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The vehicle routing problem (VRP) is a well-known combinatorial optimization problem. It has
been studied for several decades because finding effective vehicle routes is an important issue of
logistic management. This paper proposes a new hybrid algorithm based on two main swarm
intelligence (SI) approaches, ant colony optimization (ACO) and particle swarm optimization
(PSO), for solving capacitated vehicle routing problems (CVRPs). In the proposed algorithm, each
artificial ant, like a particle in PSO, is allowed to memorize the best solution ever found. After
solution construction, only elite ants can update pheromone according to their own best-so-far
solutions. Moreover, a pheromone disturbance method is embedded into the ACO framework to
overcome the problem of pheromone stagnation. Two sets of benchmark problems were selected to
test the performance of the proposed algorithm. The computational results show that the proposed
algorithm performs well in comparison with existing swarm intelligence approaches.

1. Introduction

The vehicle routing problem (VRP) is a well-known combinatorial optimization problem in
which the computational complexity is NP-hard. The capacitated vehicle routing problem
is one of the variants of VRPs. The objective of CVRPs is to minimize the total traveling
distance of vehicles which serve a set of customers. The following constraints are considered
in a typical CVRP: each route is a tour which starts from a depot, visits a subset of the
customers, and ends at the same depot; each customer must be assigned to exactly one of
the vehicles; each customer has its own demand and the total demand of customers assigned
to a vehicle must not exceed the vehicle capacity. In the past decades, researchers proposed
different strategies to solve the CVRP. One of them is to cluster customers into different routes
and then to arrange the visiting sequence for each route. The objective function value will
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be apparently influenced by the results of customer clustering and sequencing. For more
detailed descriptions of vehicle routing problems, the reader may refer to the articles by
Laporte [1], Osman [2], and Cordeau et al. [3].

Because the CVRP is an NP-hard problem [4], the optimal solution of a large-size
instance cannot be found within a reasonable time. To overcome this difficulty, many classical
heuristic methods and metaheuristic methods are proposed in the past five decades. Some
metaheuristic algorithms can provide competitive solutions to the CVRP, such as Simulated
Annealing (SA), Tabu Search (TS), and Genetic Algorithm (GA). Metaheuristic algorithms
have some advantages, for example, the abilities to escape from local optima through
stochastic search, to speed convergence using solution replacement, to guide the search
direction with the elitist strategy, and so on. The following paragraph gives a brief review
of some articles which use these metaheuristic algorithms to solve CVRPs.

Barbarosoglu and Ozgur [5] designed a TS-based algorithm using a new neighbor-
hood generation procedure for the single-depot vehicle routing problems. The neighbors
are defined by using two procedures: the first one ignores the scattering patterns of
customer locations, and the second one considers the underlying clustering of customer
locations. Baker and Ayechew [6] put forward a hybrid of GA algorithms with neighborhood
search methods. The pure GA has three specific processes: initialization, reproduction, and
replacement. The neighborhood search methods are used to accelerate the convergence
of GA. Computational results showed that this approach is competitive with published
results obtained using TS and SA. Lin et al. [7] proposed a hybrid algorithm which takes
the advantages of SA and TS. In their paper, SA is used to adjust the probability of
accepting worse solutions according to the extent of solution improvement and the annealing
temperature, while TS is embedded in the framework of SA to avoid cycling to some extent
while searching for neighborhood.

In the recent ten years, swarm intelligence, a new category of metaheuristics, has
emerged and attracted researchers’ attention. Swarm intelligence mimics the social behavior
of natural insects or animals to solve complex problems. Some commonly used swarm
intelligence algorithms for the solution of the CVRP include ant colony optimization (ACO),
particle swarm optimization (PSO) and artificial bee colony [8].

ACO is a population-based swarm intelligence algorithm andwas proposed byDorigo
and Gambardella [9]. This algorithm has been inspired by the foraging behavior of real ant
colonies and originally designed for the traveling salesman problem (TSP). The artificial
ants use pheromone laid on trails as an indirect communication medium to guide them
to construct complete solution routes step by step. More pheromone deposits on better
routes attract more ants for later search. This effect is called dynamic positive feedback and
helps speed convergence of ACO. Recently, some researchers have studied vehicle routing
problems using ACO algorithms. Applying ACO to the CVRP is quite natural, since we can
view ant nests as depots, artificial ants as vehicles, foods as customers, and trails as routes.
Some of the relevant papers are briefly reviewed as follows.

Bell and McMullen [10] made modifications of the ACO algorithm in order to solve
the vehicle routing problem. They used multiple ant colonies to search vehicle routes.
Each vehicle route is marked with unique pheromone deposits by an ant colony, but the
communication among ant colonies is limited. Later, Liu and Cai [11] proposed a new
multiple ant colonies technique, which allows ant colonies to communicate with each other
in order to escape from local optima. Chen and Ting [12] developed an improved ant colony
system algorithm, in which pheromone trails will be reset to initial values for restarting
the search if the solution is not improved after a given number of iterations. Zhang and
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Tang [13] hybridized the solution construction mechanism of ACO with scatter search (SS).
The algorithm stores better solutions in a reference set. Some new solutions are generated
by combining solutions selected from the reference set, and some are produced by using
the conventional ACO method. Yu et al. [14] also developed an improved ant colony
optimization for vehicle routing problems. Their algorithm uses the ant-weight strategy to
update pheromone in terms of solution quality and the contribution of each edge to the
solution. Lee et al. [15] proposed an enhanced ACO algorithm for the CVRP. Their algorithm
adopts the concept of information gain to measure the variation of pheromone concentrations
and hence to dynamically adjust the value of heuristic parameter (β) which determines the
importance of heuristic value (η) at different iterations.

PSO is also a population-based swarm intelligence algorithm and was originally
proposed by Kennedy and Eberhart [16]. PSO is inspired by social behavior of bird flocking.
It has been shown that PSO can solve continuous optimization problems very well. In the
PSO, solution particles try to move to better locations in the solution space. The movements
of particles are guided by the individuals’ and the swarm’s best positions. PSO can converge
very fast due to its two unique mechanisms: memorizing personal best experiences (Pbest)
and information sharing of global best experiences (Gbest). Note that the Gbest solution of the
particle swarm is equal to the Pbest solution of the best particle. In 1998, Shi and Eberhart [17]
enhanced PSO by adding the concept of inertia weight, which becomes the standard version
of PSO.

PSO being originally developed for continuous optimization problems, a special
solution representation or solution conversion should be designed first in order to solve
CVRPs. Chen et al. [18] first proposed a PSO-based algorithm to solve the CVRP. In
their approach, each iteration has two main steps: customers are first clustered by using
a discrete PSO algorithm (DSPO) and then sequenced by applying a SA algorithm. Due
to its long solution strings, their approach takes much computational time in solving large
scale problems. To improve Chen et al.’s work, Kao and Chen [19] addressed a new
solution representation and solved the CVRP with a combinatorial PSO algorithm. Ai and
Kachitvichyanukul [20] presented two solution representations for solving CVRPs. For
example, in their second solution representation (SR-2), each vehicle is represented in three
dimensions, with two for the reference point and one for the vehicle coverage radius. SR-
2 employs these points and radius to construct vehicle routes. The particle solutions are
adjusted by using a continuous PSO. Marinakis et al. [21] proposed a hybrid PSO algorithm
to tackle large-scale vehicle routing problems. Their proposed algorithm combines a PSO
algorithm with three heuristic methods, with the first for particle initialization, the second
for solution replacement, and the third for local search.

This study proposes a new hybrid algorithm for the capacitated vehicle routing
problem, which is based on the framework of ACO and is hybridized with the merits of PSO.
The reasons why ACO and PSO, rather than SA, TS, and GA, are adopted in the proposed
algorithm are given as follows. First, SA and TS perform the so-called single-starting-point
search and thus their performance relies highly on a good initial solution. However, GA,
ACO, and PSO are all population-based algorithms and can start the search from multiple
points. Their initial solutions have little influence on their performance. Thus, we consider
adopting the population-based algorithms to solve CVRPs. Second, ACO and PSO have
memory that enables the algorithms to retain knowledge of good solutions, while the genetic
operators of GA may destroy previously learned knowledge when producing the offspring.
In view of these two considerations, we select ACO and PSO as the solution approach for this
paper.
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In the past, most relevant papers adopted either ACO [10–15] or PSO [18–21] alone
without trying to use both in combination for solving CVRPs. In this paper, we try to
integrate ACO with PSO to develop a new hybrid approach which can take advantage of
both algorithms. That is, the proposed algorithm uses the solution construction approach of
ACO to cluster customers and build routes at the same time and use the short-term memory
inspired by PSO to speed convergence through laying pheromone on the routes of Gbest and
Pbest solutions.

Like most ACO-based algorithms, the proposed hybrid algorithm also faces the
limitation of pheromone stagnation, which results in premature convergence. To solve this
problem, Shuang et al. [22] employed the mechanism of PSO to modify the pheromone
updating rules of ACO. Their proposed algorithm is called PS-ACO and is used to solve
traveling salesman problems (TSPs). PS-ACO can improve the performance of ACO to some
extent, but it may still be trapped in local optima due to the overaccumulation of pheromone
on some edges when solving more complicated problems like CVRPs. To attain a high degree
of search accuracy, this paper proposes a pheromone disturbance approach to overcome the
problem of pheromone stagnation. The remainder of this paper is organized as follows.
Section 2 defines the mathematical formulation of the CVRP. The proposed methodology
is described in Section 3. Section 4 presents computational results. Finally, conclusions are
drawn in the last section.

2. Mathematical Model of CVRP

This section gives a typical mathematical formulation of the CVRP, including notations,
objective function, and constraint equations.

Notations. 0: index of depots;

N: total number of customers;

K: total number of vehicles;

Cij : cost incurred when traveling from customer i to customer j;

Si: service time needed for customer i, S0 = 0;

Q: maximum loading capacity of a vehicle;

T : maximum traveling distance of a vehicle;

di: demand of customer i, d0 = 0;

Xk
ij : 0-1 variable, where Xk

ij = 1 if the edge from customer i to customer j is traveled by

vehicle k; otherwise, Xk
ij = 0. Note that i /= j;

p: penalty coefficient;

R: set of customers served by a vehicle, and |R| is the cardinality of R.
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Objective function

Minimize
N∑

i=0

N∑

j=0

K∑

k=1

CijX
k
ij , (2.1)

subject to
K∑

k=1

N∑

i=0

Xk
ij = 1, j = 1, 2, . . . ,N, (2.2)

K∑

k=1

N∑

j=0

Xk
ij = 1, i = 1, 2, . . . ,N, (2.3)

N∑

i=0

Xk
iu −

N∑

j=0

Xk
uj = 0, k = 1, 2, . . . , K; u = 1, 2, . . . ,N, (2.4)

N∑

i=0

N∑

j=0

Xk
ijdi ≤ Q, k = 1, 2, . . . , K, (2.5)

N∑

i=0

N∑

j=0

Xk
ij

(
Cij + Si

) ≤ T, k = 1, 2, . . . , K, (2.6)

N∑

j=1

Xk
ij =

N∑

j=1

Xk
ji ≤ 1, i = 0; k = 1, 2, . . . , K, (2.7)

∑

i,j∈R
Xk

ij ≤ |R| − 1, R ⊆ {1, . . . ,N}, 2 ≤ |R| ≤ N − 1; k = 1, 2, . . . , K, (2.8)

Xk
ij ∈ {0, 1}, i, j = 0, 1, . . . ,N; k = 1, 2, . . . , K. (2.9)

Equation (2.1) is the objective function of the CVRP. Equations (2.2) and (2.3) ensure
that each customer can be served by only one vehicle. Equation (2.4)maintains the continuity
at each node for every vehicle. Equation (2.5) ensures that the total customer demand of
a vehicle cannot exceed its maximum capacity. Similarly, (2.6) ensures that the total route
distance of a vehicle cannot exceed its route length limit. Equation (2.7) makes sure that
every vehicle can be used at most once and must start and end at the depot. The subtour
elimination constraints are given in (2.8). Equation (2.9) is the integrality constraint.

3. PACO Algorithm

This section describes the proposed solution algorithm to the capacitated vehicle routing
problem. The algorithm, called PACO, hybridizes the solution construction mechanism of
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ACO and the short-term memory mechanism of PSO to find optimal or near optimal vehicle
routes.

3.1. Basic Idea

The PACO algorithm incorporates the merits of PSO into the ACO algorithm. One of the
advantages of applying ACO to the CVRP is that ACO can cluster customers and build
routes at the same time. However, laying pheromone (long-term memory) on trails as
ant communication medium is time consuming. The merit of PSO is that it can speed
convergence through memorizing personal and global best solutions to guide the search
direction. Inspired by themerit of PSO, the PACO algorithm allows artificial ants tomemorize
their own best solution so far and to share the information of swarm best solution. Hence
PACO can speed convergence through intensifying pheromone on routes of Gbest and Pbest

solutions.
To avoid falling into local optima, our approach employs elitist strategy, pheromone

disturbance, and short-term memory resetting to resolve pheromone stagnation. After ants
complete solution construction, the first r iteration-best ants are allowed to perform local
search to improve their current solutions. After that, all ants update their Pbest solutions and
Gbest solution. The ants with better Pbest solutions are called elite ants. Pheromone updating
is conducted by these elite ants only. Elite ants lay pheromone on their Pbest solution routes
in a distributed way. The elitist strategy updates the pheromone in terms of solution quality
and attracts ants searching for solutions around distributed Pbest solution paths.

When the Gbest solution is not improved within a given number of iterations, PACO
will carry out pheromone disturbance to change pheromone trails randomly in order to find
new solutions. Pheromone disturbance can prevent the paths of the Pbest solution of elite ants
from becoming too dominant. After pheromone disturbance, the paths of the Pbest solution of
elite ants may become dominant again because they can still evoke memories of current Pbest

solutions which determine the way of laying pheromone. To avoid that, the algorithm should
allow ants to reset their Pbest solutions. It means that the ants will discard their current Gbest

and Pbest solutions and find new ones in the following iteration according to the disturbed
pheromone trails. The algorithm allows any ant, not limited to elite ants, to change their Pbest

solutions if and only if its Pbest solution is very similar to the Gbest solution.

3.2. Solution Representation

For solving the CVRP, each artificial ant represents a candidate solution. A solution is
represented with the route representation of all vehicle tours. Let 0 denote the depot and
positive integers from 1 to N represent the customers. Suppose that the total number of
vehicles is K. The solution code is a permutation of 1 to N and (K − 1) zeros. Zeros divide a
solution code into K segments, with each of them representing a vehicle route. For example,
a solution code (1, 2, 3, 0, 4, 5, 6, 0, 7, 8, 9)means that customers 1, 2, 3 are serviced by vehicle
1; customer 4, 5, 6 by vehicle 2; customers 7, 8, 9 by vehicle 3. Thus, the length of a solution
string is (N + K − 1). It is clear that this solution representation scheme can fully meet the
constraints defined in (2.2)–(2.4).

The goodness of a solution is evaluated by using the objective function (2.1). Here, we
modify the objective function in order to handle the infeasible solutions violating capacity
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and length constraints (see (2.5) and (2.6)). Two penalty functions are added to the original
objective function, as defined in (3.1), one for excess vehicle capacity and the other for
excess route length. These penalty functions increase the objective function value of infeasible
solutions so as to prefer feasible solution to be selected as elite ants which are allowed to
perform local search and to update pheromone on their routes (see Sections 3.5 and 3.6).

Minimize f =
N∑

i=0

N∑

j=0

K∑

k=1

CijX
k
ij+p

K∑

k=1

⎡

⎣max

⎧
⎨

⎩0,
N∑

i=0

N∑

j=0

Xk
ijdi−Q

⎫
⎬

⎭+max

⎧
⎨

⎩0,
N∑

i=0

N∑

j=0

Xk
ij

(
Cij+Si

) − T

⎫
⎬

⎭

⎤

⎦.

(3.1)

3.3. Main Steps

The main steps of PACO are solution construction, local search, Gbest and Pbest updating,
pheromone updating, and pheromone disturbance. Suppose there are m ants starting from
the depot. Each ant selects customers to construct a solution route by applying the state
transition rules of ACO. When all ants finish solution construction, the top r best ants
perform local search to improve their solutions. Then, ants update their short-term memory:
Gbest solution and individual Pbest solutions. After that, PACO updates the pheromone trails
according to the Gbest solution and the Pbest solutions of elite ants. When the Gbest is not
improved over w consecutive iterations, PACO performs pheromone disturbance to modify
current pheromone trails. PACO also resets the Pbest solutions of some ants in order to prevent
them from laying pheromone on the same routes again. The flowchart of the PACO algorithm
is shown in Figure 1 and described briefly as follows.

Step 1 (Initialization). Initialize all parameters.

Step 2 (Solution construction). Let m ants construct solution routes.

Step 3 (Local search). The top r best ants perform local search.

Step 4. Update the Gbest and Pbest solutions of ants and select r elite ants.

Step 5. If Gbest is not improved within w successive iterations, go to Step 6; otherwise, go to
Step 7.

Step 6 (Pheromone disturbance). Randomly disturb the pheromone matrix, reset the Pbest

solutions for some ants, and go to Step 8.

Step 7 (Pheromone updating). Update the pheromone matrix based on the Pbest solutions of
elite ants.

Step 8. If iteration number reaches the maximum number of iterations (MaxIte), go to Step 9;
otherwise, go to Step 2 for the next iteration.

Step 9. Output Gbest, the best solution ever found.



8 Mathematical Problems in Engineering

Begin

Initialization
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Local search

NG = 0

NG = 0

NG = w ?

NG = NG + 1

Pheromone
 updating

Pheromone
disturbance

resetting

Yes

Yes

Yes

No

No

No

End

Output 
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fGbest(t + 1)
(t)fGbest ?

<

Gbest and Pbest

Pbest

Gbest

updating

Figure 1: Flowchart of PACO.

3.4. Solution Construction

PACO can cluster customers into K vehicles and arrange vehicle visiting sequences at the
same time. At each of the iterations, m ants construct individual solutions independently.
Each solution contains K vehicle routes. Each ant starts from the depot, selects customers
for the first vehicle, moves back to the depot before the capacity or distance limit is violated,
then restarts from the depot and selects customers for the second vehicle. The procedure is
repeated until all customers are selected and their sequences are arranged in used vehicles.
It is possible that the last vehicle will serve all of the remaining customers even if it violates
the capacity or distance limit. The procedure of ant solution construction ensures that the
constraints defined in (2.7) and (2.8) can be satisfied.
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The customer selection follows the state transition rule defined in (3.2). Suppose ant s
is moving from customer i to the next customer, v:

v =

⎧
⎨

⎩
argmax

j∈Us

[(
τij

)α(
ηij

)β]
q ≤ q0,

V q > q0,
(3.2)

V :Pij =

(
τij

)α(
ηij

)β
∑

j∈Us

(
τij

)α(
ηij

)β , (3.3)

whereUs is the set of customers that remain to be selected by ant s positioned on customer i,
τij is the pheromone trail on edge (i, j), ηij is the inverse of the distance of edge (i, j), α and β
are parameters which determine the relative importance of pheromone versus distance, q is
a random number uniformly distributed in the interval of 0 and 1, q0 is a parameter ranged
between 0 and 1, and Pij is the probability that ant s moves from customer i to customer j.
If q ≤ q0, then ant s uses the greedy method (3.2) to select the next customer; otherwise, it
uses the probabilistic rule (3.3) to determine the next customer. If vehicle k is full or reaches
its distance limit, ant s has to go back to the depot and restarts from the depot to load the
next vehicle. However, if vehicle k is the last vehicle of ant s, then it has to serve all of the
remaining customers, even if the capacity or distance limit is violated.

3.5. Local Search

After all ants complete route construction, only the first r iteration-best ants can perform
local search to improve their current solutions. PACO performs three types of neighborhood
search: sequence inversion, insertion, and swap. These methods are often used in CVRP
papers to improve iteration solutions, as is the case with [7, 8, 15]. Sequence inversion selects
a vehicle at random from the current solution string, chooses two customers randomly,
and then inverts the substring between these two customers. The swap operation selects
two customers at random and then swaps these two customers in their positions. The
insertion operation selects a customer at random and then inserts the customer in a random
position. The swap operationmay select two customers in different vehicles, and the insertion
operationmay assign the selected customer to a different vehicle. For such a case, the capacity
and distance limits of the vehicles have to be checked. If the constraints are violated, the new
solution becomes invalid and another one should be generated.

The whole procedure of local search for an ant solution is controlled by using
a simulated annealing approach. SA performs neighborhood search R times at each
temperature T(t). Each time one of the three local search methods is randomly selected with
equal probability to implement neighborhood search. A worse solution may have a chance to
be accepted according to the following equations:

Δ = f
(
S′) − f(S),

P
(
S′) = exp

(
− Δ
T(t)

)
,

(3.4)
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where S is the current solution, S′ is the new solution, f(S) is the objective function value
of S, f(S′) is the new objective function value, t is the current temperature, and P(S′) is
the probability that SA accepts new solution S′. After carrying out neighborhood search R
times, SA reduces the temperature. New temperature (T(t + 1)) is equal to λ × T(t), where
0 < λ < 1. PACO adopts a best improvement strategy in its local search step. That is, the best-
so-far solution will be recorded during the run of the SA algorithm. When the termination
condition is met, the ant solution will be replaced with the best-so-far solution of SA if the
latter is really better.

After solution construction and local search, all ants compare their Pbest solutions with
their iteration solutions and perform Pbest replacement if the iteration solutions are better.
Then, ants are ranked in terms of the goodness of their Pbest solutions, and the first r ants are
the elite ants. Of course, the Gbest solution of all ants is equal to the Pbest solution of the best
elite ant.

3.6. Pheromone Updating

Pheromone trails play the role of long-termmemory in the PACO algorithm. Global updating
is used to enhance the search in the neighborhood of better solutions. The paths of better
solutions have higher levels of pheromone so as to attract more ants for later search.
The pheromone on other paths evaporates over time and becomes less attractive to ants.
Therefore, convergence of PACO can be accelerated by intensifying pheromone on the paths
of elite solutions. The pheromone updating rule is defined as follows:

τij =
(
1 − ρ

)
τij +

r∑

s=2

Δτ
Pbests
ij + ΔτGbest

ij ,

Δτ
Pbests
ij =

1
fs
Pbest

,

ΔτGbest
ij =

1
fGbest

,

(3.5)

where ρ is the pheromone evaporation rate and ranges between 0 and 1, r is the total number
of elite ants, Δτ

Pbests
ij and ΔτGbest

ij , are the pheromone added by elite ant s and the best ant,
respectively, and fs

Pbest
and fGbest are the objective function values of elite ant s and the best

ant, respectively.

3.7. Pheromone Disturbance

Since only elite ants lay pheromone on the routes of their Pbest solutions, the pheromone
on the paths of elite solutions will accumulate very fast. It leads to the state of pheromone
stagnation, and the search may be trapped by local optima. To overcome this problem, PACO
adopts pheromone disturbance to escape from local optima and to explore different areas of
the search space. Pheromone disturbance is performed when the Gbest solution of ants is not
updated (improved) up to w successive iterations. w is called the disturbance period. Large
wmakes PACO easy to raise the chances of settling for a false optimum, while smallw retards
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Table 1: Original pheromone matrix.

i
j

1 2 3 4 5
1 0 0.1 0.8 0.2 0.5
2 0 0.2 0.1 0.2
3 0 0.3 0.5
4 0 0.8
5 0

the search convergence and takes more computational time. It is suggested that w be equal
to the number of customers.

The basic idea of pheromone disturbance is similar to arithmetic crossover in GA, but
it is used to produce new pheromone trails, rather than to generate new solutions. Pheromone
disturbance has three steps. The first step is to select edges for disturbance. The disturbance
rate (μ) determines the probability that an edge is selected for disturbance. If μ is set too
high, it will be difficult to retain previous search experiences; on the other hand, if it is set
too low, the effect of disturbance will not be evident. The second step is to cluster selected
edges into groups, each of which has two edges with the same customer node. The groups
with single edges will be abandoned. The third step is to use a random number q ∈ [0, 1] to
determine a disturbance type for each of the paired edges. There are three types of pheromone
disturbance: unchanging, replacement, and weighted average. As defined in (3.6), paired
edges (i, j) and (i, u) have three possible results. That is, the pheromone on edge (i, j) may
remain the same, be replaced by the pheromone level of edge (i, u), or be replaced with the
weighted average of the pheromone levels of these two edges.

τt+1ij =

⎧
⎪⎪⎨

⎪⎪⎩

τtij q < 0.2,

τ tiu 0.2 ≤ q < 0.4
δτtij + (1 − δ)τtiu, j /=u, q ≥ 0.4,

, (3.6)

where δ is a uniform random number in the range [0, 1] and determines the ratios of
pheromone on the two edges.

After pheromone disturbance, ant s positioned on customer node i has a chance to
explore different edges rather than to keep selecting the same next customer node to move to.
Hence, pheromone disturbance increases the probability of finding optimal solutions. Note
that we deal with symmetric CVRPs in this paper, where the distances between customer
nodes are independent of the direction of traversing the edges. The same situation applies to
pheromone trails. Accordingly, dij = dji and τij = τji for each pair of nodes.

We use an example to illustrate the idea of pheromone disturbance. Suppose we have
five customers, then there are 20 edges with pheromone deposits. The original pheromone
matrix is shown in Table 1. Since τij = τji for each pair of nodes, the algorithm considers only
half the edges to be disturbed.

The first step is to select edges for disturbance. Each edge is selected with a probability
of μ = 0.3. For each edge, we generate a random number from uniform distribution in the
range between 0 and 1. The generated random numbers are shown in Table 2. A edge is
selected if its random number is less than μ. Table 2 tells us that four edges are selected and
marked in bold type. The second step is to pair two edges that have the same customer node.
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Table 2: Edges selected for disturbance.

i
j

1 2 3 4 5
1 0 0.5 0.2 0.6 0.1
2 0 0.1 0.2 0.7
3 0 0.8 0.4
4 0 0.5
5 0

Table 3: Disturbance results.

Edge τij(t) q Option τij(t + 1)
(1–3) 0.8 0.1 1 0.8
(1–5) 0.5 0.8 3 0.65
(2-3) 0.2 0.3 2 0.1
(2–4) 0.1 0.5 3 0.11

Table 4: New pheromone matrix.

i
j

1 2 3 4 5
1 0 0.1 0.8 0.2 0.65
2 0 0.1 0.11 0.2
3 0 0.3 0.5
4 0 0.8
5 0

Scanning the matrix in Table 2 row by row, we obtain the pairing results: {edge (1, 3), edge
(1, 5)} and {edge (2, 3), edge (2, 4)}. The third step uses (3.6) to determine new pheromone
trails for paired edges. Random number q is first generated to determine a disturbance type
for each selected edge. The disturbance results are shown in Table 3. For example, for the first
paired edges, option 1 (unchanging) applies to edge (1, 3) and option 3 (weighted average)
applies to edge (1, 5). Note that here δ is a random number in the range of [0, 1]. In our
example of edge (1, 5), δ is equal to 0.5. The new pheromone matrix is presented in Table 4.

3.8. Pbest Solution Resetting

Since pheromone updating is based on the Pbest solutions of elite ants, it may diminish the
effect of pheromone disturbance very fast in the following iterations. To avoid that situation,
PACO resets the Pbest solutions of some better ants. That is, the Pbest solutions of the ants
are removed from their memory and find new ones in the next iteration. Note that not all
of the ants need to reset their Pbest solutions. The resetting is determined by the difference
in objective function value between Pbest and Gbest solutions. For ant s, if the difference is
less than or equal to a threshold, Δf , (i.e., Δf ≤ fs

Pbest
− fGbest), then ant s has to reset its Pbest

solution.
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4. Computational Results

The PACO algorithm described in Section 3 was coded in Java, and all experiments were
performed on a personal computer with Intel Core 2 CPU T7500 running at 2.20GHz. Two
sets of benchmark problems were selected to evaluate the effectiveness of our proposed
algorithm for the capacitated vehicle routing problem.

The first set has 16 test problems and can be downloaded from the website
http://www.branchandcut.org/VRP/data/. The problems in this benchmark set are subject
to capacity constraints only. The total number of customers varies from 29 to 134, and the
total number of vehicles ranges from 3 to 10. The locations of customers appear in clusters
in the problems with their names initiated with B and M, while in the remaining problems
customers are randomly scattered or semiclustered. The first benchmark set was used by
Chen et al. [18] and Ai and Kachitvichyanukul [20] to test their PSO-based algorithms.

The second benchmark set can be downloaded from the website http://
people.brunel.ac.uk/∼mastjjb/jeb/orlib/vrpinfo.html. It has been widely used in previous
studies and contains 14 classical test problems selected from Christofides et al. [23]. Problems
1, 2, 3, 4, 5, 11, and 12 consider the constraint of capacity only, while the remaining problems
are subject to the capacity and distance limits. The total number of customers varies from
50 to 199, and the total number of vehicles ranges from 5 to 18. Besides, customers are
randomly distributed in the first ten problems whereas customers are clustered in the last
four problems.

The PACO parameters set as follows were found to be robust for most of the test
problems according to our pilot tests. PACO parameters are maximum iteration number
MaxIte = 1000, population size pop = N/2, number of elite ants r = 3, penalty coefficient
p = 100, q0 = 0.8, ρ = 0.5, α = 2, β = 1, and τ0 = 1/(N×Lnn), where Lnn is the tour length
found by the nearest neighbor heuristic. Local search parameters are initial temperature t0 =
2, final temperature tf = 0.01, R = max{N × K/2, 250}, λ = 0.9. Pheromone disturbance
parameters are: μ = 0.3, w = N, Δf = 5.

Table 5 lists the computational results of PACO on two sets of test problems. The best
solution, average solution, worst solution, and standard deviation (Std.) computed over 20
independent runs on each problem are summarized, along with their average computational
time (in seconds) required to reach the final best solutions. The best solutions equal to the
best-known solutions of benchmark problems are asterisked and typed in bold. Table 5
reveals that PACO is able to generate reasonable good solutions for most of CVRPs in terms
of solution quality. Twelve out of sixteen test problems can be solved successfully by the
proposed algorithm in the first benchmark set. For the second set, seven out of fourteen test
problems can be solved successfully by PACO.

To evaluate the pheromone disturbance strategy and Pbest-resetting operation, the
proposed algorithm is compared with standard ACO [9] and PS-ACO [22] in terms of
their convergence trends. Standard ACO and PS-ACO were originally proposed for solving
traveling salesman problems (TSP), not CVRPs. We implemented these two algorithms
in Java and tried to apply them to solve CVRPs with the same local search method and
parameter settings used in PACO.

Benchmark problem C1 was selected to test three ACO-based algorithms. Three data
sets of iteration-best solutions are plotted in Figure 2, The curves reveal that both PACO
and PS-ACO can converge faster than standard ACO but only PACO can find the optimal
solution. It demonstrates that, with pheromone disturbance and Pbest solution resetting,
PACO can effectively escape from local optima and find better solutions. In Figure 2, a
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Table 5: Computational results of PACO over 20 runs on two benchmark sets.

First benchmark set Second benchmark set
Best Avg. Worst Std. AT (s) Best Avg. Worst Std. AT (s)

A-n33-k5 661∗ 661 661 0 0.87 C1 524.61∗ 527.54 543.16 4.98 32.3
A-n46-k7 914∗ 914 914 0 6.02 C2 835.26∗ 842.71 852.14 4.31 107.91
A-n60-k9 1354∗ 1356.4 1369 4.49 52.88 C3 829.92 838.29 844.65 3.76 141.89
B-n35-k5 955∗ 955 955 0 2.65 C4 1040.23 1053.22 1077.68 9.31 377.83
B-n45-k5 751∗ 751 751 0 5.85 C5 1348.73 1375.05 1392.93 12.73 1048.45
B-n68-k9 1275 1286.25 1288 2.86 62.97 C6 555.43∗ 556.72 560.24 1.09 27.09
B-n78-k10 1221∗ 1228.1 1252 8.6 98.78 C7 909.68∗ 917.93 932.06 7 98.70
E-n30-k3 534∗ 534 534 0 4.38 C8 868.61 880.47 895.7 8.37 117.74
E-n51-k5 521∗ 522.65 528 2.87 19.46 C9 1171.94 1194.96 1233.9 15.24 505.89
E-n76-k7 685 691.15 694 2.35 46.85 C10 1454.81 1498.23 1577.52 28.8 939.08
F-n72-k4 237∗ 237 237 0 30.64 C11 1042.11∗ 1045.01 1049.45 2.87 196.49
F-n135-k7 1170 1193.45 1229 15.99 248.77 C12 819.56∗ 821.55 825.95 1.91 148.67
M-n101-k10 820∗ 822.9 824 1.41 113.28 C13 1562.64 1575.55 1596.63 8.16 320.92
M-n121-k7 1034∗ 1039.6 1127 20.12 80.62 C14 866.37∗ 866.81 867.77 0.51 173.15
P-n76-K4 593∗ 597.95 616 5.72 53.48
P-n101-k4 683 693.35 706 7.21 64.92

∗
The solution equals the best-known solution.
AT denotes the average CPU time required to reach the final best solution over 20 runs.
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Figure 2: Convergence trends of three ACO-based algorithms tested on problem C1.

couple of peaks on the PACO curve indicate the effects of pheromone disturbance and Pbest-
resetting. The disadvantage of PS-ACO is that all of the local best solutions are considered
in the pheromone updating procedure. When most ants have similar Pbest solutions, the total
amount of pheromone increment on edges will become very large. It results in the state of
pheromone stagnation and the search is trapped by a local optimum.

We conducted a comparative study to compare PACO with a couple of swarm
intelligencemethods available for the CVRP. The comparative study contains two parts. In the
first part, the PACO algorithm is compared with three different PSO-based algorithms, which
were all tested on the 16 problems from the first benchmark set. The smaller the objective
function value, the better the solution. Table 6 displays the computational results of PACO
and the best results found in the papers of Chen et al. [18], Ai and Kachitvichyanukul [20],
and Kao and Chen [19], denoted as DPSO-SA, SR-2, CPSO-SA, respectively. Experimental
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Table 6: Comparison of PACO with three PSO-based algorithms.

No. Problem N K BKS DPSO-SA [18] SR-2 [20] CPSO-SA [19] PACO
1 A-n33-k5 32 5 661 661∗/32.2 661∗/13 661∗/0.7 661∗/0.12
2 A-n46-k7 45 7 914 914∗/128.9 914∗/23 917/2.4 914∗/0.16
3 A-n60-k9 59 9 1354 1354∗/308.8 1355/40 1354∗/6.5 1354∗/14.15
4 B-n35-k5 34 5 955 955∗/37.6 955∗/14 955∗/1.2 955∗/0.06
5 B-n45-k5 44 5 751 751∗/134.2 751∗/20 751∗/4.8 751∗/1.12
6 B-n68-k9 67 9 1272 1272∗/344.2 1274/50 1274/27.2 1275/87.19
7 B-n78-k10 77 10 1221 1239/429.4 1223/64 1237/24 1221∗/54.38
8 E-n30-k3 29 3 534 534∗/28.4 534∗/16 534∗/0.3 534∗/0.05
9 E-n51-k5 50 5 521 528/300.5 521∗/22 521∗/4.6 521∗/0.51
10 E-n76-k7 75 7 682 688/526.5 682∗/60 692/9.5 685/18.95
11 F-n72-k4 71 4 237 244/398.3 237∗/53 237∗/5.3 237∗/6.28
12 F-n135-k7 134 7 1162 1215/1526.3 1162∗/258 1200/202.8 1170/246.85
13 M-n101-k10 100 10 820 824/874.2 820∗/114 825/6.1 820∗/66.02
14 M-n121-k7 120 7 1034 1038/1733.5 1036/89 1039/51.5 1034∗/8.18
15 P-n76-K4 75 4 593 602/496.3 594/48 596/27.6 593∗/8.61
16 P-n101-k4 100 4 681 694/977.5 683/86 691/29.4 683/25.7
Notes: x/y = f (best solution)/shortest CPU Time (s), BKS is the best-known solution provided by published papers, DPSO-
SA used Intel Pentium IV CPU 1.8GHz with 256M RAM, SR-2 used Intel Pentium IV CPU 3.4GHz with 1GB RAM, and
CPSO-SA used Intel Core 2 CPU E8400 3GHz with 3.5G RAM.

Table 7: Comparison of PACO with three ACO-based algorithms.

Prob. N K BKS IACS [12] SS ACO [13] EACO [15] PACO
C1 50 5 524.61 524.61∗/3 524.61∗/55.23 524.61∗/— 524.61∗/0.79
C2 75 10 835.26 836.18/26 835.26∗/70.43 835.26∗/— 835.26∗/163.44
C3 100 8 826.14 835.6/101 830.14/120.25 826.14∗/— 829.92/183.08
C4 150 12 1028.42 1038.22/617 1038.20/250.76 1041.83/— 1040.23/547.88
C5 199 17 1291.45 1327.07/3080 1307.18/707.80 1338.48/— 1348.73/1455.64
C6 50 6 555.43 555.43∗/5 559.12/65.17 555.43∗/— 555.43∗/7.72
C7 75 11 909.68 909.68∗/41 912.68/90.42 909.68∗/— 909.68∗/66.68
C8 100 9 865.94 865.94∗/115 869.34/210.46 865.94∗/— 868.61/146.5
C9 150 14 1162.55 1173.76/853 1179.4/520.52 1168.81/— 1171.94/614.53
C10 199 18 1395.85 1413.83/4223 1410.26/1012.23 1413.69/— 1454.81/1114.21
C11 120 7 1042.11 1042.11∗/204 1044.12/232.46 1045.5/— 1042.11∗/95.33
C12 100 10 819.56 832.67/88 824.31/156.47 819.56∗/— 819.56∗/122.87
C13 120 11 1541.14 1547.07/428 1556.52/467.24 1554.93/— 1562.64/156.32
C14 100 11 866.37 866.37∗/125 870.26/368.72 866.37∗/— 866.37∗/32.75
Notes: x/y = f (best solution)/shortest CPU Time (s), BKS is the best-known solution provided by published papers, —
denotes that the data is not available, IACS used Intel Pentium III CPU 1000MHz with 128MB RAM, SS ACO used IBM
computer CPU 1600MHz with 512MB RAM, and EACO used Pentium IV CPU 3.0GHz.

results show that PACO is able to obtain the same or better results compared with three PSO-
based algorithms.

In the second part of the comparative study, the computational results of PACO are
compared with three ACO-based algorithms, which were all tested on the 14 problems
from the second benchmark set. Table 7 reports the best results obtained by these various
ACO algorithms. The best results of IACS, SS ACO, and EACO are found in [12, 13, 15],
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respectively. Table 7 indicates that PACO generates very good solutions for seven problems,
which are equal to the best solutions published so far. For three compared algorithms, only
EACO is better than PACO because it can find best-known solutions for eight problems. It
can be noticed that both PACO and EACO can obtain optimum solutions for six problems
in common. For problem C11, PACO can reach the best-known solution but EACO cannot,
while, for problems C3 and C8, EACO can outperform PACO. However, the best solutions
produced by PACO and EACO are nearly equal for these three problems.

Tables 6 and 7 also list the shortest computational times required to reach the final best
solution over 20 independent runs. From the data, it can be observed that the computation
time taken by PACO is reasonable in practice in comparison with existing PSO- and ACO-
based algorithms. It shows that pheromone disturbance can improve solutions but does not
increase much computational time. Note that the computation time has not been reported
in [15]. Instead, the authors of [15] used the maximum execution time as the termination
condition. They stopped the EACO algorithm after one hour of running for 14 benchmark
problems. The overall result of comparative study shows that the proposed algorithm is
competitive with recent swarm intelligence approaches in terms of solution quality and CPU
time.

5. Conclusion

This paper proposes a hybrid algorithm, PACO, which takes advantage of ant colony
optimization and particle swarm optimization for capacitated vehicle problems. During the
searching process, artificial ants construct solution routes, memorize the best solution ever
found, and lay pheromone on the routes of swarm and personal best solutions. To prevent
being trapped in local optima and to increase the probability of obtaining better solutions,
PACO performs pheromone disturbance and short-term memory resetting operations to
adjust stagnated pheromone trails. Disturbed pheromone trails guide ants to find new Pbest

and Gbest solutions. The merits of PSO adopted in PACO can speed convergence during
a run, even after pheromone disturbance operations. Computational results show that the
performance of PACO is competitive in terms of solution quality when compared with
existing ACO- and PSO-based approaches. For future research, PACO can be modified to
extend its application to vehicle routing problems with time windows or multiple depots,
among others.
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