
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 692593, 19 pages
doi:10.1155/2012/692593

Research Article
Throughput Maximization of Queueing
Networks with Simultaneous Minimization of
Service Rates and Buffers

F. R. B. Cruz,1 G. Kendall,2 L. While,3
A. R. Duarte,4 and N. L. C. Brito5

1 Departamento de Estatı́stica, Universidade Federal de Minas Gerais,
31270-901 Belo Horizonte, MG, Brazil

2 School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road,
Nottingham NG8 1BB, UK

3 School of Computer Science & Software Engineering, The University of Western Australia,
35 Stirling Highway, Crawley, WA 6009, Australia
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The throughput of an acyclic, general-service time queueing network was optimized, and the total
number of buffers and the overall service rate was reduced. To satisfy these conflicting objectives,
a multiobjective genetic algorithm was developed and employed. Thus, our method produced a
set of efficient solutions for more than one objective in the objective function. A comprehensive
set of computational experiments was conducted to determine the efficacy and efficiency of the
proposed approach. Interesting insights obtained from the analysis of a complex network may
assist practitioners in planning general-service queueing networks.

1. Introduction

In this study, the maximization of throughput (Θ) (the number of jobs, parts, clients, etc.,
served per unit of time) in an acyclic, general-service time queueing network (for an example,
see Figure 1)was evaluated. To obtain themaximumΘ, the minimum number of buffers (K =
{K1, K2, . . . , Kn}) and service rates (µ = {μ1, μ2, . . . , μn}) that must be allocated to a queueing
network in a given topology and external arrival rate (Λ = {Λ1,Λ2, . . . ,Λn})was determined.
Potential users of general-service time, finite-queueing network-based optimization models
include computer scientists and industrial engineers. Indeed, these models may help
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Figure 1: A complex network (adapted from Smith and Cruz [20]).

to understand and improve various real-life systems, including manufacturing [1–5],
production [6–8], and health [9–11] systems, urban or pedestrian traffic [12, 13], computer
and communication systems [14–17], web-based applications with tiered configurations [18],
and quality-of-service (QoS) requirements measured in terms of response times, throughput,
server availability, and security [19].

This study focused on single-server queueing networks with exponentially distributed
interarrival times and generally distributed service times, configured in an arbitrary acyclic,
series-parallel topology. An example of the type of network under consideration is shown
in Figure 1. In particular, buffer allocation, server allocation, and throughput tradeoff were
optimized in networks of M/G/1/K queues. Thus, in Kendall [21] notation, we focused on
Markovian arrivals, generally distributed service times, a single server, and the total capacity
of K items, including the item of service.

Indeed, there is a critical tradeoff between the overall number of buffers and service
rates and the resulting throughput. Buffers and service capacities can be very expensive; thus,
the total number of buffers and the overall service capacity should be reduced as much
as possible. On the other hand, the highest possible network throughput is also desired.
Unfortunately, throughput is directly affected by the number of buffers allocated, where an
increase in buffers generally leads to a higher throughput. Likewise, the service capacity also
directly affects the throughput.

Figure 2 shows the throughput, Θ, for a single M/G/1/K queue with s2 = 1.5
(squared coefficient of variation of the service time) and Λ = 5 users per time unit (external
arrival rate), as a function of several values for buffer size,K, and service rate, μ (see (2.1) and
(2.2)), as well as the respective contour plot. Similar throughput behavior is also observed in
a network of queues. The surface of the plot shown in Figure 2 is smooth, and convexity
is apparent, which is similar to the results of simple queueing networks [22, 23]. However,
the top of the surface plot near the maximum throughput is flat, which creates difficulties
for traditional optimization methods. For instance, Smith and Cruz [20] used the Powell
method andmultiple starts to avoid premature convergence to a local optimum and to derive
a successful optimization algorithm.

From a modeling point of view, throughput maximization can be defined by a mixed-
integer mathematical programming formula, where the total buffer and server costs are
minimized, and the throughput, subject to integer buffer allocation and nonnegative service
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Figure 2: Results of a singleM/G/1/K queue for Λ = 5.0.

rates, is maximized. By defining a queueing network as a digraph of G(N,A), where N is a
finite set of nodes, and A is a finite set of arcs, the mixed-integer mathematical programming
formula was obtained [24]

minimize F(K,µ) (1.1)

subject to

Ki ∈ {1, 2, . . .}, ∀i ∈N,

μi ≥ 0, ∀i ∈N,
(1.2)

where the decision variables Ki and μi indicate the total capacity of the service and the
service rate for the ith M/G/1/K queue, respectively. The objective functions, F(K,µ) ≡
(f1(K), f2(µ),−f3(K,µ), are the total buffer allocation, f1(K) =

∑
∀i∈N Ki, the overall service

allocation, f2(µ) =
∑
∀i∈N μi, and the overall throughput, f3(K,µ) = Θ(K,µ).

Throughput is often modeled as a constraint that must be greater than a target
minimum, rather than as an objective that must be maximized [20, 25]. However, to suc-
cessfully solve the problem, throughput constraints must be relaxed. Thus, parameters such
as the threshold throughput (Θτ) must be determined beforehand. However, establishing
an appropriate threshold is not a trivial task. Moreover, it is possible that a small decrease
in throughput can result in a significant reduction in buffer allocation (and costs). The
tradeoff between throughput and the number of buffers is not apparent in a single-objective
formula. Indeed, the weights (ω) of a single-objective function have a significant effect on
both the objectives and parameters, including errors (ε) on performance measure estimates
and threshold throughput (Θτ). Thus, weight determination is difficult, and the results of
single objective optimization techniques can be arbitrary.

In this study, an optimization approachwas developed that determines the entire set of
Pareto-optimal solutions. Thus, our method produces a set of efficient solutions for more than
one objective in the objective function [26]. With the proposed approach, the decision maker
is able to evaluate the effect of solution replacement. Moreover, the multiobjective approach
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also allows the user to increase one objective (e.g., throughput) while simultaneously reduc-
ing another objective (e.g., buffer and service rate allocation). A multiobjective evolutionary
algorithm (MOEA) was used in combination with a generalized expansion method (GEM),
which is a well-known method for obtaining accurate approximations of queueing network
performance [27–29]. MOEAs are particularly suitable for multiobjective problems and have
been shown to performwell in similar multiobjective problems of networks (e.g., see Carrano
et al. [30] and references therein).

In this paper, a MOEA, specifically developed to multiobjective optimization, is
presented (see Section 2). Additionally, the GEM, a performance evaluation tool used to
approximate throughput, is also presented. In Section 3, the results of a comprehensive set
of computational experiments are presented to show the efficiency of the approach. Finally,
the article is concluded in Section 4, where final remarks and suggestions for future research
are discussed.

2. Proposed Algorithms

The exposition of proposed algorithms was conducted in two parts. First, the performance
evaluation algorithm was presented, which allowed the overall performance of the system to
be estimated in terms of overall throughput, Θ(K,µ), for a given configuration of the buffer
and service allocation. Then the proposed optimization algorithmwas developed, which was
applied to obtain the optimal buffer and service allocation.

2.1. Performance Evaluation Algorithm

2.1.1. Single Queues

To maximize the throughput, Θ(K,µ) must be estimated. In a single M/G/1/K queue, the
estimation of Θ(K,µ) can be achieved with a computationally efficient and accurate closed-
form approximate expression of the blocking probability, pK. The method proposed by Smith
[31], which is based on a two-moment approximation from Kimura [32], was employed

pK =
ρ((2+

√
ρs2−√ρ+2(K−1))/(2+√ρs2−√ρ))(ρ − 1)

ρ(2((2+
√
ρs2−√ρ+(K−1))/(2+√ρs2−√ρ))) − 1

, (2.1)

where ρ < 1 is the system utilization, which is the ratio between the total arrival rate and the
service rate, ρ = λ/μ. s2 is the squared coefficient of variation of the service time, Ts; thus,
s2 = Var(Ts)/E(Ts)

2. The results indicated that the approximation of pK was accurate for a
wide range of values [20, 25, 33].

In order to obtain the throughput in a finiteM/G/1/K single queue, we need to adjust
the arrival rate. In fact a fraction pK of the arrivals cannot join the system because they have
come when there is no waiting space left. Thus the actual rate of arrivals to join the system
must be adjusted accordingly. Since Poisson arrivals see time averages (the PASTA property),
it follows that the effective arrival rate seen by the servers is λeff = λ(1 − pK) [34]. Thus, the
throughput may be given by

θ = λeff = λ
(
1 − pK

)
. (2.2)
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2.1.2. Network of Queues

For a network of queues, the estimation of throughput is considerably more complicated.
The generalized expansion method (GEM) is an algorithm that has been successfully used
to estimate the performance of arbitrarily configured, finite queueing, and acyclic networks
[29]. The GEM is a combination of node-by-node decomposition and repeated trials, where
each queue is analyzed separately, and corrections are made to account for interrelated
effects between network queues. The GEM uses type I blocking, where the upstream node
becomes blocked if the service for an individual customer is complete and the queue at
the downstream node is full. This is often referred to as “blocking after service,” which is
prevalent in most production, manufacturing, and transportation systems.

With the help of Figure 3, we now describe the GEM. Firstly, we remark that the
exponential distribution is a good approximation for the interdeparture times of entities
leaving an M/G/1/K node. In fact, it is possible to show the quasireversibility of a broader
class of finite queues, which are the state-dependent M/G/C/C queues [35]. When those
entities that are lost are included, the output stream is Poisson. This assumption is supported
by several empirical results [7, 8, 13, 20, 25, 36]. The following three stages are involved in
the GEM: network reconfiguration, parameter estimation, and feedback elimination.

Network Reconfiguration

This stage involves reconfiguring the network. An auxiliary vertex hj is created, which is
modeled as an M/G/∞ queue with service rate μh and precedes each finite queue j. When
an entity leaves i, vertex j may be blocked with probability pKj or unblocked with probability
(1 − pKj ). Under blocking, the entities are rerouted to vertex hj for a delay while node j is
busy. After this delay, the entity may be blocked again with probability p′Kj

, for a second
delay period. Vertex hj accumulates the time an entity has to wait before entering vertex j
and the effective arrival rate to vertex j.

Parameter Estimation

In this stage, the parameters pK, p′K, and μh are estimated (for clarity, we will omit the
subscript for node j).

(1) pK is obtained by means of a two-moment approximation recently developed by
Smith [31]

pK = equation (2.1). (2.3)

(2) p′K is obtained with the following approximation from diffusion techniques given
by Labetoulle and Pujolle [37]:

p′K =

(
μj + μh

μh
− λ
((
rK2 − rK1

) − (rK−12 − rK−11

))

μh

((
rK+1
2 − rK+1

1

) − (rK2 − rK1
))

)−1
, (2.4)
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Figure 3: Generalized expansion method.

where r1 and r2 are the roots to the polynomial

λ − (λ + μh + μj

)
x + μhx

2 = 0, (2.5)

with λ = λj − λh(1 − p′K), λh is the actual arrival rate to the artificial holding node,
and λj is the actual arrival rate to the finite node j, given by

λj = λ̃i
(
1 − pK

)
= λ̃i − λh. (2.6)

(3) μh is calculated as follows using renewal theory:

μh =
2μj

1 + σ2
j μ

2
j

, (2.7)

where σ2
j is the service time variance.

Feedback Elimination

The repeated visits to the holding nodes (due to the feedback) create strong dependence
in the arrival process. Therefore, the repeated immediate feedback is eliminated. This is
accomplished by giving the customer enough service time during the first passage through
the holding node. The adapted service rate for the holding node μ′h then becomes

μ′h =
(
1 − p′K

)
μh. (2.8)

Summary 1. The goal of GEM is to provide an approximation scheme to update the
service rates of upstream nodes that take into account all blocking after service caused by
downstream nodes

μ̃−1i = μ−1i + pK
(
μ′h
)−1

. (2.9)

For each finite node j in the network succeeding node i, we have simultaneous
nonlinear equations in variables pK, p′K, and μh, along with auxiliary variables such as λ and
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λ̃i. Solving these equations simultaneously, we can compute all the performance measures of
the network

λ = λj − λh
(
1 − p′K

)
, (2.10)

λj = λ̃i
(
1 − pK

)
, (2.11)

λj = λ̃i − λh, (2.12)

p′K =

(
μj + μh

μh
− λ
((
rK2 − rK1

) − (rK−12 − rK−11

))

μh

((
rK+1
2 − rK+1

1

) − (rK2 − rK1
))

)−1
, (2.13)

z =
(
λ + 2μh

)2 − 4λμh, (2.14)

r1 =

[(
λ + 2μh

) − z1/2]

2μh
, (2.15)

r2 =

[(
λ + 2μh

)
+ z1/2

]

2μh
, (2.16)

pK = equation (2.1). (2.17)

Equation (2.10) through (2.13) is related to the arrivals and feedback in the holding
node. Equation (2.14) through (2.16) is used to solve (2.13) with z used as a dummy
parameter for simplicity. Lastly, (2.1) gives the blocking probability for theM/G/1/K queue.
Thus, we essentially have five equations to solve (2.10)–(2.13) and (2.1).

2.2. Optimization Algorithm

For the network under consideration, MOEAs appeared to be a suitable choice for the
multiobjective maximization of throughput. MOEAs are optimization algorithms that
perform an approximate global search based on information obtained from the evaluation
of several points in the search space [38, 39]. The population of points that converge to an
optimal value are obtained through the application of genetic operators such as mutation,
crossover, selection, and elitism. Each one of these operators characterizes an instance of a
MOEA and can be implemented in several different ways. Additionally, MOEA convergence
is guaranteed by assigning a value of fitness to each population member and preserving
diversity. In fact, recent successful applications of GAs for single-objective applications were
reported by Lin [40] and Calvete et al. [41], whereas Carrano et al. [30] employed GAs
for multiple-objective applications. Additionally, the efficiency of GAs is well established
for multiobjective problems [42, 43]. Many references are provided by the aforementioned
authors.

The instance of MOEA used in this study was based upon the elitist nondominated
sorting genetic (NSGA-II) algorithm of Deb et al. [44], which is shown in Algorithm 1 . In the
application of GAs for multiobjective optimization, the selection operator and elitism operator
must be specifically structured to correctly identify optimal conditions as shown shortly.
Elitism is based on the concept of dominance. Point xi = (xi1 , xi2 , . . . , xin) dominates point
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algorithm
read graph, arrival, service rates, G(N,A), Λi ∀ i ∈N
P1 ← GenerateInitialPopulation (popSize)
for i = 1untilnumGendo

/∗ generate offspring by crossover and mutation ∗/
Qi ←MakeNewPop (Pi)
/∗ combine parent and offspring ∗/
Ri ← Pi ∪Qi

/∗ find nondominated fronts F = (F1,F2, . . .)∗/
F ← FastNonDominatedSort (Ri)
/∗ find new population by ∗/
/∗ the crowding-distance-assignment ∗/
Pi+1 ← GenerateNewPopulation (Ri)

end for
PnumGen +1 ← ExtractParetoSet (PnumGen)
writeP numGen+1

end algorithm

Algorithm 1: Elitist multiobjective genetic algorithm (NSGA-II).
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Figure 4: Dominated (�) and nondominated (•) points.

xj = (xj1 , xj2 , . . . , xjn) if xi is superior to xj in one objective (fk(xi) < fk(xj), for minimization)
and is not inferior in any other objective (f	(xi)/>f	(xj), for minimization).

For instance, Figure 4 displays the points for a two-dimension minimization problem.
In the figure, point V is dominated by point I, but not by points II, III, and IV. Point VI is
dominated by points I, II, and III, but not by point IV. The best front includes points I through
IV and is an approximation for the Pareto set, which is the set of points that are superior to
other points. To perform elitism, an algorithm commonly referred to as the fast nondominated
sorting algorithm was employed (details may be found in Deb et al. [44]). This algorithm
separates the individuals in the population into several layers or fronts Fi, such that the
solutions in F1 are nondominated, and every solution in a given front Fi, i > 1, is dominated
by at least one solution in Fi−1, and not by any solution in Fj , j ≥ i. This can be achieved in
O(n logn) time [44].

Selection is performed by sequentially selecting points from each nondominated front
(F1,F2, . . .) until the number of required individuals for the next iteration is obtained. Criteria
must be applied if, after the addition of a group of individuals fromFi, the maximum number
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of individuals is exceeded. The algorithm computes a measure of diversity (the crowding
distance, as defined by Deb et al. [44]) to ensure the highest possible diversity. Thus, only the
points with the largest crowding distance are kept for future iterations, as shown in Figure 5.

Crossover and mutation are somewhat independent of the multiobjective nature of
the problem but are highly dependent on the application. For the problem at hand, a
crossover mechanism known as “uniform” was selected [45]. Uniform crossover is popular
in multivariable encodings due to its efficiency in identifying, inheriting, and protecting
common genes, as well as recombining noncommon genes [46, 47]. In this mechanism,
crossovers were performed for each variable with a probability (rateCro) that is in accord-
ance with the crossover operator. The crossover operator used in the algorithm was the
simulated binary crossover operator (SBX) [48, 49], as illustrated in Figure 6. SBX is quite
convenient for real-coded GAs because it is able to simulate binary crossover operators but
avoids reencoding the variables. The children (xi,(·,t+1)) were calculated from the parents
(xi,(·,t)) according to the following equation:

xi,(1,t+1) = 0.5
[(
1 + β

)
xi,(1,t) +

(
1 − β)xi,(2,t)

]
,

xi,(2,t+1) = 0.5
[(
1 − β)xi,(1,t) +

(
1 + β

)
xi,(2,t)

]
,

(2.18)
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where β is a random variable obtained from the following probability distribution function:

f
(
β
)
=

⎧
⎪⎨

⎪⎩

0.5
(
η + 1

)
βη, if β ≤ 1,

0.5
(
η + 1

) 1
βη+2

, otherwise.
(2.19)

The function was designed to create a child solution that possesses a similar search
power to a single-point crossover of binary-coded GAs [48]. By adjusting η, several different
weights (β) can be generated to produce children that are similar to their parents (i.e., large
η) or not (small η). Several distributions are shown in Figure 7.

For each individual gene (the decision variables Ki and μi), the mutation scheme
occurs with a specific probability (rateMut). As suggested by Deb and Agrawal [48],
Gaussian perturbations were added to the decision variables, Ki + εi and μi + εN+i, for all
i ∈N, with εi ∼ N(0, 1), i ∈ {1, 2, . . . , 2N}.

After crossover and mutation, constraints (1.2) may no longer apply. To guarantee
feasibility, the values of integer variables were rounded accordingly and were readjusted by
applying reflection operators

Krfli = 1 + |Ki − 1|,
μrfli = μlowlimi +

∣
∣μi − μlowlimi

∣
∣,

(2.20)

where 1 is the lower limit of buffer allocation, μlowlimi
is the lower limit of service allocation

(to ensure that ρ < 1 is applicable), Ki and μi are the resulting values after crossover and
mutation, and Krfli and μrfli are the results after reflection. The proposed scheme generates
feasible solutions without avoiding or favoring any particular solution.

Recently, the stopping criterion of multiobjective optimization evolutionary algo-
rithms has been analyzed in detail (see, e.g., Rudenko and Schoenauer [50] and Martı́
et al. [51]). Evidently, the maximum number of generations (numGen) plays an important
role in the quality of the solutions. However, increasing the number of generation may
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not be ideal because computational time is wasted when many iterations do not lead to
a significant improvement. Thus, Rudenko and Schoenauer [50] suggested that a superior
stopping criterion is obtained when a fixed number of iterations are performed without
improvement. To demonstrate the complexity of the issue, Rudenko and Schoenauer [50]
conducted a comprehensive set of computational experiments. Their results revealed that
an obvious stopping criterion, such as the entire population possessing a rank of 1, did
not indicate that evolution should be terminated. The authors proposed a local stopping
criterion that computes a measure of the stability of nondominated solutions after each
iteration. Another global stopping criterion was recently proposed by Martı́ et al. [51]. This
sophisticated method views population evolution as a dynamic system, where the state of the
system can be estimated by a Kalman filter. For the sake of simplicity, the criterion of Rudenko
and Schoenauer [50] was employed in this study. This criterion is based on the stabilization
of the maximal crowding distance, dl, measured over L generations, and is calculated by the
following standard deviation:

σL =

√
√
√
√ 1

L

L∑

l=1

(
dl − dL

)2
. (2.21)

As shown in (2.21), dL is the average of dl over L generations. Moreover, (2.21)
indicates that the MOEA stops when σL < δlim. Rudenko and Schoenauer [50] suggested
that σL does not depend on the actual values of the objective function because crowding
distances are normalized. Furthermore, they also suggested that L and δlim should be set to
40 and 0.02, respectively, which leads to a stopping criteria that is σ40 ≤ 0.02. According to
empirical evidence, these values are compatible with the network under consideration.

3. Computational Results and Discussion

To use previous implementations of GEM based on the International Mathematics and
Statistics Library (IMSL), the optimization algorithm was implemented in Fortran [31, 33].
The code is available from the corresponding author upon request and must be used for
educational and research purposes only. The computational experiments were conducted to
discover the suboptimal set of parameters that guarantee rapid convergence. Moreover, the
analysis of a large and complex network of finite queues was also achieved with the proposed
algorithm.

3.1. Setting the Parameters

Unfortunately, to ensure rapid convergence with a minimal amount of computational effort,
the suboptimal set of parameters must be determined by trial and error, as indicated by
previous studies on GAs. Thus, networks containing 3, 5, and 10 queues were used to
set the parameters of MOEA (see Figure 8). For the sake of conciseness, only the results
obtained from 3 and 10 nodes are presented (Figures 9–12). Different topologies of acyclic
similarly sized networks were also tested, and the results (not presented) were similar to
those obtained from series topologies.
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In this study, each factor was analyzed independently; specifically, each factor was
varied one at a time while the other parameters were held constant. Montgomery [52]
reminds us that the major disadvantage of an independent analysis is that it fails to account
for interactions between variables. However, recent experiments reported by Cruz et al. [53]
indicated that potential interactions were insignificant; thus, interactions between factors
were neglected in this study.

Figure 9 presents the convergence speed (in terms of σL) as a function of the number
of generations. It is possible to conclude that pure mutation could be used to determine the
optimal solution (sometimes pure mutation solves the problem, see Mathieu et al. [54]).
However, the SBX operator was also utilized because it removed irregularities from the con-
vergence profile. The combination of pure mutation and SBX provided satisfactory results,
regardless of the number of queues in the network.

The results in Figure 10 revealed that the population size (popSize) had a significant
effect on algorithm convergence. However, the population size cannot be arbitrarily increased
because the required computational effort would become prohibitive. Moreover, the perfor-
mance of the algorithm was not affected by an increase in the number of network nodes.

Figure 11 displays the convergence rate as a function of the parameter rateMut. The
results revealed that an increase in the mutation rate accelerated convergence; however, once
a specific rate was attained, a further increase did not lead to improved convergence. Under
the experimental conditions, mutation rates between 1 and 2% provided superior results,
regardless of the number of nodes.
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Figure 13: Population evolution of a 3-node network.

Figure 12 displays the convergence as a function of η, which controls the dispersion
of βq in the SBX operator, (2.19). A further improvement in the convergence speed was not
observed for values of η greater than 8.

Finally, Figures 13 and 14 illustrate the population evolution, from the starting point
to the final generation. They show the population spreading over time to cover an increasing
proportion of objective space.

In summary all of the attempted problems could be successfully solved by employing
the following combination: a combined use of mutation and SBX, a population size of 400
individuals, a mutation rate of 2%, and a dispersion parameter (η) of 8. Moreover, the
convergence seemed to be fairly independent of the topology (results not shown, for split
topologies, merge topologies, and so on), the external arrival (Λ), the squared coefficient of
variation of the service time (s2), and the number of nodes of the network. Additionally,
to ensure that the computation is complete within a finite amount of time, the maximum
number of generations (numGen) must be predefined. In this study, numGen was set to 4,000
generations.

3.2. Analysis of a Large Complex Network

The complex network presented in Figure 1 was extracted from the literature [20] and
analyzed with the proposed method. Three different squared coefficients of variation were
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Figure 14: Population evolution of a 10-node network.

analyzed (s2 = {0.5, 1.0, 1.5}) at an arrival rate (Λ1) of 5.0. First, the convergence speed of
the genetic algorithm was confirmed to be robust for this type of problem. The experimental
setup was identical to the previous analysis. However, the results indicated that convergence
was stable at 2,000 iterations. Moreover, as shown in Figure 15, the convergence was largely
independent of the squared coefficient of variation.

The corresponding profiles are shown in Figure 16, including the contour plot and
final surface after convergence. For comparison, an exact contour plot of a single-node queue
is presented in Figure 2(b), and the resemblance between the two graphs was encouraging.
However, the behavior of a given network cannot be predicted without the use of an
algorithmic approach such as the one proposed here. A detailed analysis of the results in
Figure 16 revealed that many different pairs of buffers and service rates can be selected for
a given throughput. Additionally, it is possible to evaluate the results when the buffer size
or service rate is so high that it does not have an effect on the throughput (i.e., when the
respective contour lines are parallel to the axes). Moreover, with the proposed algorithm,
important insights related to the target throughput are obtained. For example, the results
in Figure 16(d) suggest that it is easier to increase the throughput from 2.6 to 3.1 (20%
improvement) than 4.1 to 4.5 (10% improvement). Contour lines that are far apart indicate
that further improvements can be achieved only by dramatically increasing the buffer size
and service rate.
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4. Conclusions and Final Remarks

In this study, a multiobjective approach was developed to maximize the throughput of
single server, general queueing networks. By combining the generalized expansion method
(GEM)with a multiobjective evolutionary algorithm (MOEA), insightful Pareto curves were
obtained. These curves display the tradeoff between throughput, total buffer allocation, and
overall service allocation.

Future investigations should be conducted to determine the applicability of this
methodology for the determination of other optimal conditions in finite queueing networks.
For instance, this method could be applied to optimize throughput in finite general,
multiserver queueing networks or queueing networks with loops. Thus, the method could
be used to model systems that lead to a reverse stream of products. Moreover, future research
should be conducted to evaluate the algorithms in real-life situations.
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