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This paper deals with a first-order differential equation with a polynomial nonlinear term. The
integrability and existence of periodic solutions of the equation are obtained, and the stability of
periodic solutions of the equation is derived.

1. Introduction

Consider the following first-order nonlinear differential equation:

dx

dt
=

n∑

k=0

ak(t)xn−k (n ∈N,n ≥ 2), (1.1)

when n = 2, (1.1) becomes Ricatti’s equation, when n = 3, (1.1) becomes the following non-
linear Abel type differential equation:

dx

dt
= a(t)x3 + b(t)x2 + c(t)x + d(t). (1.2)

The nonlinear Abel type differential equation plays an important role in many physical
and technical applications [1–9]. The mathematical properties of (1.2) have been intensively
investigated in the mathematical and physical literature. Matsuno [10] analyzed a two-
dimensional dynamical system associated with Abel nonlinear equation. Strobel and
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Reid [11], Reid and Strobel [12] have obtained superposition rules (prescriptions for
combining a finite number of known particular solutions in such a way to obtain the general
solution to a (system of) differential equation(s) without operation of integration) for the
Abel type equation, involving four or two particular solutions. Mak et al. [13], Mak and
Harko [14] have presented a solution-generating technique for Abel type ordinary differ-
ential equation, both suppose that y = y1(x) is a particular solution of (1.2), by means of
the transformations methods, and present an alternative method of generating the general
solution of (1.2) from a particular one.

Zheltukhin and Trzetrzelewski [15] developed the geometric approach to study the
dynamics of U(1)-invariant membranes. The approach reveals an important role of the
Abel nonlinear differential equation of the first type with variable coefficients depending on
time and one of the membrane extendedness parameters. The general solution of the Abel
equation was constructed.

However, little work was done about the integrability and periodicity of (1.1). In this
paper, we discuss the integrability and the periodic solutions of (1.1); the sufficient conditions
which guarantee the integrability and the existence of the periodic solutions for (1.1) are
obtained, and the stability of the periodic solutions of (1.1) is discussed. To the best of authors’
knowledge, this is the first paper considering the three periodic solutions of (1.1), some new
results are obtained.

The present paper is organized as follows. In Section 2, we give three lemmas to be
used later. In Section 3, the integrability of (1.1) is derived. In Section 4, the existence and
stability of the periodic solutions of (1.1) are obtained. In Section 5, we conclude our results.

2. Preliminary Lemmas

For the sake of convenience, suppose that f is a continuous ω-periodic function defined on
R, we denote fM = supt∈[0,ω]f(t) and fL = inft∈[0,ω]f(t);m(f(t)) = (1/ω)

∫ω
0 f(t)dt.

Consider the following:

dx

dt
= x

[
a(t) + b(t)xn−1

]
, (2.1)

n ∈N, n ≥ 2, a(t), b(t) are continuous functions defined on R.

Lemma 2.1. The domain R+ = {x | x > 0} is positive invariant with respect to (2.1).

Proof. By (2.1), it follows that

x(t) = x(t0) exp

{∫ t

t0

[
a(s) + b(s)xn−1(s)

]
ds

}
, (2.2)

the assertion is valid for all x(t0) > 0, t ≥ t0. The proof is completed.

Lemma 2.2. The domain R− = {x | x < 0} is negative invariant with respect to (2.1).
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Lemma 2.3. Consider the following:

dx

dt
= a(t)x + b(t), (2.3)

a(t), b(t) are continuous ω-periodic functions, if m(a(t))/= 0, then (2.3) exists a unique ω-periodic
solution η(t), and η(t) can be written as follows:

η(t) =

∫ t+ω
t b(s)e

∫ t
s−ω a(τ)dτds

1 − e
∫ω
0 a(τ)dτ

, m(a(t))/= 0 (2.4)

or

η(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ t

−∞
e
∫ t
s a(τ)dτb(s)ds, m(a(t)) < 0,

−
∫+∞

t

e
∫ t
sa(τ)dτb(s)ds, m(a(t)) > 0.

(2.5)

Proof. The proof of Lemma 2.3 is a few, such as that of the papers [16, 17] and others, But in
[16], the author only proved the case of the almost periodic equation; in [17], the authors just
proved that Lotka-volterra equation has a unique globally attractive periodic solution, but
they did not give the very two expressions of the periodic solution as above. In order to make
the following proof clear, here we give our proof.

From (2.3), it is easy for us to get the unique solution x(t)with the initial value x(t0) =
x0 which can be written as follows:

x(t) = e
∫ t
t0
a(τ)dτ

x0 +
∫ t

t0

b(s)e
∫ t
s a(τ)dτds, (2.6)

thus we have

x(t +ω) = e
∫ t+ω
t0

a(τ)dτ
x0 +

∫ t+ω

t0

b(s)e
∫ t+ω
s a(τ)dτds. (2.7)

Let t = t0, by (2.6) and (2.7), if x(t) is an ω-periodic function, then it follows that x(t0) =
x(t0 +ω), thus we can get

x0 =

∫ t0+ω
t0

b(s)e
∫ t0+ω
s a(τ)dτds

1 − e
∫ω
0 a(τ)dτ

. (2.8)
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Substitute (2.8) into (2.6), it follows that

x(t) = e
∫ t
t0
a(τ)dτ

∫ t0+ω
t0

b(s)e
∫ t0+ω
s a(τ)dτds

1 − e
∫ω
0 a(τ)dτ

+
∫ t

t0

b(s)e
∫ t
s a(τ)dτds

=

∫ t0+w
t0

b(s)e
∫ t
s−ω a(τ)dτds +

∫ t
t0
b(s)e

∫ t
s a(τ)dτds − e

∫ω
0 a(τ)dτ

∫ t
t0
b(s)e

∫ t
s a(τ)dτds

1 − e
∫ω
0 a(τ)dτ

=

∫ t0+w
t0

b(s)e
∫ t
s−ω a(τ)dτds +

∫ t+ω
t0+ω

b(s)e
∫ t
s−ω a(τ)dτds − ∫ t

t0
b(s)e

∫ t
s−ω a(τ)dτds

1 − e
∫ω
0 a(τ)dτ

=

∫ t+ω
t b(s)e

∫ t
s−ω a(τ)dτds

1 − e
∫ω
0 a(τ)dτ

.

(2.9)

Whenm(a(t)) < 0, it follows that

x(t) =

∫ t+ω
t b(s)e

∫ t
s−ω a(τ)dτds

1 − e
∫ω
0 a(τ)dτ

=

∫ t+ω
−∞ b(s)e

∫ t
s−ω a(τ)dτds − ∫ t

−∞ b(s)e
∫ t
s−ω a(τ)dτds

1 − e
∫ω
0 a(τ)dτ

=

∫ t
−∞ b(s)e

∫ t
s a(τ)dτds − ∫ t

−∞ b(s)e
∫ t
s−ω a(τ)dτds

1 − e
∫ω
0 a(τ)dτ

=

∫ t
−∞ b(s)e

∫ t
s a(τ)dτds − e

∫ω
0 a(τ)dτ

∫ t
−∞ b(s)e

∫ t
s a(τ)dτds

1 − e
∫ω
0 a(τ)dτ

=
∫ t

−∞
b(s)e

∫ t
s a(τ)dτds,

(2.10)

thus we have

x(t +ω) =
∫ t+ω

−∞
b(s)e

∫ t+ω
s a(τ)dτds

=
∫ t

−∞
b(s)e

∫ t
s a(τ)dτds

= x(t).

(2.11)

Hence, x(t) is a unique ω-periodic solution of (2.3); we rewrite it as follows:

η(t) =
∫ t

−∞
b(s)e

∫ t
s a(τ)dτds. (2.12)
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Similarly, we can prove that when m(a(t)) > 0, (2.3) has a unique ω-periodic solution
as follows:

η(t) = −
∫+∞

t

b(s)e
∫ t
s a(τ)dτds. (2.13)

Remark 2.4. Under the conditions of Lemma 2.3, all the infinite integrals above are convergent.

3. A Sufficient Condition of Integrability of the First-Order Nonlinear
Differential Equation

In this section, we discuss the integrability of (1.1)

Theorem 3.1. Consider (1.1), where a0(t), an(t) are continuous functions defined on certain interval
I, if there is a constant γ such that the following conditions hold:

(H1) an−1(t) = (−1)n−1(n − 1)a0(t)(
∫ t
γ an(s)ds)

n−1
,

(H2) ak(t) = (−1)kCk
na0(t)(

∫ t
γ an(s)ds)

k
, k = 1, 2, . . . , n − 2,

then

(i) the general solution of (1.1) can be written as follows:

x(t) = ±
(
e
∫
an−1(t)dt

(
C − (n − 1)

∫
a0(t)e−

∫
an−1(t)dtdt

))−1/(n−1)
+
∫ t

γ

an(s)ds, (3.1)

where C is an integration constant which makes the number of root greater than zero if n is an odd
number.

(ii) Equation (1.1) has a particular solution

η(t) =
∫ t

γ

an(s)ds. (3.2)

Proof. (i) Since the conditions (H1), (H2) hold, (1.1) can be written as follows:

d
(
x − ∫ t

γ an(s)ds
)

dt
=

(
x −

∫ t

γ

an(s)ds

)

×
⎡

⎣(−1)na0(t)
(∫ t

r

an(s)ds

)n−1
+ a0(t)

(
x −

∫ t

γ

an(s)ds

)n−1⎤

⎦.

(3.3)
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Let y(t) = x − ∫ t
γ an(s)ds, (3.3) can be changed as follows:

dy

dt
= y

⎡

⎣(−1)na0(t)
(∫ t

r

an(s)ds

)n−1
+ a0(t)yn−1

⎤

⎦. (3.4)

This is the Bernoulli-type equation, set u(t) = y1−n(t), the Bernoulli-type equation (3.4)
becomes

du

dt
= (−1)n−1(n − 1)a0(t)

(∫ t

r

an(s)ds

)n−1
u − (n − 1)a0(t)

= an−1(t)u − (n − 1)a0(t),

(3.5)

according to the formula of general solution of linear differential equation, we can get that
the general solution of (3.5) is given by

u(t) = e
∫
an−1(t)dt

(
C − (n − 1)

∫
a0(t)e−

∫
an−1(t)dtdt

)
. (3.6)

By the variable transformation of u(t) = y1−n(t), it follows that

y(t) = ±
(
e
∫
an−1(t)dt

(
C − (n − 1)

∫
a0(t)e−

∫
an−1(t)dtdt

))−1/(n−1)
, (3.7)

since y(t) = x − ∫ t
γ an(s)ds, we can get

x(t) = ±
(
e
∫
an−1(t)dt

(
C − (n − 1)

∫
a0(t)e−

∫
an−1(t)dtdt

))−1/(n−1)
+
∫ t

γ

an(s)ds. (3.8)

Remark 3.2. If n is an even number, take “+” in the front of above-corresponding formulas, if
n is an odd number, take “±”.

(ii) By (1.1), we set f(t, x) =
∑n

k=0 ak(t)x
n−k, thus f(t, x) is continuous on I ×R, fx(t, x)

is also continuous on I × R, hence (1.1) satisfies the principle of existence and uniqueness of
differential equation, therefore, (1.1) has no singular solution.

From the variable transformation of u(t) = y1−n(t), it requires y /= 0, but from (3.4), we
know y = 0 is indeed a solution of (3.4). Since y = x − ∫ t

γ an(s)ds, substitute η(t) =
∫ t
γ an(s)ds

into (1.1), it just satisfies (1.1), so it is a particular solution of (1.1).
This is the end of the proof of Theorem 3.1.

Corollary 3.3. Consider Abel type differential equation (1.2), a(t), d(t) are continuous functions
defined on certain interval I, if there is a constant γ such that the following conditions hold:

(H1) b(t) = −3a(t) ∫ tγ d(s)ds,
(H2) c(t) = 2a(t)(

∫ t
γ d(s)ds)

2,
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then the general solution of (1.2) can be written as follows:

x(t) = ±
(
e
∫
c(t)dt

(
C − 2

∫
a(t)e−

∫
c(t)dtdt

))−1/2
+
∫ t

γ

d(s)ds, (3.9)

and
∫ t
γ d(s)ds is a particular solution of (1.2).

Corollary 3.4. Consider the following Ricatti’s equation:

dx

dt
= a(t)x2 + b(t)x + c(t), (3.10)

a(t), c(t) are continuous functions defined on certain interval I, if there is a constant γ such that the
following condition holds:

(H1) b(t) = −a(t) ∫ tγ c(s)ds,
then the general solution of (3.10) can be written as follows:

x(t) =
(
e
∫
b(t)dt

(
C −

∫
a(t)e−

∫
b(t)dtdt

))−1
+
∫ t

γ

c(s)ds, (3.11)

and η(t) =
∫ t
γ c(s)ds is a particular solution of (3.10).

4. The Existence and Stability of Periodic Solutions of
the First-Order Nonlinear Differential Equation

Define

Ω1 =

{
x | x >

∫ t0

γ

an(s)ds

}
, Ω2 =

{
x | x > inf

t∈[0,ω]

∫ t

γ

an(s)ds

}
,

Ω3 =

{
x | x <

∫ t0

γ

an(s)ds

}
, Ω4 =

{
x | x < sup

t∈[0,ω]

∫ t

γ

an(s)ds

}
,

(4.1)

where an(t), γ , ω are the same function and numbers as the following Theorem 4.1, and t0 is
any given initial time of (1.1).

Theorem 4.1. Consider (1.1), n is an odd number, and n > 2, a0(t), an(t) are continuous ω-periodic
functions defined on R, if there is a constant γ such that the following conditions hold:

(H1) an−1(t) = (n − 1)a0(t)(
∫ t
γ an(s)ds)

n−1,

(H2) ak(t) = (−1)kCk
na0(t)(

∫ t
γ an(s)ds)

k, k = 1, 2, . . . , n − 2,

(H3) m(an(t)) = 0, an(t)/≡ 0,

(H4) a0(t) < 0,
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then

(i) equation (1.1) has three ω-periodic solutions η(t), φ(t), χ(t), and they can be written as
follows:

η(t) =
∫ t

γ

an(s)ds,

φ(t) =

(
−(n − 1)

∫ t

−∞
a0(s)e

∫ t
s an−1(τ)dτds

)−1/(n−1)
+
∫ t

γ

an(s)ds,

χ(t) = −
(
−(n − 1)

∫ t

−∞
a0(s)e

∫ t
s an−1(τ)dτds

)−1/(n−1)
+
∫ t

γ

an(s)ds;

(4.2)

(ii) if given any initial value x(t0) ∈ Ω1, then the periodic solution φ(t) of (1.1) is globally
attractive in Ω2;

(iii) if given any initial value x(t0) ∈ Ω3, then the periodic solution χ(t) of (1.1) is globally
attractive in Ω4.

Proof. (i) Since the conditions (H1), (H2) hold, (1.1) can be written as follows:

d
(
x − ∫ t

γ an(s)ds
)

dt
=

(
x −

∫ t

γ

an(s)ds

)

×
⎡

⎣−a0(t)
(∫ t

r

an(s)ds

)n−1
+ a0(t)

(
x −

∫ t

γ

an(s)ds

)n−1⎤

⎦.

(4.3)

Let y(t) = x − ∫ t
γ an(s)ds, (4.3) can be changed as follows:

dy

dt
= y

⎡

⎣−a0(t)
(∫ t

r

an(s)ds

)n−1
+ a0(t)yn−1

⎤

⎦. (4.4)

This is the Bernoulli-type equation, set u(t) = y1−n(t), the Bernoulli-type equation (4.4)
becomes

du

dt
= (n − 1)a0(t)

(∫ t

r

an(s)ds

)n−1
u − (n − 1)a0(t),

du

dt
= an−1(t)u − (n − 1)a0(t).

(4.5)
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By (H3), (H4), it follows that

∫ t+ω

γ

an(s)ds =
∫ t

γ

an(s)ds +
∫ t+ω

t

an(s)ds

=
∫ t

γ

an(s)ds +
∫ω

0
an(s)ds

=
∫ t

γ

an(s)ds,

(4.6)

thus
∫ t
γ an(s)ds is an ω-periodic function, therefore, (n − 1)a0(t)(

∫ t
γ an(s)ds)

n−1 is also an ω-
periodic function and

an−1(t) = (n − 1)a0(t)

(∫ t

γ

an(s)ds

)n−1
≤ 0, (4.7)

since a0(t) < 0, an(t)/= 0 (not identically equal to zero), thus we have

m(an−1(t)) < 0, (4.8)

according to Lemma 2.3, it follows that (4.5) has a unique ω-periodic solution as follows

ϕ(t) = −(n − 1)
∫ t

−∞
a0(s)e

∫ t
s an−1(τ)dτds, (4.9)

from (4.9), it is easy to know that ϕ(t) > 0, since ϕ(t) is periodic on R, it is bounded on R, so it
is positive and bounded, since u(t) = y1−n(t), and by Lemmas 2.1 and 2.2, it follows that (4.4)
has two ω-periodic solutions as follows:

ψ(t) =

(
−(n − 1)

∫ t

−∞
a0(s)e

∫ t
s an−1(τ)dτds

)−1/(n−1) (
ψ(t0) > 0

)
,

ψ∗(t) = −
(
−(n − 1)

∫ t

−∞
a0(s)e

∫ t
s an−1(τ)dτds

)−1/(n−1) (
ψ∗(t0) < 0

)
,

(4.10)
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thus ψ(t) is also positive and bounded, and ψ∗(t) is negative and bounded, by virtue of y(t) =
x − ∫ t

γ an(s)ds, (1.1) has two ω-periodic solutions as follows:

φ(t) =

(
−(n − 1)

∫ t

−∞
a0(s)e

∫ t
s an−1(τ)dτds

)−1/(n−1)
+
∫ t

γ

an(s)ds,

χ(t) = −
(
−(n − 1)

∫ t

−∞
a0(s)e

∫ t
s an−1(τ)dτds

)−1/(n−1)
+
∫ t

γ

an(s)ds,

(4.11)

and φ(t0) ∈ Ω1, φ(t) ∈ Ω2, χ(t0) ∈ Ω3, χ(t) ∈ Ω4.
By (1.1), we set f(t, x) =

∑n
k=0 ak(t)x

n−k, thus f(t, x) is continuous onR×R, and fx(t, x)
is also continuous on R × R, hence (1.1) satisfies the principle of existence and uniqueness of
differential equation, therefore, (1.1) has no singular solution.

From the variable transformation of u(t) = y1−n(t), it requires y /= 0, but from (4.4), we
know y = 0 is indeed a solution of (4.4), since y(t) = x − ∫ t

γ an(s)ds, hence η(t) =
∫ t
γ an(s)ds

is a periodic solution of (1.1). Substitute η(t) =
∫ t
γ an(s)ds into (1.1), it just satisfies (1.1), so

η(t) =
∫ t
γ an(s)ds is indeed a periodic particular solution of (1.1), therefore, we have proved

that (1.1) has three ω-periodic solutions η(t), φ(t), and χ(t).
(ii) According to the theories of linear differential equation, we know that the unique

solution u(t) of (4.5)with positive initial value u(t0) = u0 is given by

u(t) = u0e
∫ t
t0
an−1(τ)dτ − (n − 1)

∫ t

t0

a0(s)e
∫ t
s an−1(τ)dτds. (4.12)

Since

an−1(t) = (n − 1)a0(t)

(∫ t

γ

an(τ)dτ

)n−1
, (4.13)

thus an−1(t) is an ω-periodic function on R, and by (4.7), we know an−1(t) ≤ 0, thus (an−1)L <
0.

Following we prove that there is a positive number T > t0, such that

(n − 1)
a0M

(an−1)L
(1 − ε) ≤ u(t) ≤ u0 −

2ωa0L
1 − ∫ω

0 an−1(τ)dτ
, (4.14)

as t > T , here ε is any small positive number and ε < 1.



Mathematical Problems in Engineering 11

From (4.12), given any positive number u0 > 0, by the condition a0(t) < 0 of
Theorem 4.1, it follows that u(t) > 0; following we first prove that u(t) has upper bound
on [t0,+∞)

u(t) = u0e
∫ t
t0
an−1(τ)dτ − (n − 1)

∫ t

t0

a0(s)e
∫ t
s an−1(τ)dτds

≤ u0 − (n − 1)
∫ t

−∞
a0(s)e

∫ t
s an−1(τ)dτds.

(4.15)

According to Lemma 2.3, it follows that

u(t) ≤ u0 − (n − 1)
∫ t

−∞
a0(s)e

∫ t
s an−1(τ)dτds

= u0 −
(n − 1)

∫ t+ω
t a0(s)e

∫ t
s−ω an−1(τ)dτds

1 − e
∫ω
0 an−1(τ)dτ

= u0 − ω(n − 1)a0(ξ)e
∫ t
ξ−ω an−1(τ)dτ

1 − e
∫ω
0 an−1(τ)dτ

, (t < ξ < t +ω)

= u0 − ω(n − 1)a0(ξ)e
∫ t
ξ an−1(τ)dτe

∫ω
0 an−1(τ)dτ

1 − e
∫ω
0 an−1(τ)dτ

≤ u0 − ω(n − 1)a0(ξ)e
∫ω
0 |an−1(τ)|dτe

∫ω
0 an−1(τ)dτ

1 − e
∫ω
0 an−1(τ)dτ

= u0 − ω(n − 1)a0(ξ)e
∫ω
0 (|an−1(τ)|+an−1(τ))dτ

1 − e
∫ω
0 an−1(τ)dτ

= u0 − ω(n − 1)a0(ξ)

1 − e
∫ω
0 an−1(τ)dτ

≤ u0 −
ω(n − 1)a0L
1 − e

∫ω
0 an−1(τ)dτ

.

(4.16)

So u(t) has upper bound on [t0,+∞).
Secondly, we prove that u(t) ≥ (n − 1)(a0M/(an−1)L)(1 − ε) as t > T

u(t) = u0e
∫ t
t0
an−1(τ)dτ − (n − 1)

∫ t

t0

a0(s)e
∫ t
s an−1(τ)dτds

≥ −(n − 1)
∫ t

t0

a0(s)e
∫ t
s an−1(τ)dτds

≥ −(n − 1)
∫ t

t0

a0Me
(an−1)L(t−s)ds
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= −(n − 1)
(
− a0M
(an−1)L

)(
1 − e(an−1)L(t−t0)

)

= (n − 1)
a0M

(an−1)L

(
1 − e(an−1)L(t−t0)

)
.

(4.17)

Since limt→+∞e(an−1)L(t−t0) = 0, forall ε > 0 (ε < 1), there must be T > t0, when t > T , we have
e(an−1)L(t−t0) < ε, hence when t > T , we can get

u(t) ≥ (n − 1)
a0M

(an−1)L
(1 − ε), (4.18)

therefore, we have proved that there is a positive number T > t0, as t > T , it follows that

(n − 1)
a0M

(an−1)L
(1 − ε) ≤ u(t) ≤ u0 −

ω(n − 1)a0L
1 − e

∫ω
0 an−1(τ)dτ

, (t > T), (4.19)

under the transformation of u(t) = y1−n(t), y(t) = x(t) − ∫ t
γ an(s)ds, we can get the following.

If given the initial value

x(t0) = (u0)−1/(n−1) +
∫ t0

γ

an(s)ds ∈ Ω1, (4.20)

then the unique solution x(t) of (1.1) is given by

x(t) =

(
u0e

∫ t
t0
an−1(τ)dτ − (n − 1)

∫ t

t0

a0(s)e
∫ t
s an−1(τ)dτds

)−1/(n−1)
+
∫ t

γ

an(s)ds, (4.21)

if given the initial value

x(t0) = −(u0)−1/(n−1) +
∫ t0

γ

an(s)ds ∈ Ω3, (4.22)

then the unique solution x∗(t) of (1.1) is given by

x∗(t) = −
(
u0e

∫ t
t0
an−1(τ)dτ − (n − 1)

∫ t

t0

a0(s)e
∫ t
s an−1(τ)dτds

)−1/(n−1)
+
∫ t

γ

an(s)ds, (4.23)

and it is easy to know x(t) ∈ Ω2 and x∗(t) ∈ Ω4, respectively.
Define a Lyapunov function as follows:

V
(
t, u, ϕ

)
=
(
u − ϕ)2, (4.24)
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where u(t) is the unique solution with the positive initial value u(t0) = u0 of (4.5), and ϕ is
the unique positive ω-periodic solution of (4.5), differentiating both sides of (4.24) along the
solution of (4.5), we get

dV
(
t, u, ϕ

)

dt
= 2

(
u − ϕ)

(
du

dt
− dϕ

dt

)

= 2an−1(t)
(
u − ϕ)2,

(4.25)

by (4.24), we have

dV
(
t, u, ϕ

)

V
(
t, u, ϕ

) = 2an−1(t)dt, (4.26)

thus

V
(
t, u, ϕ

)
= V

(
t0, u(t0), ϕ(t0)

)
e
∫ t
t0
2an−1(s)ds, (4.27)

by (4.24), we can get

(
u − ϕ)2 = (

u(t0) − ϕ(t0)
)2
e
∫ t
t0
2an−1(s)ds, (4.28)

by (4.28), that it follows

∣∣u − ϕ∣∣ = ∣∣u(t0) − ϕ(t0)
∣∣e

∫ t
t0
an−1(s)ds, (4.29)

since

x(t) = u−1/(n−1)(t) +
∫ t

γ

an(s)ds, φ(t) = ϕ−1/(n−1)(t) +
∫ t

γ

an(s)ds, (4.30)

it follows that

u(t) =
1

(
x(t) − ∫ t

γ an(s)ds
)n−1 , ϕ(t) =

1
(
φ(t) − ∫ t

γ an(s)ds
)n−1 , (4.31)
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substitute (4.31) into (4.29), it follows that

∣∣∣∣∣∣∣

1
(
x(t) − ∫ t

γ an(s)ds
)n−1 − 1

(
φ(t) − ∫ t

γ an(s)ds
)n−1

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

1
(
x(t0) −

∫ t0
γ an(s)ds

)n−1 − 1
(
φ(t0) −

∫ t0
γ an(s)ds

)n−1

∣∣∣∣∣∣∣
e
∫ t
t0
an−1(s)ds.

(4.32)

According to mean value theorem, we can get

∣∣−(n − 1)ξ−n
(
x(t) − φ(t))∣∣ = ∣∣−(n − 1)ζ−n

(
x(t0) − φ(t0)

)∣∣e
∫ t
t0
an−1(s)ds, (4.33)

where

x(t) −
∫ t

γ

an(s)ds < ξ < φ(t) −
∫ t

γ

an(s)ds (4.34)

or

φ(t) −
∫ t

γ

an(s)ds < ξ < x(t) −
∫ t

γ

an(s)ds,

x(t0) −
∫ t0

γ

an(s)ds < ζ < φ(t0) −
∫ t0

γ

an(s)ds

(4.35)

or

φ(t0) −
∫ t0

γ

an(s)ds < ζ < x(t0) −
∫ t0

γ

an(s)ds. (4.36)

Since ϕ(t) is positive and bounded, and from (4.19), (4.31), we know that

x(t) −
∫ t

γ

an(s)ds, φ(t) −
∫ t

γ

an(s)ds, x(t0) −
∫ t0

γ

an(s)ds, φ(t0) −
∫ t0

γ

an(s)ds (4.37)

are positive and bounded as t > T , hence ξ, ζ are positive and bounded as t > T , so we have

∣∣x(t) − φ(t)∣∣ =
(
ξ

ζ

)n∣∣x(t0) − φ(t0)
∣∣e

∫ t
t0
an−1(s)ds, (4.38)
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by (4.8), it follows that

∫ t

t0

an−1(s)ds −→ −∞, (4.39)

as t → +∞, and by (4.38), we can get that the ω-periodic solution φ(t) of (1.1) is globally at-
tractive in Ω2.

(iii) The proof of the periodic solution χ(t) of (1.1) being globally attractive in Ω4 is
similar to that of the periodic solution φ(t) of (1.1) being globally attractive inΩ2, so we omit
it here.

This is the end of the proof of Theorem 4.1.

Remark 4.2. In Theorem 4.1, since the transformation of u = y1−n, it follows u > 0, thus we
suppose the initial value u(t0) > 0.

Theorem 4.3. Consider (1.1), n is an even number, and n ≥ 2, a0(t), an(t) are continuousω-periodic
functions defined on R, if there is a constant γ such that the following conditions hold:

(H1) an−1(t) = (1 − n)a0(t)(
∫ t
γ an(s)ds)

n−1
,

(H2) ak(t) = (−1)kCk
na0(t)(

∫ t
γ an(s)ds)

k
, k = 1, 2, . . . , n − 2,

(H3) m(an(t)) = 0, an(t)/≡ 0,

(H4) a0(t) < 0,
∫ t
γ an(s)ds ≤ 0,

then

(i) equation (1.1) has two ω-periodic solutions η(t), φ(t), and they can be written as follows:

η(t) =
∫ t

γ

an(s)ds,

φ(t) =

(
−(n − 1)

∫ t

−∞
a0(s)e

∫ t
s an−1(τ)dτds

)−1/(n−1)
+
∫ t

γ

an(s)ds.

(4.40)

(ii) If given any initial value x(t0) ∈ Ω1 = {x | x >
∫ t0
γ an(s)ds}, then the periodic solution

φ(t) of (1.1) is globally attractive in Ω2 = {x | x > inft∈[0,ω]
∫ t
γ an(s)ds}.

Proof. The proof of Theorem 4.3 is similar to that of Theorem 4.1, so we omit it here.

Theorem 4.4. Consider (1.1), n is an even number, and n ≥ 2, a0(t), an(t) are continuousω-periodic
functions defined on R, if there is a constant γ such that the following conditions hold:

(H1) an−1(t) = (1 − n)a0(t)(
∫ t
γ an(s)ds)

n−1,

(H2) ak(t) = (−1)kCk
na0(t)(

∫ t
γ an(s)ds)

k
, k = 1, 2, . . . , n − 2,

(H3) m(an(t)) = 0, an(t)/≡ 0,

(H4) a0(t) > 0,
∫ t
γ an(s)ds ≥ 0,
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then

(i) equation (1.1) has two ω-periodic solutions η(t), φ(t), and they can be written as follows:

η(t) =
∫ t

γ

an(s)ds,

φ(t) =

(
−(n − 1)

∫ t

−∞
a0(s)e

∫ t
s an−1(τ)dτds

)−1/(n−1)
+
∫ t

γ

an(s)ds.

(4.41)

(ii) If given any initial value x(t0) ∈ Ω1 = {x | x <
∫ t0
γ an(s)ds}, then the periodic solution

φ(t) of (1.1) is globally attractive in Ω2 = {x | x < supt∈[0,ω]
∫ t
γ an(s)ds}.

Proof. The proof of Theorem 4.4 is similar to that of Theorem 4.1, so we omit it here.
From Theorem 4.1, if n = 3, it is easy for us to draw the following corollary.
Define

Ω1 =

{
x | x >

∫ t0

γ

d(s)ds

}
, Ω2 =

{
x | x > inf

t∈[0,ω]

∫ t

γ

d(s)ds

}
,

Ω3 =

{
x | x <

∫ t0

γ

d(s)ds

}
, Ω4 =

{
x | x < sup

t∈[0,ω]

∫ t

γ

d(s)ds

}
,

(4.42)

where d(t), γ , ω are the same function and numbers as the following Corollary 4.5, and t0 is
any given initial time of (1.2).

Corollary 4.5. Consider Abel type differential equation (1.2), a(t), d(t) are ω-periodic continuous
functions defined on R, if there is a constant γ such that the following conditions hold:

(H1) b(t) = −3a(t) ∫ tγ d(s)ds;
(H2) c(t) = 2a(t)(

∫ t
γ d(s)ds)

2;

(H3) m(d(t)) = 0, d(t)/≡ 0;

(H4) a(t) < 0;

then

(i) equation (1.2) has three ω-periodic solutions η(t), φ(t), χ(t), and they can be written as
follows:

η(t) =
∫ t

γ

d(s)ds,

φ(t) =

(
−2

∫ t

−∞
a(s)e

∫ t
s c(τ)dτds

)−1/2
+
∫ t

γ

d(s)ds,

χ(t) = −
(
−2

∫ t

−∞
a(s)e

∫ t
s c(τ)dτds

)−1/2
+
∫ t

γ

d(s)ds.

(4.43)
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(ii) If given any initial value x(t0) ∈ Ω1, then the periodic solution φ(t) of (1.2) is globally
attractive in Ω2.

(iii) If given any initial value x(t0) ∈ Ω3, then the periodic solution χ(t) of (1.2) is globally
attractive in Ω4.

From Theorems 4.3 and 4.4, if n = 2, it is easy for us to draw the following corollaries.

Corollary 4.6. Consider Ricatti’s equation (3.10), a(t), c(t) are ω-periodic continuous functions
defined on R, if there is a constant γ such that the following conditions hold:

(H1) b(t) = −a(t) ∫ tγ c(s)ds;
(H2) m(c(t)) = 0, c(t)/≡ 0;

(H3) a(t) < 0,
∫ t
γ c(s)ds ≤ 0;

then

(i) equation (3.10) has two ω-periodic solutions η(t), φ(t), and they can be written as follows:

η(t) =
∫ t

γ

c(s)ds,

φ(t) =

(
−
∫ t

−∞
a(s)e

∫ t
s b(τ)dτds

)−1
+
∫ t

γ

c(s)ds.

(4.44)

(ii) If given any initial value x(t0) ∈ Ω1 = {x | x > ∫ t0
γ c(s)ds}, then the periodic solution φ(t)

of (3.10) is globally attractive in Ω2 = {x | x > inft∈[0,ω]
∫ t
γ c(s)ds}.

Corollary 4.7. Consider Ricatti’s equation (3.10) a(t), c(t) are ω-periodic continuous functions
defined on R, if there is a constant γ such that the following conditions hold:

(H1) b(t) = −a(t) ∫ tγ c(s)ds;
(H2) m(c(t)) = 0, c(t)/≡ 0;

(H3) a(t) > 0,
∫ t
γ c(s)ds ≥ 0;

then,

(i) equation (3.10) has two ω-periodic solutions η(t), φ(t), and they can be written as follows:

η(t) =
∫ t

γ

c(s)ds,

φ(t) =

(
−
∫ t

−∞
a(s)e

∫ t
s b(τ)dτds

)−1
+
∫ t

γ

c(s)ds.

(4.45)

(ii) If given any initial value x(t0) ∈ Ω1 = {x | x < ∫ t0
γ c(s)ds}, then the periodic solution φ(t)

of (3.10) is globally attractive in Ω2 = {x | x < supt∈[0,ω]
∫ t
γ c(s)ds}.
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Theorem 4.8. Consider (1.1), n is an odd number, and n > 2, a0(t), an(t) are continuous ω-periodic
functions defined on R, if there is a constant γ such that the following conditions hold:

(H1) an−1(t) = (n − 1)a0(t)(
∫ t
γ an(s)ds)

n−1;

(H2) ak(t) = (−1)kCk
na0(t)(

∫ t
γ an(s)ds)

k, k = 1, 2, . . . , n − 2;

(H3) m(an(t)) = 0, an(t)/≡ 0;

(H4) a0(t) > 0;

then,

(i) equation (1.1) has three ω-periodic solutions η(t), φ(t), χ(t), and they can be written as
follows:

η(t) =
∫ t

γ

an(s)ds,

φ(t) =
(
(n − 1)

∫+∞

t

a0(s)e
∫ t
s an−1(τ)dτds

)−1/(n−1)
+
∫ t

γ

an(s)ds,

χ(t) = −
(
(n − 1)

∫+∞

t

a0(s)e
∫ t
s an−1(τ)dτds

)−1/(n−1)
+
∫ t

γ

an(s)ds.

(4.46)

(ii) if given any initial value x(t0) ∈ Ω1 ∪ Ω2, then the periodic solution η(t) of (1.1) is
globally attractive in Ω3 ∪ Ω4, where

Ω1 =

{
x |

∫ t0

γ

an(s)ds ≤ x <
(
ϕ(t0)

)−1/n−1 +
∫ t0

γ

an(s)ds

}
,

Ω2 =

{
x |

∫ t0

γ

an(s)ds ≥ x > −(ϕ(t0)
)−1/n−1 +

∫ t0

γ

an(s)ds

}
,

Ω3 =

{
x | inf

t∈[0,ω]

∫ t

γ

an(s)ds ≤ x < sup
t∈[0,ω]

(
(
ϕ(t)

)−1/(n−1) +
∫ t

γ

an(s)ds

)}
,

Ω4 =

{
x | sup

t∈[0,ω]

∫ t

γ

an(s)ds ≥ x > inf
t∈[0,ω]

(
−(ϕ(t))−1/(n−1) +

∫ t

γ

an(s)ds

)}
,

ϕ(t) = (n − 1)
∫+∞

t

a0(s)e
∫ t
s an−1(τ)dτds.

(4.47)

Remark 4.9. Where ϕ(t) above is the same function as that of the following formula (4.54),
and t0 is any given initial time of (1.1).
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Proof. (i) Since the conditions (H1), (H2) hold, (1.1) can be written as follows:

d
(
x − ∫ t

γ an(s)ds
)

dt
=

(
x −

∫ t

γ

an(s)ds

)

×
⎡

⎣−a0(t)
(∫ t

r

an(s)ds

)n−1
+ a0(t)

(
x −

∫ t

γ

an(s)ds

)n−1⎤

⎦.

(4.48)

Let y(t) = x − ∫ t
γ an(s)ds, (4.48) can be changed as follows:

dy

dt
= y

⎡

⎣−a0(t)
(∫ t

r

an(s)ds

)n−1
+ a0(t)yn−1

⎤

⎦. (4.49)

This is the Bernoulli-type equation, set u(t) = y1−n(t), the Bernoulli-type equation (4.49) be-
comes

du

dt
= (n − 1)a0(t)

(∫ t

r

an(s)ds

)n−1
u − (n − 1)a0(t),

du

dt
= an−1(t)u − (n − 1)a0(t).

(4.50)

By (H3), (H4), it follows that

∫ t+ω

γ

an(s)ds =
∫ t

γ

an(s)ds +
∫ t+ω

t

an(s)ds

=
∫ t

γ

an(s)ds +
∫ω

0
an(s)ds

=
∫ t

γ

an(s)ds,

(4.51)

thus
∫ t
γ an(s)ds is an ω-periodic function, therefore, (n − 1)a0(t)(

∫ t
γ an(s)ds)

n−1 is also an ω-
periodic function and

an−1(t) = (n − 1)a0(t)

(∫ t

γ

an(s)ds

)n−1
≥ 0, (4.52)

since a0(t) > 0, an(t)/= 0 (not identically equal to zero), thus we have

m(an−1(t)) > 0, (4.53)
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according to Lemma 2.3, it follows that (4.50) has a unique ω-periodic solution as follows:

ϕ(t) = (n − 1)
∫+∞

t

a0(s)e
∫ t
s an−1(τ)dτds, (4.54)

from (4.54), it is easy to know that ϕ(t) > 0, since ϕ(t) is periodic on R, it is bounded on R,
so it is positive and bounded, since u(t) = y1−n(t), and by Lemmas 2.1 and 2.2, it follows that
(4.49) has two ω-periodic solutions as follows:

ψ(t) =
(
(n − 1)

∫+∞

t

a0(s)e
∫ t
s an−1(τ)dτds

)−1/(n−1)
,

(
ψ(t0) > 0

)
,

ψ∗(t) = −
(
(n − 1)

∫+∞

t

a0(s)e
∫ t
s an−1(τ)dτds

)−1/(n−1)
,

(
ψ∗(t0) < 0

)
,

(4.55)

thus ψ(t) is also positive and bounded, and ψ∗(t) is negative and bounded, by virtue of y(t) =
x − ∫ t

γ an(s)ds, (1.1) has two ω-periodic solutions as follows:

φ(t) =
(
(n − 1)

∫+∞

t

a0(s)e
∫ t
s an−1(τ)dτds

)−1/(n−1)
+
∫ t

γ

an(s)ds,

χ(t) = −
(
(n − 1)

∫+∞

t

a0(s)e
∫ t
s an−1(τ)dτds

)−1/(n−1)
+
∫ t

γ

an(s)ds.

(4.56)

By (1.1), we set f(t, x) =
∑n

k=0 ak(t)x
n−k, thus f(t, x) is continuous on R × R, and fx(t, x) is

also continuous on R × R, hence (1.1) satisfies the principle of existence and uniqueness of
differential equation, therefore, (1.1) has no singular solution.

From the variable transformation of u(t) = y1−n(t), it requires y /= 0, but from (4.49), we
know y = 0 is indeed a solution of (4.49), since y(t) = x − ∫ t

γ an(s)ds, hence η(t) =
∫ t
γ an(s)ds

is a periodic solution of (1.1). Substitute η(t) =
∫ t
γ an(s)ds into (1.1), it just satisfies (1.1), so

η(t) =
∫ t
γ an(s)ds is indeed a periodic particular solution of (1.1), therefore, we have proved

that (1.1) has three ω-periodic solutions η(t), φ(t) and χ(t).
(ii) According to the theories of linear differential equation, we know that the unique

solution u(t) of (4.50) with the positive initial value u(t0) = u0 is given by

u(t) = u0e
∫ t
t0
an−1(τ)dτ − (n − 1)

∫ t

t0

a0(s)e
∫ t
s an−1(τ)dτds

= e
∫ t
t0
an−1(τ)dτ[u0 − ϕ(t0)

]
+ ϕ(t).

(4.57)

If given the initial value u0 ≥ ϕ(t0), then u(t) ≥ ϕ(t) > 0.
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Remark 4.10. Since the transformation of u(t) = y1−n(t), it requires u(t) > 0, in addition,

e
∫ t
t0
an−1(τ)dτ = e(n−1)

∫ t
t0
a0(τ)(

∫τ
γ an(θ)dθ)

n−1
dτ −→ +∞ (4.58)

as t → +∞, that is to say, it requires u0 ≥ ϕ(t0).

Under the transformation of u(t) = y1−n(t), y(t) = x(t) − ∫ t
γ an(s)ds, we can get the

following.
If given the initial value

x(t0) = (u0)−1/(n−1) +
∫ t0

γ

an(s)ds < ϕ(t0)−1/(n−1) +
∫ t0

γ

an(s)ds ∈ Ω1, (4.59)

then the unique solution x(t) of (1.1) is given by

x(t) =

(
u0e

∫ t
t0
an−1(τ)dτ − (n − 1)

∫ t

t0

a0(s)e
∫ t
s an−1(τ)dτds

)−1/(n−1)
+
∫ t

γ

an(s)ds, (4.60)

and it is easy for us to know that x(t) ∈ Ω3.
If given the initial value

x(t0) = −(u0)−1/(n−1) +
∫ t0

γ

an(s)ds > −(ϕ(t0)
)−1/(n−1) +

∫ t0

γ

an(s)ds ∈ Ω2; (4.61)

then the unique solution x(t) of (1.1) is given by

x(t) = −
(
u0e

∫ t
t0
an−1(τ)dτ − (n − 1)

∫ t

t0

a0(s)e
∫ t
s an−1(τ)dτds

)−1/(n−1)
+
∫ t

γ

an(s)ds (4.62)

it is easy for us to know that x(t) ∈ Ω4.
Therefore, we can draw the following conclusion.
If given the initial value x(t0) ∈ Ω1 ∪ Ω2, then x(t) ∈ Ω3 ∪ Ω4.
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Next, we prove that the periodic solution η(t) of (1.1) is globally attractive in Ω3 ∪ Ω4

if given the initial value x(t0) ∈ Ω1 ∪ Ω2.

∣∣x(t) − η(t)∣∣ =
∣∣∣∣∣∣
±
(
u0e

∫ t
t0
an−1(τ)dτ − (n − 1)

∫ t

t0

a0(s)e
∫ t
s an−1(τ)dτds

)−1/(n−1)∣∣∣∣∣∣

=

(
u0e

∫ t
t0
an−1(τ)dτ − (n − 1)

∫ t

t0

a0(s)e
∫ t
s an−1(τ)dτds

)−1/(n−1)

=
(
e
∫ t
t0
an−1(τ)dτ[u0 − ϕ(t0)

]
+ ϕ(t)

)−1/(n−1)

=

∣∣x(t0) − η(t0)
∣∣

∣∣x(t0) − η(t0)
∣∣n−1

√
e
∫ t
t0
an−1(τ)dτ[u0 − ϕ(t0)

]
+ ϕ(t)

=

∣∣x(t0) − η(t0)
∣∣

n−1
√

(1/u0)
[
e
∫ t
t0
an−1(τ)dτ[u0 − ϕ(t0)

]
+ ϕ(t)

] ,

(4.63)

by (4.53), it follows that

∫ t

t0

an−1(s)ds −→ +∞, (4.64)

as t → +∞, from (4.63), we can get that the ω-periodic solution η(t) of (1.1) is globally
attractive in Ω3 ∪Ω4.

This is the end of the proof of Theorem 4.8.

Theorem 4.11. Consider (1.1), n is an even number, and n ≥ 2, a0(t), an(t) are continuous ω-
periodic functions defined on R, if there is a constant γ such that the following conditions hold:

(H1) an−1(t) = (1 − n)a0(t)(
∫ t
γ an(s)ds)

n−1;

(H2) ak(t) = (−1)kCk
na0(t)(

∫ t
γ an(s)ds)

k, k = 1, 2, . . . , n − 2;

(H3) m(an(t)) = 0, an(t)/≡ 0;

(H4) a0(t) < 0,
∫ t
γ an(s)ds ≥ 0;

then

(i) equation (1.1) has two ω-periodic solutions η(t), φ(t), and they can be written as follows:

η(t) =
∫ t

γ

an(s)ds,

φ(t) =
(
(n − 1)

∫+∞

t

a0(s)e
∫ t
s an−1(τ)dτds

)−1/(n−1)
+
∫ t

γ

an(s)ds;

(4.65)
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(ii) if given any initial value x(t0) ∈ Ω1 = {x | x >
∫ t0
γ an(s)ds}, then the periodic solution

η(t) of (1.1) is globally attractive in Ω2 = {x | x > inft∈[0,ω]
∫ t
γ an(s)ds}.

Proof. The Proof of Theorem 4.11 is similar to that of Theorem 4.8, so we omit it here.

Theorem 4.12. Consider (1.1), n is an even number, and n ≥ 2, a0(t), an(t) are continuous ω-
periodic functions defined on R, if there is a constant γ such that the following conditions hold:

(H1) an−1(t) = (1 − n)a0(t)(
∫ t
γ an(s)ds)

n−1;

(H2) ak(t) = (−1)kCk
na0(t)(

∫ t
γ an(s)ds)

k, k = 1, 2, . . . , n − 2;

(H3) m(an(t)) = 0, an(t)/≡ 0;

(H4) a0(t) > 0,
∫ t
γ an(s)ds ≤ 0;

then

(i) equation (1.1) has two ω-periodic solutions η(t), φ(t), and they can be written as follows:

η(t) =
∫ t

γ

an(s)ds,

φ(t) =
(
(n − 1)

∫+∞

t

a0(s)e
∫ t
s an−1(τ)dτds

)−1/(n−1)
+
∫ t

γ

an(s)ds;

(4.66)

(ii) if given any initial value x(t0) ∈ Ω1 = {x | x <
∫ t0
γ an(s)ds}, then the periodic solution

η(t) of (1.1) is globally attractive in Ω2 = {x | x < supt∈[0,ω]
∫ t
γ an(s)ds}.

Proof. The Proof of Theorem 4.12 is similar to that of Theorem 4.8, so we omit it here.

From Theorem 4.8, if n = 3, it is easy for us to draw the following corollary.

Corollary 4.13. Consider Abel type differential equation (1.2), a(t), d(t) are ω-periodic continuous
functions defined on R, if there is a constant γ such that the following conditions hold:

(H1) b(t) = −3a(t) ∫ tγ d(s)ds;

(H2) c(t) = 2a(t)(
∫ t
γ d(s)ds)

2;

(H3) m(d(t)) = 0, d(t)/≡ 0;

(H4) a(t) > 0;

then
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(i) equation (1.2) has three ω-periodic solutions η(t), φ(t), χ(t), and they can be written as
follows:

η(t) =
∫ t

γ

d(s)ds,

φ(t) =
(
2
∫+∞

t

a(s)e
∫ t
s c(τ)dτds

)−1/2
+
∫ t

γ

d(s)ds,

χ(t) =
(
2
∫+∞

t

a(s)e
∫ t
s c(τ)dτds

)−1/2
+
∫ t

γ

d(s)ds.

(4.67)

(ii) If given any initial value x(t0) ∈ Ω1 ∪ Ω2, then the periodic solution η(t) of (1.2) is global-
ly attractive in Ω3 ∪ Ω4, where

Ω1 =

{
x |

∫ t0

γ

d(s)ds ≤ x < (
ϕ(t0)

)−1/2 +
∫ t0

γ

d(s)ds

}
,

Ω2 =

{
x |

∫ t0

γ

d(s)ds ≥ x > −(ϕ(t0)
)−1/2 +

∫ t0

γ

d(s)ds

}
,

Ω3 =

{
x | inf

t∈[0,ω]

∫ t

γ

d(s)ds ≤ x < sup
t∈[0,ω]

(
(
ϕ(t)

)−1/2 +
∫ t

γ

d(s)ds

)}
,

Ω4 =

{
x | sup

t∈[0,ω]

∫ t

γ

d(s)ds ≥ x > inf
t∈[0,ω]

(
−(ϕ(t))−1/2 +

∫ t

γ

d(s)ds

)}
,

ϕ(t) = 2
∫+∞

t

a(s)e
∫ t
s c(τ)dτds.

(4.68)

From Theorem 4.11 and 4.6, if n = 2, it is easy for us to draw the following corollaries.

Corollary 4.14. Consider Riccati’s equation (3.10), a(t), c(t) are ω-periodic continuous functions
defined on R, if there is a constant γ such that the following conditions hold:

(H1) b(t) = −a(t) ∫ tγ c(s)ds;
(H2) m(c(t)) = 0, c(t)/≡ 0;

(H3) a(t) < 0,
∫ t
γ c(s)ds ≥ 0;

then

(i) equation (3.10) has two ω-periodic solutions η(t), φ(t), and they can be written as follows:

η(t) =
∫ t

γ

c(s)ds,

φ(t) =
(∫+∞

t

a(s)e
∫ t
s b(τ)dτds

)−1
+
∫ t

γ

c(s)ds.

(4.69)
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(ii) If given the initial value x(t0) ∈ Ω1 = {x | x > ∫ t0
γ c(s)ds}, then the periodic solution η(t)

of (3.10) is globally attractive in Ω2 = {x | x > inft∈[0,ω]
∫ t
γ c(s)ds}.

Corollary 4.15. Consider Riccati’s equation (3.10), a(t), c(t) are ω-periodic continuous functions
defined on R, if there is a constant γ such that the following conditions hold:

(H1) b(t) = −a(t) ∫ tγ c(s)ds;
(H2) m(c(t)) = 0, c(t)/≡ 0;

(H3) a(t) > 0,
∫ t
γ c(s)ds ≤ 0;

then

(i) equation (3.10) has two ω-periodic solutions η(t), φ(t), and they can be written as follows:

η(t) =
∫ t

γ

c(s)ds,

φ(t) =
(∫+∞

t

a(s)e
∫ t
s b(τ)dτds

)−1
+
∫ t

γ

c(s)ds.

(4.70)

(ii) If given any initial value x(t0) ∈ Ω1 = {x | x < ∫ t0
γ c(s)ds}, then the periodic solution η(t)

of (3.10) is globally attractive in Ω2 = {x | x < supt∈[0,ω]
∫ t
γ c(s)ds}.

5. Concluding Remarks

Generally, just as Ricatti’s equation, (1.1) is nonintegrable, however in the present paper,
we have got a sufficient condition which guarantees the integrability and have presented
some exact periodic solutions of nonlinear equation if the coefficients of (1.1) satisfy certain
conditions; moreover, we get that the periodic solutions are globally attractive in certain
conditions. These conclusions will have certain applications.
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