, in the sequence, it is interesting to have a less
ambitious update scheme. Given that the primal solution supplied by the LR possesses a
large number of infeasible constraints, the use of an exponential rule of cξ in the beginning is
recommended. This approach speeds up the convergence process. The algorithmmay switch
to a linear update when the gradient vector norm reaches some tolerance.

When used the steps (i) and (ii), even changing the parameters, important variations
in the CPU time were not observed. On the other, for different data conditions (for instance,
for different demand and inflows scenarios), a fast and easy adjustment of the constants in
(3.17)may be necessary.

In this paper, the multipliers are updated as

λξ+1 = λξ + ϕ · c · g
(
xξ
)
, (4.2)

where ϕ is the step size and g(xξ) is the constraint value.
This strategy avoids the inherent oscillatory behavior of the gradient method over

the iterations. The algorithm stopping criteria are defined by an absolute error tolerance ε
between each original variable and its associated duplicated variable.
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Figure 1: LR phase convergence.
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Figure 2: Infeasibility in demand attainment.

4.1. Optimization by LR

The initial Lagrange multipliers are λPT = λPH = λQ = λS = 1.0. We found a primal function
value of R$ 1,124,688,100.00 after 450 iterations, which took 92 minutes of CPU time in an
Intel Core 2 Extreme CPU X9650 @ 3.00GHz, 4.00GB of RAM memory. In Figure 1, the
subgradient vector norm and the dual function over the iterations are depicted. Although
the dual function is close to the optimal value by iteration 300, the subgradient norm is still
dropping in further iterations.

We show the difference between the demand and the total generation for each stage in
Figure 2. Note that the deviations are not so small. For instance, in stage 25 the deviation
between demand and total generation is approximately 2.5GW. These differences cannot
be simply adjusted in real-time operation. A great part of this infeasibility is related to the
oscillatory aspect in the LR when applied to LP such as subproblems (3.7) and (3.8).

4.2. Primal Recovery

Figure 3 shows the AL performance in the PR phase.
The algorithm stopping criteria are defined by ε = 2%, that is, each gradient vector

component must be less than 2% of the maximum value of the associated variable. After 103
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Figure 3: PR phase convergence.
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Figure 4: Feasibility in demand attainment.

iterations and 11 minutes of CPU time, the operating cost obtained was R$ 1,193,547,056.00.
Since it is not possible to evaluate precisely the duality gap (we do not have the global optimal
solution), we can compute the gap between the value of the dual function computed in Phase
1 and the total cost of the primal solution obtained in Phase 2. From weak duality, this gap
gives a bound for the optimal cost. In this first case, the relative gap is 13.89%.

Figure 4 shows the difference between the demand and the total generation for each
hour. As it can be seen, the algorithm supplies a highprecision feasible solution.

Figure 5 shows the values of PHD = (PHa − PH) and QD = (Qa − Q) at the last
iteration in specific hydroplant with 3,300 MW installed capacity. The PHD bigger values are
2.39 MW, in stage 2. On the other hand, all QD values are null.

4.3. Sensitivity Analysis

A new stopping criterion is used to carry out a sensitivity analysis of the AL performance,
where ε = 10%. We found an optimal value after 47 iterations that took 5 minutes. Figure 6
shows the values of (PHa − PH) and (Qa − Q) at the last iteration in the same hydroplant
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Figure 5: Hydrogeneration and turbined outflow infeasibility-PR phase.
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Figure 6: Hydrogeneration and turbined Outflows infeasibility.

considered in Figure 5. The bigger values are 19.73 MW, in stage 1, and 0.005m3/s, in stage
20, respectively.

4.4. Sensitivity Analysis for Other Operation Conditions

To accomplish this task, we now consider four different demand scenarios. In Figure 7, +10%,
−10%, and −20% represent, the demand of case base, presented in Figure 4, plus 10%, minus
10%, and minus 20%, respectively. In the tests, the same rules (3.17), (4.1), and (4.2) were
used.

As it can be noticed, regardless of the operation, point the algorithm shows be
convergent in all scenarios, without any change in their rules and parameters. Specifically
in these cases, the computational burden did not increase significantly, in comparison with
the base case (Figure 4). In all cases presented above, the value of the duality gap estimative,
on average, was approximately 4%.
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5. Conclusions

The STS problem formulation involving simultaneous LR and AL techniques are presented
in this paper. LR is used to decompose the problem into four subproblems whose scheme is
able to address properly the nonlinear production function and mixed 0-1 constraints of the
hydrounits. Since the primal problem is nonconvex, we apply an inexact AL aiming to find
a feasible primal solution. The infeasibility between generation and demand is eliminated
and the artificial constraints are satisfied. The authors are still investigating other forms to
update the penalty parameter. The objective is to improve the solutions and the measure
of their quality. However, the results in this paper are promising for the application of this
methodology for huge problems such as the entire Brazilian power system.

Appendix

The problem presented in [42] is used to show how our solution strategy works. We rewrote
the original problem as

min
(
pt21 + 100

)
u1 +

(
pt22 + 100

)
u2, s.t. : pt1 + pt2 = 2,

1 · u1 ≤ pt1 ≤ 3 · u1, 1 · u2 ≤ pt2 ≤ 3 · u2 , u1, u2 ∈ {0, 1}.
(A.1)

Using the splitting variable technique, the problem is written as follows:

min
(
pt21 + 100

)
u1 +

(
pt22 + 100

)
u2, s.t. : pta1 + pta2 = 2,

1 · u1 ≤ pt1 ≤ 3 · u1, 1 · u2 ≤ pt2 ≤ 3 · u2 , u1, u2 ∈ {0, 1},
pt1 = pta1, pt2 = pta2.

(A.2)

Relaxing the artificial constraints in (A.2):

θLR = min
(
pt21 + 100

)
u1 +

(
pt22 + 100

)
u2 − λ1

(
pt1 − pta1

) − λ2
(
pt2 − pta2

)

s.t.: pta1 + pta2 = 2, 1 · u1 ≤ pt1 ≤ 3 · u1,

1 · u2 ≤ pt2 ≤ 3 · u2, u1, u2 ∈ {0, 1}.
(A.3)
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The dual function (A.3) can be rewritten as

θLR = θ1 + θ2 + θ3,

θ1 = min
(
pt21 + 100

)
u1 − λ1pt1,

s.t.: 1 · u1 ≤ pt1 ≤ 3 · u1, u1 ∈ {0, 1},

θ2 = min
(
pt22 + 100

)
u2 − λ2pt2,

s.t.: 1 · u2 ≤ pt2 ≤ 3 · u2, u2 ∈ {0, 1},
θ3 = min λ1pta1 + λ2pta2,

s.t.: pta1 + pta2 = 2.

(A.4)

The maximum value of θLR is 72.67 and λ1 = λ2 = 36.33. The primal variables associated are
pt1 = pt2 = 3, pta1 = 2, pta2 = 0, and u1 = u2 = 1. Clearly we have an infeasible primal solution.
By using the AL shown in this paper, we build up the following AL dual function:

ΦAL = min
(
pt21 + 100

)
u1 +

(
pt22 + 100

)
u2 − λ1

(
pt1 − pta1

)

− λ2
(
pt2 − pta2

)
+ c(pt1 − pta1)

2 + c(pt2 − pta2)
2,

s.t.:pta1 + pta2 = 2, 1 · u1 ≤ pt1 ≤ 3 · u1, 1 · u2 ≤ pt2 ≤ 3 · u2.

(A.5)

The next step is to employ the (APP) technique to break the coupling of the AL dual function:

ΦAL = min
(
pt21 + 100

)
u1 +

(
pt22 + 100

)
u2 − λ1

(
pt1 − pta1

)

− λ2
(
pt2 − pta2

)
+ c

[ (
pt1 − k1

)2 +
(
k1 − pta1

)2

+
(
pt2 − k2

)2 +
(
k2 − pta2

)2

]
,

s.t.: pta1 + pta2 = 2, 1 · u1 ≤ pt1 ≤ 3 · u1, 1 · u2 ≤ pt2 ≤ 3 · u2.

(A.6)

The constants k1 and k2 are calculated as the variables average value obtained in the previous
iteration. In the first iteration, the AL uses the primal variables obtained in the last iteration
of the LR. In consequence, the initial values for k1 and k2 are 2.5 and 1.5, respectively. The AL
dual function (A.6) can be evaluated by means of three separable subproblems:

ΦAL = Φ1 + Φ2 + Φ3, (A.7)

where

Φ1 = min
(
pt21 + 100

)
u1 − λ1pt1 + c(pt1 − k1)

2,

s.t.: 1 · u1 ≤ pt1 ≤ 3 · u1, u1 ∈ {0, 1},
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Φ2 = min
(
pt22 + 100

)
u2 − λ2pt2 + c(pt2 − k2)

2,

s.t.: 1 · u2 ≤ pt2 ≤ 3 · u2, u2 ∈ {0, 1},
Φ3 = minλ1pta1 + λ2pta2 + c

[
(k1 − pta1)

2 + (k2 − pta2)
2
]
,

s.t.: pta1 + pta2 = 2.

(A.8)

We use a gradient method to maximize the AL dual function:

λk+11 = λk1 −
(
ptk1 − ptak

1

)
ρk, λk+11 = λk2 −

(
ptk2 − ptak

2

)
ρk. (A.9)

We set the initial value for ρk as 1/50, and we update this penalty parameter by means
of ρk+1 = 2 ρk. Proceeding in this way, the decomposition strategy presented in our paper
converges in 37 iterations and finds the following primal-dual solution: pt1 = pta1 = 2, pt2 =
pta2 = u2 = 0, u1 = 1, λ1 = −15.29, and λ2 = 36.40. The corresponding objective function
value is 104. Indeed, this is the optimal solution of the original problem. To summarize the
convergence process, Figure 8 shows the dual function and the gradient vector norm over the
iterations.

List of Symbols

Constants and Indexes

i: Index of thermal units, so that r = 1, I
I: Number of thermal plants
r: Index of reservoirs, so that r = 1, R
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R: Number of hydro plants
t: Index of stages, so that t = 1, T
T : Number of stages (h)
a0i, a1i, a2i: Fuel cost coefficients of the thermal plant i (R$ (Brazilian Real, as it is

known the currency in Brazil.), R$/MW and R$/MW2)
b0i, (b1i): Cold (fixed) startup cost of the thermal plant i (R$)
ωi: Thermal time constant of the thermal plant i (h)
A: Conversion factor of (m3/s) in units (hm3)
yrt: Incremental inflow in the reservoir r and stage t (m3/s)
vr

min(max): Minimum (max.) volume of the reservoir r [hm3]
sr

max: Maximum spillage of the reservoir r (m3/s)
m: Index of reservoir upstream of the reservoir r
τmr : Number of stages that the outflow in the upstream hydro m takes to reach

the downstream hydro r
�+

(r): Set of reservoirs immediately upstream to the reservoir r
P : Number of linear constraints of the future cost function (FCF)
p: Index associated with the FCF
πr

(p): Angular coefficient of the FCF (R$/hm3)
α0

(p): Linear coefficient of the FCF (R$)
J(r): Total of hydrounits associated with the reservoir r
j: Index of hydrounits
Φjr: Number of nonforbidden zones of the unit j and reservoir r
k: Index of nonforbidden zones of the hydrounits
phjkrt

min(max): Minimum (maximum) power of the hydrounit j, zone k, reservoir r and
stage t (MW)

pti
min(max): Minimum (maximum) power of the thermal plant i (MW)

rhrt: Power reserve of the hydroplant r and stage t (MW)
ti
up(down): Minimum time required to start up (shut down) the thermal plant i (h)

δi: Ramp down rate of the thermal plant i (MW)
Δi: Ramp up rate of the thermal plant i (MW)
e: Index of subsystems
Ie, Re: Set of all thermal/hydroplants of the subsystem e
Ωe: Set of subsystems interconnected with subsystem e
Intletmax: Maximum power exchange from subsystem e to l in the stage t (MW)
Det: Load of the subsystem and stage t (MW).

Variables

α: Expected future cost value ($)
uit: Binary variable which indicates if thermal unit i is operating (uit = 1) or not

(uit = 0) during the stage t
xit: The number of stages that the thermal unit has been on or off until the stage t (h)
vrt: Volume of the reservoir r in the beginning of the stage t (hm3)
qjrt: Turbined outflow of the unit j, reservoir r in the stage t (m3/s)
Qrt: Turbined outflow in the reservoir r in the stage t (m3/s)
srt: Spillage of the reservoir r in the stage t (m3/s)
phjrt(·): Power of the hydrounit j, reservoir r in the stage t (MW)
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PHrt: Power of the hydroplant r in the stage t (MW)
zjkrt: Binary control variable which indicates if the hydrounit j of the reservoir r

is operating (zjkrt = 1) or not (zjkrt = 0) in the zone k during the stage t
ptit: Power of the thermal plant i in the stage t (MW)
Intlet: Power exchange from subsystem e to l in the stage t (MW).
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