Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 846390, 17 pages
doi:10.1155/2012/846390

Research Article

Vibro-Impact System Based on
Forced Oscillations of Heavy Mass Particle
along a Rough Parabolic Line

Srdjan Jovi¢, Vladimir Raicevi¢, and LjubiSa Garic

Faculty of Technical Sciences, University of Pristina, Knez Milos Street, No. 7,
38220 Kosovska Mitrovica, Serbia

Correspondence should be addressed to Srdjan Jovi¢, jovic003@gmail.com
Received 22 January 2012; Accepted 30 March 2012
Academic Editor: Mohammad Younis

Copyright © 2012 Srdjan Jovi¢ et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper analyses motion trajectory of vibro-impact system based on the oscillator moving along
the rough parabolic line in the vertical plane, under the action of external single-frequency force.
Nonideality of the bond originates of sliding Coulomb’s type friction force with coefficient y = tgag.
The oscillator consists of one heavy mass particle whose forced motion is limited by two angular
elongation fixed limiters. The differential equation of motion of the analyzed vibro-impact system,
which belongs to the group of common second order nonhomogenous nonlinear differential
equations, cannot be solved explicitly (in closed form). For its approximate solving, the software
package WOLFRAM Mathematica 7 is used. The results are tested by using the software package
MATLAB R2008a. The combination of analytical-numerical results for the defined parameters
of analyzed vibro-impact system is a base for the motion analysis visualization, which was the
primary objective of this analytic research. Upon the phase portrait of the heavy mass particle
obtained, the energy of the considered vibro-impact system is analyzed. During the graphical
visualization of the energetic changes, one of the steps is the process of the phase trajectory
equations determination. For this determination, we have used interpolation process that utilizes
Lagrange interpolation polynomial.

1. Introduction

Research on the vibro-impact systems impact and the dynamics of nonlinear phenomena
at presence of the certain discontinuities represents an area of interest for the researches all
over the world. The theoretical knowledge on vibro-impact systems (see reference [1-5])
is of particular importance for engineering practice, due to wide occurrence of vibro-impact
actions used in technological processes realization. Based on the modern knowledge on vibro-
impact systems theory, and considering the papers with this theme of the following authors:
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Peterka [6-8], Hedrih [9-12], Nayfeh and his associates [13, 14], Dimentberg, and Menyailov
[15], Foole and Bishop [16], Luo and Xie [17], Nordmark [18], Pavlovskaia, and Wiercigroch
[19, 20] et al., we can say that today we have raised interest for investigation of energy
transfers inside the complex systems and nonlinear modes. Because of that, it is important
to study energetic analysis of vibro-impact processes dynamics in the vibro-impact systems
with one or more degrees of freedom.

Needed theoretical knowledge that introduces us in the problems of this paper is
obtained from the works of Hedrih [10, 11] which are related to the moving of the heavy mass
particle along the rough curved trajectories. In these papers, basic mathematical description
of a heavy mass particle trajectory along rough curved lines is given, and as a special case,
motions of the heavy mass particle along the rough circular line, rough cycloid curve, and
rough parabola line are given.

Relying on the previous works of the coauthor of this paper [21-26], in which were
analyzed more various vibro-impact systems, with one and two degrees of freedom, on
the basis of free and forced oscillations of heavy mass particle that is moving along rough
curved lines such as parabola, circle and cycloid, Coulomb’s sliding friction and with limited
elongations, in this paper, a vibro-impact system with one degree of freedom on the basis of
forced oscillations of the heavy mass particle, with mass m, moving along a rough parabolic
line in the vertical plane, coefficient of sliding friction with limited angular elongations is
studied (Figure 1). On the heavy mass particle acts the external single-frequency (periodical)
force, F(t) = FocosQt, where Fy is corresponding forces amplitude and € is frequency of
the external force. Positions of the elongation limiters are determined by angular coordinates
sul1 = s1(p1) and sy = S2(¢p2) which are referenced to the equilibrium position of a particle.
Arc (curved) coordinates are given as functions of angle ¢. This angle is an angle between
tangent and Ox axis. Arc coordinate s(¢) is an independent (generalized) coordinate of the
system, providing the system has one degree of freedom. At the start moment, heavy mass
particle was on the so(¢g) distance from the equilibrium position, and received initial velocity
Vg = Sp.

Our task is to consider properties of forced oscillations of a heavy mass particle moving
along the rough parabolic line with limited elongation, wherefore the system becomes vibro-
impact type with two limiters, and two-sided limited elongation. For each motion interval,
the forced motion differential equations are needed. Also, the conditions of friction forces
alternations, elongation limiting of the system, and motion initialization are added to the
differential equations. Alteration of the friction force direction is related to the alteration of
the heavy mass particle angular velocity direction. Also, phase trajectories equation (using
interpolation procedure, by means of Lagrange interpolation polynom) in the phase plane
(¢, ) and constant energy curves equations should be determined. Corresponding graphic
visualization and representative point of the system kinetic state motion during the kinetics
(dynamics) should be worked out, too. Similarly, deviation of the total system mechanical
energy during the motion and rate of the mechanical energy decrease in each characteristic
motion interval should be analyzed. Determine also the number of impacts, at which the
system does not behave as a vibro-impact one.

2. Differential Equation of a Heavy Mass Particle
Oscillation along a Rough Parabolic Line

Using the principle of dynamic equilibrium (see references [5, 11]), we can write equation of a

heavy mass particle motion along the curvilinear path in the following form: Iy +G+Fn+F, =
0.
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Figure 1: Two fixed elongation limiter systems, on the basis of the oscillator with one heavy mass particle,
external single-frequency force driven. (a) Starting and dislocated position of a heavy mass particle; (b)
force plan.

The inertial force originating of heavy mass particle acceleration (d = dy + dr) has two
components, one in tangential and second one in perpendicular direction, so we can write

2
Tr = —min — mir = —m;—N — moT, 2.1)
k

where Ry is a path curve radius in the instant position point of the heavy mass particle. N and
T are the unit vectors (orts) of the inertial force main orthogonal and tangential components
at instant position point on the rough curvilinear line.

Using the curvilinear natural coordinate system, previous vector equation (2.1) can be
written in the following form:

<—m's’f> + <—m;—i]\7> +mg<— sinaf—cosaﬁ) + FNN —‘u|ﬁN|% =0, (2.2)

where a = arctgz’ is angle between tangent and Ox axis; and s is the curvilinear coordinate
that denotes position of the heavy mass particle on the rough curvilinear path (ds =

dxV1+z?).
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After the scalar multiplying of (2.2) with orts T and N, we obtain two scalar differen-
tial equations

2
—m;——mg cosa+Fn=0; -m8—-mgsina F uFy = 0. (2.3)
k

From the second equation of equation system (2.3) we can obtain perpendicular component
intensity of reaction bond in the following shape: Fx = m(v*/Ry) + mg cos a. Substituting of
this equation in the first equation of the system (2.3) we obtain

2
§+gsinzx:|:,u<12— +gcosa> =0. (2.4)
k

Assuming that equation of arbitrary curvilinear line in the plane is defined as z = f(x), it
follows

§=— = —=X

FTR TR ToT gz

dv d . d?s . d<xm>; Rk_\/m. v, 2

tga z dz 1 1 dx

sina = = =—, cosa= = = —.
\/1+tg2a V1+z2 ds \/1+tg2a V1+z2 ds

(2.5)

If expressions given with (2.5) are embedded in differential equation of a heavy mass particle
trajectory along arbitrary curvilinear rough line with slide friction coefficient u (2.4), we
obtain

4a <xm> + ! [gz' + y(a’czz" + g)] =0. (2.6)

1+22

The analysis of this motion represents special case of the general case conducted for motion
of a heavy mass particle along the curvilinear rough line.

General parabola equation is x> = 2pz, where 2p [m] is the parabola parameter corre-
sponding to the quadruple value of parabola focus-vertex distance.

Using the differential equations (2.4), (2.5), and corresponding expressions in the
given system for z = x?/2p, z' = dz/dx = x/p, and z" = 1/p, we obtain differential equations
for motion of a heavy mass particle along the rough parabolic line

%(x%\/pz + xz) + \/p‘fi = + \/pz‘qu > <x2 + gp> =0. (2.7)
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During the solving process of the differential equation (2.7) we introduce a new variable
in the form u = %% Differencing the new variable expression, we get relations du/dx =
d(x?)/dx = 2x(dx/dx) and & = (1/2)(du/dx). Considering all given relations, differential
equation for motion of a heavy mass particle along the rough parabolic line can be written in
the following form:

du 1 2gp

o +2u;m(x:l:/4p) :_p2+x2 (x£up). (2.8)

We have transformed nonlinear differential equation describing a heavy mass particle motion
along the rough parabolic line (2.7) by introducing a new generalized coordinate u,
into the common linear first order differential equation with variable coefficients (2.8) of
this form du/dx + P(x)u = Q(x). The solution of this differential equation is u(x) =
e~ P(x)dx [f Q(x)efP®4xgx 4 C], and for the given case, coefficients of differential equation are

zav>0, for v >0,

2 2gp
P(x) = ——=(x+ up), Qx)=- x+up), (2.9)
p? + x? (% pp) zav<0, p* +x? (e pp) for v < 0.

The first general integral of differential equation (2.10) has this form

u(x) = x> = e~/ @/ (P*+x7)) (xpp)dx U — 22(?7 5 (x+ yp)ef(2/(p2+x2))(xiﬂp)dxdx +C
p>+x

. (2.10)

Solving the differential equation (2.10) we obtain an equation for the phase trajectory in the
phase plane (x, x)

2 = ef[ln(p2+x2)q=2;4arctg(p/x)] [gp <P2 + x2> <_e;2‘uarctg(p/x)) + C], (211)
or
1
22 _ +2 parctg(p/x) 2 2\ (_ Fuarctg(p/x)
x° = —(P2 ) e [gp(p +x )( e ) + C]. (2.12)

Furthermore, we will show the first general integral of differential equation (2.4) in function
of the generalized coordinate ¢.
The differential of the arc (curvilinear) path in function of generalized coordinate ¢ is

2 2 p
ds =1\/(dz)” + (dx)” = cosz(pvl +tg%pdey,

t
dz P_dyp, dz="23% 4

1 , — :t =
gde je dx &P dx cos?p "’ cos?y

(2.13)
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The heavy mass particle moving along the rough parabolic line speed can be calculated with
the following formula:

. P ._ P
= 1+tg? = . 2.14
$ cosZ(pV +ig7p ¢ cosip ¥ (2.14)

For the given case, expressions (2.5) look like this

!

sing = z = o cos - L tg =X
LV = \/p2+le v p2+x2, L
3
\/(1+zz) e 3_ \/p2+x2 A\ /p?+x2 B ( 1 1 >3_ p
T P p? =P p p -F cosgpcosp/)  cosdp’
v’ g P P
—_—= = 1+t p°.
R, R, COSlp< T8 (P> cos3<p"0
(2.15)

By introducing the previous expressions and expression for

1 , p .. 3psing ,
\/ t \/1+t — )¢’ = ,
cos2 L+ i8¢ e gpy T8 ('0< COSztp 1+tg? tp)t’o cos3(p(p costp 9

(2.16)

differential equation for the motion of a heavy mass particle along the rough parabolic line,
in the function of the generalized coordinate ¢, gets this form

for v >0,

¢+ (Btgp £ p)¢? - & geos’y (singp £ pcosy) =0, (2.17)
P for v < 0.

By linearization of differential equation (2.17) (introducing the new variable u = ¢*) we get
this form

2
Z—: +2u(3tgp £ p) = - 8Os (sing + pcos ). (2.18)

We are looking for a solution of this differential equation (2.18) in the shape u(p) =
e IP@a[[ Q(p)e! PP dy + C], where (for the given case) differential equation coefficients
are as follows:

for v >0,

2gcos’p , .
P(yp) =2(3tgp +p), Q(p) = ——=—(sinp £ pucosyp),
for v <0, p for v < 0.

(2.19)

forv >0,
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The first general integral of a linear differential equation (2.18) gets this shape

2 3
u(p) = 7 = e 12Csvade U _$ (sin g = p cos ) el 289108 gy + C] -

Arranging (2.20) we obtain phase trajectory equation, in the phase plane (¢, ¢), in the form

g forv >0,
¢* = c056(p<——2 + Ce*zﬂ‘”), (2.21)
p cos=o for v <0,

where C is integration constant that depends on starting motion conditions. Depending on
motion period of a heavy mass particle along the rough parabolic curve, the integration
constant is changing. This period is limited on the phase trajectory with zero velocity points.
This change is related to the change of a heavy mass particle motion direction, namely, the
velocity direction change that causes also the change of a friction force direction.

If we introduce an effect of the external single-frequency force in our system, differen-
tial equation for forced motion of a heavy mass particle along the parabolic line is

3 F 3 forv >0,
¢+ (Btgp £ p)¢* + Al (sing £ pcosy) = 08 st (2.22)
p P for v < 0.

For a complete description of a heavy mass particle dynamics, it is necessary to join the fol-
lowing conditions to the motion differential equation.

a* initial conditions

50 (¢©) = s0(¢0),

(2.23)
v0) (90, P0)) = 50) (9©), P©) = vo(Po, $o0);

b* the angle elongation limiting conditions, as well as impact conditions

Sul,i = Si((Pi)/ Sul,(i+1) = S(i+1) ((P(i+1))/

Sodi (Podri) = —kSui(Puii),  Sodu(i+1) (Pod 1)) = —kSu sy (Puyi+ny), 1=1,2,3,...,n,
(2.24)

where k is impact coefficient, ranging from k = 0, for the ideal plastic impact, to
k = 1, for the ideal elastic impact; n is total impacts number of a heavy mass
particle along the rough parabolic line, up to the equilibrium position, or up to
the moment when this particle continues to move without impact with the limiter.
The differential equation of the system motion (2.22) cannot be solved explicitly
(in the closed form). For their approximate solution we use the software package
WOLFRAM Mathematica 7. The results are tested by means of the MATLAB R2008a
software package.



8 Mathematical Problems in Engineering

3. The Analysis of the Vibro-Impact System Motion

We will divide the motion of a heavy mass particle along the rough parabolic line to the
intervals of motion, like this: first interval—from the starting moment of motion to the impact
moment with a right side elongation limiter; second interval—from the right side elongation
limiter to the impact moment with a left side elongation limiter, and so forth, until the motion
direction alternation (motion intervals limited by alternation of friction force direction).

The first motion interval of a heavy mass particle corresponds to the following motion
differential equation:

ocos’y

¢+ (3tgp + p)¢* Ak 4 ’ (sm(p +pcos ) = cosQt, for v >0. (3.1)

The impact conditions are
t= tull+/ (P(tu11+) =1, (p(tu11+) = (Pu11+' (32)

The phase trajectory ¢1 = f(¢) in the first motion interval (which will be used for the
determination of the velocity of heavy mass particle first impact into the right side angular
elongation limiter) by using software package Wolfram Mathematica 7 (used also for all the
other graphics) is shown in Figure 2.

Parameter values are ¢; =

el

d
frad], g2=-% lradl, =0, gu=8|"5],

m ra
p=1[m], ao=0,05, m=0,2 [kg], g=9,81[s—2], Fo=0,2[N], Q=0,3 [T]
(3.3)

From the shape of the phase trajectory curve in the first 10 seconds motion interval
(Figure 2(b)), we conclude that this trajectory is repeatable during one complete period (from
the moment when the heavy mass particle on the rough parabolic line is in initial position to
the moment of crossing the same point, in the same direction). This tells us that a heavy
mass particle has the same behavior as in the case of free oscillations, despite the influence of
external single-frequency force. This influence of external single-frequency force parameters
(amplitude and frequency) is negligible. Comparing with the motion without the influence
of an external single-frequency force, it can be observed that a heavy mass particle will reach
equilibrium position for less motion intervals, that is, reduction of angular velocity value is
greater due to elongation limiters impacts.

The external single-frequency force parameters can be chosen in such a way to cause
fast reaching of resonant state of a nonimpact vibro-impact motion (Fy = 0,6-1,0 [N], Q =
2,5-3,3 [rad/s]). In these cases, research is based on the application of a method that adjusts
external single-frequency force parameters in order to obtain a stable periodical vibro-impact
regime [26].

The second motion interval (from the first impact into the right side elongation limiter to
the second impact into the left side elongation limiter).
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Figure 2: Phase trajectory curve in the first (nonimpact) motion interval. (a) In time t = 1 (s), (b) in time
t=10 (s).

Differential equation of motion has the following form:

3 F 3
¢+ (Btgp — pu)¢* + @(Sintp — HCos ) = % cosQt, for v <0. (3.4)
The initial motion conditions are
t=ta, @tu+) =01, @lu+) = Pod, = —QPul,-- (3.5)

The impact condition into the left side elongation limiter is
t = tu12+/ (P(tu12+) = (PZI (P(tuler) = (puler- (3‘6)

The phase trajectory ¢, = f(¢) for the other motion interval is shown in the Figure 3.

The motion analysis is conducted to the seventh alternation point, that is, to the
moment of motion direction multiple alterations at equilibrium position.

We have noticed that due to influence of an external single-frequency force, there
are more phase trajectories around the equilibrium point, in both motion directions of a
heavy mass particle along the rough parabolic line. On Figures 4 and 5 there are heavy mass
particle phase trajectories after the third alterations point; until the moment of returning to
the equilibrium point; Figures 4 and 5 show trajectory for ¢ > 0, and ¢ < 0, respectively.

The graphic visualization of the phase portrait is shown in Figure 6.

The heavy mass particle hits eleven times elongation limiters, five and six impacts into
the right side and left side elevation limiters, respectively. Both direction alteration points
appear after the eleventh impact into the right side elongation limiter. It means that this
vibro-impact system lasts till the eleventh impact into elongation limiters. After the eleventh
impact, the analyzed vibro-impact system behaves like a dynamic system, based on forced
motion of a heavy mass particle along the rough parabolic line.

For the specified values of parameters, the angular velocity values of a heavy mass
particle into elongation limiters and alternation points positions are presented in Table 1.



10 Mathematical Problems in Engineering

(j’(f) o
-1.2%1 70.870.670.470.210 0.2 04 0.6 0.8

S N s N

215 -1 -05 0 0.5 1 15

() (b)

Figure 3: The phase trajectory curve in the second (non-impact) motion interval. (a) During t = 1 (s), (b)
during t = 10 (s).
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Figure 4: Phase trajectory (after seventh alteration point, ¢ > 0), t = 10 (s).

From Table 1 it can be seen that the angular velocity of impacts into the elongation
limiters decreases.

4. The Energy Analysis of the Vibro-Impact System

For the energetic analyze of given vibro-impact system, (for each phase portrait branch), an
analytical expression that defines dependence of angular velocity value from the generalized
coordinate ¢, or time ¢, that is, ¢ = f(¢) or ¢ = f(t), is needed. This analytic dependence
represents the phase trajectory equation, which is determined as a first integral of the
system motion differential equation (2.22). This equation is a common nonhomogenous
and nonlinear differential equation which is being solved by using the software package
WOLFRAM Mathematica 7 (solution checked with MATLAB R2008a). It is assumed that the
shape of a phase trajectory curve in individual motion intervals is the third order polynomial.
In the first motion interval, we have heavy mass particle velocity decrease only. For the rest
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Figure 5: Phase trajectory (after seventh alteration point, ¢ < 0), t = 10 (s). Note. The phase trajectory
figures are magnified.

Table 1

Number of impacts (7) 1 2 3 4 5 6 7 8 9 10 11
Initial velocities ¢, [rad/s] 249 441 202 365 160 3 1,15 228 064 16 083
Number of alternation points (j) 1 2 3 4 5 6 7

Py, [rad] 072 056 -043 037 -023 0,17 -0,03

After the eleventh alteration point, a heavy mass particle is moving within the limits from -0,3 to 0,17. Bold numbers relate
to the right-side elongation limiter.

of motion intervals, the phase trajectory curves are divided in two parts. Separation points
for those curves are the first points when angular velocity value starts to decrease or increase.
These moments are starting data for interpolation, so per one motion interval we have two
phase trajectory analytical expressions. If we increase the number of phase trajectory curve
sections in one motion interval, during interpolation, it could be obtained the phase trajectory
equations with less error (for the phase trajectory curve).

In the Table 2 are shown analytic expressions of phase trajectory equations, obtained
by means of interpolation procedure, for the important motion intervals (from the initial
position to the seventh point of alternation of a heavy mass particle).

We analyze all motion interval’s energy on the basis of kinetic energy Ek, potential
energy Ep, total mechanic energy E formulas, pressure force Fy of a heavy mass particle on
the rough parabolic line and power originating of Coulomb sliding friction force P,, upon
determination of analytic expressions ¢; = f(¢p):

1 p* 9 1 mgp 1 p* o 1 mgp
Eki = — -y Ei == ; Ei ZEki Ei == i T ;
(¢) 3" costp ¥ pi(y) 2 coslp (¢) =Eki(p)+Epi(¢p) 3 cosip? T2 costy
mp 5 mp >\ P . .
F i= —F ), P i= — = Y )——=—Yi, :1/2/-"11 .
N, mgCOS(P+cos3(p(P’ and P, #(mgCOS‘PJrcosg(P‘Pz) cos3(p(P ! 8

(4.1)
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Figure 6: The phase portrait of a heavy mass particle moving along the rough parabolic line, with sliding
friction coefficient y = tgay, with two-side limited elongations and under the action of an external single-
frequency force F(t) = Fy cos Qt, in plane (¢, ¢).

The energy variations are shown graphically in Figures 7, §, 9, 10, and 11, presenting
the kinetic energy, potential energy, total mechanic energy, heavy mass particle pressure force
on the rough parabola for the case of two-side holding bond and Coulomb friction force
(u = tgag) power (that follows friction force graph) variations, respectively.

From the above graphs which present energetic variations at forced motion of a
heavy mass particle along the rough parabolic line, it can be concluded that the influence
of an external single-frequency force (for specified parameters (Fy, 2)) is not considerable. It
results from the fact that forced motion of a heavy mass particle is out of the resonant region.
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Table 2

13

Motion
interval (7)

Phase trajectory equation

Pi1

Pio

O 0 NI O Ul = W N~

S Ty
N OO b W NN kO

18

8,7714¢° — 15,8705¢? + 0,0307¢p + 7,9882
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5,6025¢° — 10,2269¢? — 0,0286¢ + 4,8017
4,2052¢% + 8,5417¢p% — 0,2774¢p — 4,1987
4,1218¢° - 8,1458¢% — 0,1684¢ + 3,8155
3,3867¢° + 7,2838¢% — 0,2972¢ — 3,3007
-1,5676¢p° - 2,6558¢p% — 1,1122¢ + 2,9620
0,8538¢° + 5,4223¢p% — 0,4603¢ — 2,4430
~10,0145¢° + 2,0863¢> — 1,5360¢ + 2,1247
-18,6681¢° — 3,0435¢% — 1,2819¢ — 1,6780
~27,8998¢° + 5,0767¢* — 1,2206¢ + 1,3202
-58,0345¢° — 2,1824¢? - 0,7487¢ — 0,9341

—143,5033¢° + 12,0323¢p* — 1,0308¢ + 0,6188
-650,9714¢° + 75,6640 — 3,5338¢p — 0,2319

Note. The phase trajectory curve for all motion intervals is divided in two parts; exception is the first interval.
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Figure 7: The kinetic energy graph in (EKk, ¢) plane.

5. Conclusion

The nonlinearity of given vibro-impact system originates from the discontinuity of a heavy
mass particle motion along the rough parabolic line angular velocity. These discontinuities
of angular velocity occur in the moment of a heavy mass particle impact into the left- and
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Figure 8: The potential energy graph in (Ep, ¢) plane.
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Figure 9: The total energy graph in (E, ) plane.

right-side angular elongation limiters, and in the moment of motion direction alteration of a
heavy mass particle, which causes alteration of angular velocity direction and friction force.
This nonlinearity is mathematically described, for a heavy mass particle, with a common
nonlinear differential equation, specifically with second term that represents a square of angle
velocity of generalized coordinate ¢?. It corresponds to the case known in the literature as a
“turbulent” suppression.

It should be stressed that with given vibro-impact system, due to the influence of
Coulomb sliding friction force and alternation of a heavy mass particle angular velocity
direction (depending on a heavy mass particle motion direction), there are trigger coupled
singularities; that is, there is an equilibrium position bifurcation phenomenon.
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The forced motion of a heavy mass particle along the rough parabolic line is
divided in corresponding motion intervals and subintervals. To every motion interval and
sub-interval corresponds one motion differential equation that belongs to the common
nonhomogenous and nonlinear dual differential equation group of the second order. We
couldn’t solve these differential equations in analytic form. Because of that, we have used
the fourth order-variable step Runge-Kutta method that belongs to the numerical methods
for a differential equation solving. We have applied the Runge-Kutta method, by using two
software packages: MATLAB and Wolfram Mathematica 7 (two equal results obtained). Also,
we have joined corresponding initial conditions of motion and impact, to these dual nonlinear
and nonhomogenous motion differential equations. The combination of analytic-numerical
results for determined kinetic parameters of given vibro-impact system is the basis for motion
analyze visualization, that is, for the graphical visualization of phase portrait.

On the basis of known analytical expressions, we have performed the energy analysis
of given vibro-impact system, determining analytical expression that defines angle velocity
variation dependence from generalized coordinate ¢, that is, ¢ = f(¢), for each branch of
the phase portrait. This analytical dependence that also cannot be determined explicitly is
that which we have obtained using the process of phase trajectory curve interpolation. This
process of interpolation is done using the MATLAB R2008a software package. It is assumed
that the phase trajectory curve shape in specific motion intervals is polynomial of third order.

In the given vibro-impact system, the total mechanic energy dissipates, pressure force
onto the rough parabolic line reduces, and friction force power decreases. Also, it should be
noted that in the given case, influence of external single-frequency force is not considerable.
The cause of that is in the fact that motion of a heavy mass particle is far away from the
resonant zone.
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