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The Hamiltonian formulation of the constant radial propulsive acceleration problem in nondimen-
sional units reveals that the problem does not depend on any physical parameter. The qualitative
description of the integrable flow is given in terms of the energy and the angular momentum,
showing that the different regimes are the result of a bifurcation phenomenon. The solution via the
Hamilton-Jacobi equation demonstrates that the elliptic integrals of the three kinds are intrinsic to
the problem.

1. Introduction

Low-thrust propulsion is a commonplace in modern mission design for artificial satellite
missions, with a variety of applications that range from common interplanetary and Earth-
orbit missions to solar sailing or the deflection of near Earth objects [1, 2]. However, although
electric propulsion was already envisioned by the pioneers of astronautics at the beginning
of the 20th century, it was not until many years later where the low thrust provided by
electrically accelerated ions was demonstrated to support spaceflight propulsion (see [3] for
a review on the topic).

One of the earlier relevant analysis on low-thrust trajectories was the work of Tsien
[4], where the thrust is decomposed into radial and circumferential components; the separate
problems of constant radial and circumferential thrust are discussed, and the circumferential
thrust case is demonstrated to be much more efficient for takeoff from orbit. The general
continuous-thrust problem is, of course, more involved, where the representation of each
component of the thrust acceleration may require a whole Fourier series [5], and hence the
constant-thrust problem is sometimes viewed as fictional [6]. Nevertheless, at least in the case
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of radial thrust, the constant thrust problem has attracted the attention of researches, which
further elaborated in the case of mass loss of the spacecraft with constant thrust-to-weight
ratio [7] or proposed other applications different from the takeoff [8].

The constant radial propulsive acceleration problem is revisited, and its solution is
approached by the Hamilton-Jacobi equation. Contrary to the original studies, where the
emphasis was put on the takeoff problem with a view on interplanetary missions, this paper
focuses on the case of bounded motion obtained when using low propulsive acceleration [9].

From a mathematical point of view, the engineering problem of artificial satellite
motion with constant radial propulsive acceleration is a variation of the Kepler problem that,
albeit slight, introduces radical changes in the dynamical behavior although remaining an
integrable problem. Thus, while Keplerian motion is always bounded for negative values
of the total energy, the constant radial propulsive acceleration introduces a bifurcation
phenomenon that separates the phase space into three different regions, one of bounded and
two of unbounded motion, that are separated by a homoclinic trajectory.

The dynamical richness of the constant radial propulsive acceleration problem carries
the necessity of using elliptic integrals in the computation of the solution. This result is
known from many years ago [10]; in fact, the radial propulsive acceleration problem is just a
particular case of the six potentials of the central force problem with rn that can be integrated
in elliptic integrals [11]. Thus, the radial time evolution depends on the incomplete elliptic
integrals of the first and second kinds, and the orbit evolution is known to depend on the
incomplete elliptic integral of the third kind [9].

The solution in elliptic integrals is sometimes claimed not to provide the physical
insight that is required for mission design purposes, and hence its practical utility may
be questioned. Alternatively, approximations to the solution that rely only on simple and
closed-form relationships have been recently proposed [12]. In the present paper a different
approach is taken, and the required insight in the solution is obtained from a qualitative
description of the flow in the energy-momentum plane, which is given before the general
solution in elliptic integrals is computed by the Hamilton-Jacobi method.

2. Constant Radial Propulsive Acceleration Problem

The potential energy of the constant radial propulsive acceleration problem is

W = −μ
r
− αr, (2.1)

where μ is the gravitational constant, and α > 0 is the constant radial acceleration. This central
force problem is conservative and accepts Hamiltonian formulation H = T + W , where T is
the kinetic energy.

As in most orbital problems, it is convenient to use polar coordinates: the distance
r and the polar angle θ, as well as their coordinate momenta: the radial velocity R and
the modulus of the angular momentum Θ. Like in the case of quasi-Keplerian systems,
irrespective of whether or not α is a small parameter the Hamiltonian in polar coordinates
results to be separable [13]. Thus,

H =
1
2

(
R2 +

Θ2

r2

)
− μ

r
− αr, (2.2)
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revealing that the Hamiltonian is just of 1-DOF because the coordinate θ is ignorable. Then,
the conjugate momentum Θ is an integral of the motion showing the integrable character
of the constant radial propulsive acceleration problem because the Hamiltonian itself, the
energy, is another integral.

As pointed out in [14], there are only lengths and times involved in the problem so the
units of length and time can be chosen in such a way that μ and α take an arbitrary value.
Alternatively, by scaling the Hamiltonian by √

μα, it is obtained

H√
μα

=
1
2

[
R2

(
τ

ρ

)2

+
Θ2(τ/ρ2)2

(
r/ρ

)2

]
− 1
r/ρ

− r

ρ
, (2.3)

where ρ =
√
μ/α has units of length, and τ = (μ/α3)1/4 has units of time. Then,

using nondimensional units of length and time, the constant radial propulsive acceleration
Hamiltonian is written as

H′ =
1
2

(
R

′2 +
Θ

′2

r ′2

)
− 1
r ′

− r ′ (2.4)

showing that there is not any essential parameter in the Hamiltonian. Note that the
Hamiltonian scaling is equivalent to choosing units of length and time such that μ and α are
equal to one. In what follows, the work focuses on the nondimensional Hamiltonian (2.4),
from which primes are dropped for alleviating notation. Thus, H ≡ H(r, R;Θ),

H =
1
2
R2 +

1
2

Θ2

r2
− 1
r
− r. (2.5)

From Hamilton equations:

dr
dt

=
∂H
∂R

,
dθ
dt

=
∂H
∂Θ

,
dR
dt

= −∂H
∂r

,
dΘ
dt

= −∂H
∂θ

, (2.6)

it is checked that the angular momentum Θ is constant, and, therefore, the flow is separable.
First, the 1-DOF problem can be solved:

dr
dt

= R,
dR
dt

= 1 − 1
r2

+
Θ2

r3
, (2.7)

which, for given initial conditions, is conveniently integrated using the energy integral H = h;
thus,

1
2

(
dr
dt

)2

+
1
2

Θ2

r2
− 1
r
− r = h =⇒ t = t0 +

∫
r dr√

2r3 + 2hr2 + 2r −Θ2
, (2.8)
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Figure 1: Admissible angular momentum leading to circular solutions, cf. (2.10).

whose solution is known to depend on the elliptic integrals of the first and the second kinds
[4, 6]. Then,

dθ
dt

=
Θ
r2

=⇒ θ = θ0 + Θ
∫

dt
r2

= θ0 + Θ
∫

dr

r
√

2r3 + 2h r2 + 2r −Θ2
, (2.9)

that introduces the elliptic integral of the third kind in the orbit solution [9].
The fact that the solution of the constant radial propulsive acceleration problem

depends on elliptic integrals does not gives much insight into the physical solution. Then,
it is first tried to obtain qualitative information of the flow as well as to compute particular
solution. Nevertheless, the solution in elliptic integrals is, of course, useful for evaluation
purposes and will be computed in the next section.

Thus, it is immediately noted from the reduced flow (2.7) that equilibria may exist for
R = 0 if

Θ2 = r
(

1 − r2
)

(2.10)

admits any real, positive solution. These relative equilibria would correspond to circular
orbits.

Equation (2.10) constrains the radius of the possible circular solutions to r ≤ 1. Besides,
as illustrated in Figure 1, the solutions r = r(Θ) of (2.10) are limited to a maximum of two
roots that exist for Θ2 <

√
4/27. Thus, for instance, for Θ2 = 3/8 it is found that there are

stable circular orbits of radius r = 1/2 and h = −7/4, and unstable circular ones with r =
(1/4)(131/2 − 1) and h = −(1/24)(133/2 − 5).

At the upper limit Θ2 =
√

4/27, the two roots merge into one in a bifurcation
phenomenon of circular orbits with r =

√
1/3, which happens at h = −√3.

In view of the reduced flow, (2.7), is of 1-DOF, it can be represented by simple contour
plots of the Hamiltonian, (2.5), in the energy-momentum parameter plane. Sample plots
are given in Figure 2, where different contours correspond to fixed values of Θ2. Thus, it
is seen that there is no bounded motion for h > −√3, Figure 2(a) for h = −√3 a teardrop
bifurcation occurs in the manifold Θ2 =

√
4/27, dashed line in Figure 2(b), changing the

flow qualitatively. Then, for h < −√3 it is found a region of bounded motion about the
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Figure 2: Reduced flow (r, R) of the constant propulsive acceleration problem in the parameters (h,Θ2)-
plane.
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elliptic equilibria (stable, circular orbit) that is separated from two different regions of
unbounded motion by a homoclinic trajectory, the stable-unstable manifolds of the hyperbolic
point (unstable, circular orbit) represented with a dashed line in Figure 2(c). In the case
h = −2, Figure 2(d), the homoclinic trajectory occurs in the manifold Θ2 = 0, thus limiting
the allowable flow to only two regions, one of bounded motion and the other of escape
trajectories. Finally, for lower values h < −2 the regions of bounded and unbounded motion
depart from each other, and there is only one circular (stable) solution, Figure 2(e).

Alternatively, the flow can be discussed with the simple representation of the effective
potential energy V = (1/2)(Θ2/r2) − (1/r) − r, showing that a potential well exist for Θ2 ≤√

4/27, hence allowing for bounded motion; at the upper limit of Θ the potential curve has
an inflection point [8, 14].

In what follows, the paper focuses only on the case of bounded motion.

3. Hamiltonian Reduction

The integration of the constant radial propulsive acceleration problem can be achieved by

Hamiltonian reduction. Thus, a transformation of variables (r, θ, R,Θ) T→ (�, g, L,G) is found
such that the Hamiltonian equation (2.5) in the new variables only depends on momenta:
H ≡ Φ(L,G). The transformation is computed by Hamilton-Jacobi by finding a generating
function S = S(r, θ, L,G) such that

(
�, g, R,Θ

)
=

∂S
∂(L,G, r, θ)

. (3.1)

Since θ is ignorable in (2.5), the generating function can be taken as S = θG +
W(r,−, L, G), where the dash has been introduced to emphasize the independence of W from
θ. Thus, it is formed the Hamilton-Jacobi equation:

1
2

[(
∂W
∂r

)2

+
G2

r2

]
− 1
r
− r = Φ(L,G), (3.2)

from which W can be solved by quadrature:

W =
∫ √

Qdr, Q ≡ 2r + 2Φ +
2
r
− G2

r2
. (3.3)

From (3.1), the transformation is then

� =
∂W
∂L

=
∂Φ
∂L

∫
dr√
Q
,

g = θ +
∂W
∂G

= θ +
∂Φ
∂G

∫
dr√
Q

−G

∫
dr

r2
√
Q
,

R =
∂W
∂r

=
√
Q,

Θ = G,

(3.4)
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where Φ remains to be selected [15] and the two quadratures:

I1 =
∫

dr√
Q

=
∫

r dr√
2P

, (3.5)

I2 =
∫

dr

r2
√
Q

=
∫

dr

r
√

2P
, (3.6)

where

P ≡ r3 + Φr2 + r −
(

1
2

)
G2 (3.7)

still need to be solved.

3.1. Cubic Equation

Note that P can be written as P = (r − r1)(r − r2)(r − r3), where ri ≡ ri(Φ, G), i = 1, 2, 3, are the
solutions of the cubic:

r3 + Φr2 + r − 1
2
G2 = 0, (3.8)

which at least must have one real root, say r3. Besides, for bounded motion to exist P must
accept at least two positive roots. Therefore, the three roots must be real in the case of
bounded motion, say r1 ≤ r2 ≤ r3. Furthermore, from (3.8) it is found out that G2 = 2r1 r2 r3

and hence the three roots must be positive. Finally, because P(0) < 0, the discussion limits to
the case 0 < r1 ≤ r ≤ r2 ≤ r3.

In the case of concern of bounded motion, the solution of the cubic is (e.g., see [16])

ri = −1
3
Φ +

2
3

√
Φ2 − 3 cos

γ + 2iπ
3

, (i = 1, 2, 3), (3.9)

where

γ = arc cos
18Φ + 27G2 − 4Φ3

4(Φ2 − 3)3/2
. (3.10)

Remark that the limit Φ ≤ −√3 that appears in (3.9) and (3.8) leads again to the constraint
G2 ≤

√
4/27.

Hence, because −1 ≤ cos γ ≤ 1, it is found that

4Φ3 − 4
(
Φ2 − 3

)3/2 − 18Φ
27

≤ G2 ≤ 4Φ3 + 4
(
Φ2 − 3

)3/2 − 18Φ
27

, (3.11)
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Figure 3: Allowed region for bounded motion in the (Φ, G2)-plane.

relations that define the region of the energy-momentum plane in which the cubic (3.8) has
three positive roots, and therefore bounded motion may exist. The region in the parameters
plane defined by (3.11) is illustrated in Figure 3 (see also [14], where a different parameter
scaling is used).

3.2. I1 Solution

The quadrature equation (3.5) is written as

I1 =
1√
2

∫ r

r1

r dr√
(r − r1)(r − r2)(r − r3)

, (3.12)

where ri ≡ ri(Φ, G) ≡ ri(L,G), i = 1, 2, 3, cf. (3.9)-(3.10). The change of variable:

z2 =
r − r1

r2 − r1
≤ 1 (3.13)

produces

I1 =
2r1√

2(r3 − r1)

∫z

0

1 + nz2

√
1 − z2

√
1 − k2z2

dz, (3.14)

with

k2 =
r2 − r1

r3 − r1
< 1, n =

r2 − r1

r1
> 0. (3.15)

Now, calling z = sinφ,

I1 =
√

2r3

[√
r3

r3 − r1
F
(
φ | k2

)
−
√

r3 − r1

r3
E
(
φ | k2

)]
, (3.16)
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which solves the quadrature I1 = I1(r, θ, L,G) as a function of the incomplete elliptic
integrals of the first F(φ | k2) and second kind E(φ | k2) without need of particularizing
any form Φ ≡ Φ(L,G).

In the limit case r3 = r2, the quadrature simplifies to

I1 =
1√
2

∫ r

r1

r dr

(r2 − r)
√
(r − r1)

=
√

2

[
r2√

r2 − r1
tanh−1

(√
r − r1

r2 − r1

)
− √

r − r1

]
, (3.17)

and the solution is obtained in terms of hyperbolic functions instead of elliptic ones. Note
that r1 ≤ r ≤ r2 implies 0 ≤ I1 ≤ ∞.

3.3. I2 Solution

Analogously, (3.6) is written as

I2 =
1√
2

∫ r

r1

dr

r
√
(r − r1)(r − r2)(r − r3)

, (3.18)

that the change equation (3.13) converts into

I2 =
2

r1
√

2(r3 − r1)

∫z

0

dz

(1 + nz2)
√

1 − z2
√

1 − k2z2
. (3.19)

Calling again z = sinφ, it is obtained

I2 =
√

2
r1
√
r3 − r1

Π
(
−n;φ | k2

)
, (3.20)

and the solution is proportional to the incomplete elliptic integral of the third kind
Π(−n;φ |k2). Again, the quadrature is solved without need of particularizing any form
Φ ≡ Φ(L,G).

In the limit case r3 = r2, one gets:

I2 =
1√
2

∫ r

r1

dr

r(r2 − r)
√
(r − r1)

=

√
2

r2

(
1√
r1

tan−1

√
r − r1

r1
+

1√
r2 − r1

tanh−1

√
r − r1

r2 − r1

)
,

(3.21)

and the solution is obtained in terms of hyperbolic functions. Again, r1 ≤ r ≤ r2 implies
0 ≤ I2 ≤ ∞.
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3.4. Transformation Equations

Since the integrals I1 and I2 have been solved without need of specifying the new
Hamiltonian. Equation (3.4) gives rise to a full family of canonical transformations instead of
a single one, cf. [15]. That is

� =
∂Φ
∂L

√
2(r3 − r1)

[
r3

r3 − r1
F
(
φ | k2

)
− E

(
φ | k2

)]
, (3.22)

g = θ −G

√
2

r1
√
r3 − r1

Π
(
−n;φ | k2

)
+
∂Φ/∂G

∂Φ/∂L
�, (3.23)

R =
√
Q, (3.24)

Θ = G. (3.25)

Then, the direct transformation (r, θ, R,Θ) → (�, g, L,G) starts from the computation
of h = H(r,−, R,Θ) followed by G = Θ; afterwards, L is computed from Φ(L,G) = h. It
is followed by computing the roots of the cubic from (3.9)-(3.10) and k and n from (3.15),
which allow for computing φ = arc sin z from (3.13), and finally to obtain � from (3.22) and
g from (3.23).

In the inverse transformation (�, g, L,G) → (r, θ, R,Θ), the sequence is to compute
first h = Φ(L,G) and Θ = G. Then ri is computed from (3.9)-(3.10) and k and n from (3.15).
Subsequently, φ must be solved from the implicit equation (3.22), and r is obtained from
(3.13) where z = sinφ. Finally R is computed from (3.24), and θ is solved from (3.23). It is
noted that the computation of R from (3.24) leaves the sign of the square root undefined.
However, from (3.13) we find out that dR = (r2 − r1) sin 2φdφ, where the angle φ always
grows with time; then the sign of R is unambiguously determined from the sign of sin 2φ.

The selection of the new Hamiltonian is quite arbitrary and mostly depends on the
use one wants to do of the transformation. Thus, if one wants to apply the transformation
to perturbation problems, quadratic choices of the Hamiltonian, as for instance Φ = G2 − L2,
may help in checking the nondegeneracy of the Hessian, which is required to guarantee KAM
conditions.

From the properties of elliptic integrals, one can note in (3.22) that when φ is
incremented by 2π , then � is correspondingly incremented by

τ = 4
√

2(r3 − r1)
[

r3

r3 − r1
K
(
k2
)
− E

(
k2
)]∂Φ

∂L
, (3.26)

where K(k2) and E(k2) are the complete elliptic integrals of the first and second kinds,
respectively. Then, since

sinφ =

√
r − r1

r2 − r1
, r1,2 ≡ r1,2(h,Θ), (3.27)

each time φ increments its value by 2π means that r repeats its value. Therefore, τ is related
to the period of r, and hence � should be a (nondimensional) time-type variable.
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Figure 4: Periodic orbit after θ = 3 × 2π . The red dot in the axis of abscissas is the initial point r = 0.5,
R > 0.

On the other side, choosing Φ free from G means that g is constant, from Hamilton
equations. Therefore, simple transformations will be obtained when choosing Φ = Φ(L),
leading to similar results to the classical approach, cf. [9]. If that is the case, it is found that
when φ is incremented by 2π , then

Δθ = G
4
√

2
r1
√
r3 − r1

Π
(
−n; k2

)
, (3.28)

and the periodicity will happen only when Δθ = 2π/p, with p rational.
For instance, the solution of the implicit equation:

2π
p

= G
4
√

2
r1
√
r3 − r1

Π
(
−n; k2

)
, (3.29)

for the arbitrary values G = 1/2 and p = 1/3, gives Φ = −1.854882428484353, r1 =
0.17830010960481157, r2 = 0.7974637273311203, and r3 = 0.8791185915484208. If we choose, in
addition, the initial conditions r1 < r = 0.5 < r2, θ = 0, and compute R = 0.5387347612984463
from (3.24), we get the periodic solution presented in Figure 4.

4. Conclusions

The constant radial propulsive acceleration problem has been revisited from the dynamical
systems point of view. The simple Hamiltonian formulation in polar coordinates discloses its
integrable character. Besides, after a nondimensional reformulation of the Hamiltonian, it is
shown that the constant radial thrust problem does not depend on any essential physical
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parameter. Therefore, the flow is straightforwardly studied as a function of the angular
momentum integral. The solution of the integrable problem is computed by Hamilton-Jacobi,
leading to a whole family of transformations that solve the problem. Particular solutions of
this family are shown to lead to analogous solutions in the literature.
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