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We consider a production-inventory system that consists of an input-generating installation, a
production unit and L intermediate buffers. It is assumed that the installation transfers the raw
material j ∈ {1, . . . , L} to buffer Bj, and the production unit pulls the rawmaterial j ∈ {1, ..., L} from
buffer Bj. We consider the problem of the optimal preventive maintenance of the installation if the
installation deteriorates stochastically with usage and the production unit is always in operative
condition. We also consider the problem of the optimal preventive maintenance of the production
unit if the production unit deteriorates stochastically with usage and the installation is always
in operative condition. Under a suitable cost structure and for given contents of the buffers, it is
proved that the average-cost optimal policy for the first (second) problem initiates a preventive
maintenance of the installation (production unit) if and only if the degree of deterioration of the
installation (production unit) exceeds some critical level. Numerical results are presented for both
problems.

1. Introduction

In the present paper, we study two problems, and we generalize the results obtained in two
previous papers by Kyriakidis and Dimitrakos [1] and Pavitsos and Kyriakidis [2] that are
concerned with the preventive maintenance of a production-inventory system. We consider a
manufacturing system (see Figure 1) in which an input-generating installation (I) transfers L
raw materials to a subsequent production unit (P). We assume that L buffers B1, . . . , BL have
been built between the installation and the production unit. The installation transfers the raw
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Figure 1: The production-inventory system.

material j ∈ {1, . . . , L} to the buffer Bj , and the production unit pulls this raw material from
the buffer Bj . The buffers have finite capacities.

In the first problem it is assumed that the installation deteriorates stochastically over
time, and the production unit is always in operative condition. The deteriorating process
for the installation is described by some known transition probabilities between different
degrees of deterioration. A discrete-time Markov decision model is considered for the
optimal preventive maintenance of the installation. The maintenance times are assumed to be
geometrically distributed, and the cost structure includes operating costs of the installation,
costs for storing the raw materials in the buffers, maintenance costs and costs due to
production delay when the installation does not operate or operate partially and the contents
of some or all buffers are below some specific levels. It is proved that for fixed contents of
the buffers the policy that minimizes the long-run expected average cost per unit time is
of control-limit type, that is, it initiates a preventive maintenance of the installation if and
only if its degree of deterioration exceeds some critical level. This result generalizes the
structural result that was obtained by Kyriakidis and Dimitrakos [1] for the case in which
L = 1. In the second problem it is assumed that the production unit deteriorates stochastically
over time and the installation is always in operative condition. The deteriorating process for
the production unit is described by some known transition probabilities between different
degrees of deterioration. A discrete-time Markov decision model is formulated for the
optimal preventive maintenance of the production unit. The maintenance times are assumed
to be geometrically distributed, and the cost structure includes operating costs of the
production unit, costs for the maintenance of the production unit, storage costs, penalty costs,
and costs due to the lost production. It is proved that for fixed contents of the buffers the
average-cost optimal policy is again of control-limit type, that is, it initiates a preventive
maintenance of the production unit if and only if its degree of deterioration exceeds some
critical level. This result generalizes the structural result that was obtained by Pavitsos and
Kyriakidis [2] for the case in which L = 1.

An example of this system could be a production machine that pulls L different parts
from L buffers and assembles them in order to produce the final product. These parts are
transferred by a feeder to the buffers. Note that in the last twenty years a great number
of maintenance models for production-inventory systems have been studied (see Van Der
Duyn Schouten and Vanneste [3], Meller and Kim [4], Iravani and Duenyas [5], Sloan [6],
Yao et al. [7], Rezg et al. [8], Dimitrakos and Kyriakidis [9], Karamatsoukis and Kyriakidis
[10], and Hadidi et al. [11]). In these models, the preventive maintenance depends on the
working condition of a machine and the level of a subsequent buffer. The first problem



Mathematical Problems in Engineering 3

that we study in the present paper has its origin in a model introduced by Van Der Duyn
Schouten and Vanneste [3]. The states of that model consist of the age of a machine and the
content of a subsequent buffer that is fed by the machine. The cost structure included costs
due to lost production that were incurred when a repair was performed on the machine and
the buffer was empty. The repair times of the machine were assumed to be geometrically
distributed. It was proved that, for fixed buffer content, the average-cost optimal policy
initiates a preventive maintenance of the machine if and only if its age is greater than or
equal to a critical value.

The rest of the paper is organized as follows. In the next section, we describe the
problem in which only the installation deteriorates with usage, and we derive the structure of
the average-cost optimal policy. In Section 3, we study the case in which only the production
unit deteriorates over time, and the structure of the average-cost optimal policy is derived.
Numerical results are presented for both problems. In the final section, the main conclusions
of the paper are summarized, and we propose topics for future research.

2. The Problem when the Installation Deteriorates Stochastically

We consider a production-inventory system (see Figure 1) which consists of an installation
(I) that supplies the buffer Bj with the raw material j ∈ {1, . . . , L} and a production unit
(P) which pulls dj units of the raw material j ∈ {1, . . . , L} from buffer Bj during one unit
of time. It is assumed that the production unit is always in operative condition, and that the
installation may fail as time evolves. The buffer Bj, j = 1, 2, . . . , L has finite capacity which is
equal to Kj units of raw material j. As long as the buffer Bj, j = 1, . . . , L is not full and the
installation is in operative condition, the installation may transfer pj(> dj) units of the raw
material j ∈ {1, . . . , L} to buffer Bj during one unit of time and the difference pj − dj is stored
in buffer Bj . As soon as buffer Bj, j = 1, . . . , L is filled up the installation reduces its speed
from pj to dj . The numbers pj , dj ,Kj , j = 1, . . . , L are assumed to be integers.

We suppose that the installation is inspected at discrete, equidistant time epochs
τ = 0, 1, . . . (say every day), and is classified into one of m + 2 working conditions
0, 1, . . . , m + 1 which describe increasing levels of deterioration. Working condition 0 denotes
a new installation (or functioning as good as new), while working conditionm+1 means that
the installation is in failed (inoperative) condition and it cannot transfer the raw materials
to the buffers. The intermediate working conditions 1, . . . , m are operative and are ordered
ascendingly to reflect their relative degree of deterioration. The transition probability of
moving from working condition i at time epoch τ to working condition r at time epoch
τ + 1 is equal to pir . We assume that the probability of eventually reaching the working
condition m + 1 from any initial working condition i is nonzero. If at a time epoch τ the
installation is found to be at failure state m + 1, a corrective maintenance is mandatory. If at
a time epoch τ the installation is found to be at any working condition i ≤ m, a preventive
maintenance may be initiated. When a preventive maintenance is performed, the installation
does not operate and it does not transfer any raw material to its buffer. It is assumed that the
preventive and corrective repair times (expressed in time units) are geometrically distributed
with probability of success aI and bI , that is, the probability that they will last t ≥ 1 time units
are equal to (1 − aI)

t−1aI and (1 − bI)
t−1bI , respectively. When a preventive or a corrective

maintenance is performed and the buffer Bj, j ∈ {1, . . . , L} contains xj units of raw material
j, the production unit pulls from buffer Bj during one unit of time min(xj , dj) units of raw
material j. Both maintenances bring the installation to its perfect condition 0.
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We introduce the state PM to denote the situation that a preventive maintenance is
performed on the installation. Then the state space of the system is the set S = {0, . . . , m +
1, PM} × {0, . . . , K1} × · · · × {0, . . . , KL}, where (i, x1, . . . , xL) ∈ S is the state in which i is the
working condition of the installation and xj ∈ {0, . . . , Kj}, j = 1, . . . , L, is the content of buffer
Bj . A policy is any rule for choosing actions at each time epoch τ = 0, 1, . . . The possible actions
are: action 1 (initiate a preventive maintenance), action 2 (initiate a corrective maintenance),
action J ⊆ {1, . . . , L} (transfer rawmaterials only to those buffers that belong to the nonempty
subset J of the set {1, . . . , L}). If at a time epoch τ the installation is found to be at state PM
or state m + 1, the action 1 or the action 2 is compulsory, respectively. If at a time epoch τ
the installation is found to be at working condition i ∈ {0, . . . , m}, then we may either choose
either action 1 or action J ⊆ {1, . . . , L}. Hence, the number of possible actions in this case is
2L since the number of nonempty subsets of {1, . . . , L} is ∑L

i=1
(
L
i

)
= 2L − 1. If at a time epoch

τ action J is chosen and j belongs to J with xj < Kj , then the content of buffer Bj at next time
epoch τ + 1 will be min(xj + pj − dj,Kj). This increase of the buffer content will happen even
if the working condition of the installation at next time epoch τ + 1 is the failure state m + 1.
A policy is said to be stationary if at each time epoch τ = 0, 1, . . ., it chooses one action which
depends only on the current state of the system.

The cost structure of the problem includes operating costs of the installation, storage
costs, costs due to the lost production, and maintenance costs. If the working condition of
the installation is i ∈ {0, . . . , m} and the buffer Bj, j ∈ {1, . . . , L} is not full (or full) the cost
of transferring pj (or dj) units of raw material j to buffer Bj during one unit of time is equal
to cj(i) (or c̃j(i)). Therefore, if at a time epoch τ the working condition of the installation is
found to be i ∈ {0, . . . , m} and action J ⊆ {1, . . . , L} is chosen, then the operating cost until the
next time epoch τ+1 is equal to

∑
j∈J1 cj(i)+

∑
j∈J2 c̃j(i),where J1∪J2 = J, J1 corresponds to the

buffers that are not full and J2 corresponds to the buffers that are full. We assume that the cost
of holding a unit of raw material j ∈ {1, . . . , L} in buffer Bj for one unit of time is equal to hj .
The cost rates during a preventive and a corrective maintenance of the installation are equal
to cp and cf , respectively. When a preventive or a corrective maintenance is performed on the
installation and all buffers B1, . . . , BL are empty (i.e., xj = 0, j = 1, . . . , L), the production unit
does not pull any raw material j ∈ {1, . . . , L} from the buffers. In this case we incur a cost
due to production delay that is equal to C > 0 per unit of time. When xj ≥ dj , j = 1, . . . , L,
we do not incur any such cost since all buffers contain enough raw materials to satisfy the
demands of the production unit for one unit of time. When the inequality xj ≥ dj is satisfied
for some (but not for all) j = 1, . . . , L, the demands for raw materials of the production unit
for one unit of time are partially satisfied. Therefore, the productivity of the production unit
is reduced in the sense that the time for the production of the final products increases, since
for one unit of time, some of the raw materials that are needed for the production of the final
products are not available. In this case it seems reasonable to assume that the cost rate due
to production delay is equal to C

∑L
j=1(dj − xj)

+/
∑L

j=1 dj, where (dj − xj)
+ = max(dj − xj , 0)

is the unavailable quantity of the raw material j during one unit of time. Similarly, if at a
time epoch τ the working condition of the installation is found to be i ∈ {1, . . . , m} and the
action J ⊆ {1, . . . , L} is chosen, then the cost due production delay until the time epoch τ + 1
is equal to C

∑
j/∈J(dj − xj)

+/
∑L

j=1 dj. The following conditions on the cost structure and on
the transition probabilities are assumed to be valid.

Condition 1. For j ∈ {1, . . . , L} the sequences {cj(i)} and {c̃j(i)}, 0 ≤ i ≤ m, are nondecreasing
with respect to i. That is, as the working condition of the installation deteriorates, the cost of
transferring the raw material j ∈ {1, . . . , L} to buffer Bj increases.
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Condition 2. For j ∈ {1, . . . , L}, c̃j(i) ≤ cj(i), 0 ≤ i ≤ m. That is, the cost of transferring pj units
of raw material j ∈ {1, . . . , L} to buffer Bj during one unit of time is greater than or equal to
the cost of transferring dj units of raw material j to buffer Bj during one unit of time.

Condition 3. 0 < bI < aI ≤ 1. That is, the expected time required for a preventive maintenance
is smaller than the expected time required for a corrective maintenance.

Condition 4. cp ≤ cf . That is, the cost rate of a preventive maintenance does not exceed the cost
rate of a corrective maintenance.

Condition 5 (An Increasing Failure Rate Assumption). For each k = 0, . . . , m, the function
Dk(i) =

∑m+1
r=k pir is nondecreasing in i, 0 ≤ i ≤ m.

A consequence of this condition is that Ii≤stIi+1, 0 ≤ i ≤ m, where Ii is a random
variable representing the next working condition of the installation if its present working
condition is i. It can be shown (see pages 122-123 in Derman [12]) that this condition is
equivalent to the following one:

Condition 6. For any nondecreasing function h(r), 0 ≤ r ≤ m+1, the quantity
∑m+1

r=0 pirh(r), 0 ≤
i ≤ m, is nondecreasing in i.

We consider a discrete-time Markov decision process in which we aim to find a sta-
tionary policy which minimizes the long-run expected average cost per unit time. Note that
for L = 1 this problem was studied in Kyriakidis and Dimitrakos [1].

2.1. The Structure of the Optimal Policy

Let α (0 < α < 1) be a discount factor. The minimum expected n-step discounted cost V α
n (i, x),

where (i, x) = (i, x1, . . . , xL) is the initial state, can be found for all n = 1, 2, . . ., recursively,
from the following equations (see chapter 1 in Ross [13]):

V α
n (i, x) = min

⎧
⎨

⎩
min

J⊆{1,...,L}

⎡

⎣
∑

j∈J
cj(i) +

L∑

j=1

hjxj +

∑
j/∈J

(
dj − xj

)+

∑L
j=1 dj

C + α
m+1∑

r=0

pirV
α
n−1

(
r, x′)

⎤

⎦,

V α
n (PM,x)

⎫
⎬

⎭
, 0 ≤ i ≤ m, 0 ≤ xj < Kj, j = 1, . . . , L,

(2.1)

V α
n (PM,x) = cp +

L∑

j=1

hjxj +

∑L
j=1

(
dj − xj

)+

∑L
j=1 dj

C + αaIV
α
n−1

(
0,
(
x − d

)+)

+ α(1 − aI)V α
n−1

(
PM,

(
x − d

)+)
, 0 ≤ xj ≤ Kj, j = 1, . . . , L,

(2.2)

V α
n (m + 1, x) = cf +

L∑

j=1

hjxj +

∑L
j=1

(
dj − xj

)+

∑L
j=1 dj

C + αbIV
α
n−1

(
0,
(
x − d

)+)

+ α(1 − bI)V α
n−1

(
m + 1,

(
x − d

)+)
, 0 ≤ xj ≤ Kj, j = 1, . . . , L,

(2.3)



6 Mathematical Problems in Engineering

where x′ in (2.1) is a vector with L components in which the jth component equals to min(xj+
pj −dj,Kj), if j ∈ J , while, if j /∈ J , it is equal to (xj −dj)

+ = max(xj −dj, 0) and (x−d)+ in (2.2),
and (2.3) is the vector ((x1−d1)

+, . . . , (xL−dL)
+). The initial condition is V α

0 (s) = 0, s ∈ S. Note
that, if xj = Kj for some values of j ∈ {1, . . . , L}, (2.1) is valid if cj(i) is changed to c̃j(i) for
these values of j. Note that the first term in the curly brackets in (2.1) corresponds to the best
action among all actions J ⊆ {1, . . . , L}, while the second term corresponds to action 1 (i.e.,
initiate a preventive maintenance of the installation). The first part of the following lemma is
needed to prove that the average-cost optimal policy is of control-limit type for fixed levels
of the buffers.

Lemma 2.1. For each n = 0, 1, . . ., we have that

(i) V α
n (i, x) ≤ V α

n (i + 1, x), 0 ≤ i ≤ m, 0 ≤ xj ≤ Kj, j = 1, . . . , L,

(ii) V α
n (PM,x) ≤ V α

n (m + 1, x), 0 ≤ xj ≤ Kj, j = 1, . . . , L.

Proof. Wewill prove the lemma by induction on n. The lemma is valid for n = 0, since V α
0 (s) =

0, s ∈ S. We assume that it is valid for n − 1(≥ 0). We will show that it is also valid for n. First,
we prove part (ii) and then part (i).

Part (ii): Let D = V α
n−1(m + 1, (x − d)+ − V α

n−1(0, (x − d)+).
For 0 ≤ xj ≤ Kj, j = 1, . . . , L, we have that

V α
n (PM,x) = cp +

L∑

j=1

hjxj +

∑L
j=1

(
dj − xj

)+

∑L
j=1 dj

C + αaIV
α
n−1

(
0,
(
x − d

)+)

+ α(1 − aI)V α
n−1

(
PM,

(
d − x

)+)

≤ cf +
L∑

j=1

hjxj +

∑L
j=1

(
dj − xj

)+

∑L
j=1 dj

C

+ αaIV
α
n−1

(
0,
(
x − d

)+)
+ α(1 − aI)V α

n−1
(
m + 1,

(
x − d

)+)

= cf +
L∑

j=1

hjxj +

∑L
j=1

(
dj − xj

)+

∑L
j=1 dj

C + αV α
n−1

(
m + 1,

(
x − d

)+) − αaID

≤ cf +
L∑

j=1

hjxj +

∑L
j=1

(
dj − xj

)+

∑L
j=1 dj

C + αV α
n−1

(
m + 1,

(
x − d

)+) − αbID

= V α
n (m + 1, x).

(2.4)

The first inequality follows from Condition 4 and from part (ii) of the induction hypothesis.
The second inequality follows from Condition 3 and the inequality D ≥ 0 which is a
consequence of part (i) of the induction hypothesis.
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Part (i): We have to show that

V α
n (m,x) ≤ V α

n (m + 1, x), 0 ≤ xj ≤ Kj, j = 1, . . . , L, (2.5)

V α
n (i, x) ≤ V α

n (i + 1, x), 0 ≤ i ≤ m − 1, 0 ≤ xj ≤ Kj, j = 1, . . . , L. (2.6)

Inequality (2.5) is easily verified using (2.1) with i = m and part (ii) above

V α
n (m,x) ≤ V α

n (PM,x) ≤ V α
n (m + 1, x). (2.7)

For 0 ≤ i ≤ m − 1 and 0 ≤ xj < Kj, j = 1, . . . , L, we have that

V α
n (i, x)

= min

⎧
⎨

⎩
min

J⊆{1,...,L}

⎡

⎣
∑

j∈J
cj(i) +

L∑

j=1

hjxj +

∑
j/∈J

(
dj − xj

)+

∑L
j=1 dj

C + α
m+1∑

r=0

pirV
α
n−1

(
r, x′)

⎤

⎦, V α
n (PM,x)

⎫
⎬

⎭

≤ min

⎧
⎨

⎩
min

J⊆{1,...,L}

⎡

⎣
∑

j∈J
cj(i + 1) +

L∑

j=1

hjxj +

∑
j/∈J

(
dj − xj

)+

∑L
j=1 dj

C + α
m+1∑

r=0

pi+1,rV
α
n−1

(
r, x′)

⎤

⎦,

V α
n (PM,x)

⎫
⎬

⎭
= V α

n (i + 1, x).

(2.8)

The above inequality follows from Condition 1 and the inequality

m+1∑

r=0

pirV
α
n−1

(
r, x′) ≤

m+1∑

r=0

pi+1,rV
α
n−1

(
r, x′) (2.9)

which is implied by part (i) of the induction hypothesis and Condition 6. Hence (2.6) has
been proved for xj ∈ {0, . . . , Kj −1}, j = 1, . . . , L. Similarly, we obtain (2.6) if xj = Kj for some
values of j ∈ {1, . . . , L}.

Since the state space S is finite, and the state (0, 0) is accessible from every other state
under any stationary policy, it follows that there exist numbers v(s), s ∈ S and a constant g
that satisfy the average-cost optimality equations (see Corollary 2.5 in [13], page 98). For the
states (i, x), 0 ≤ i ≤ m, 0 ≤ xj < Kj, j = 1, . . . , L, the optimality equations take the following
form:

v(i, x) = min

⎧
⎨

⎩
min

J⊆{1,...,L}

⎡

⎣
∑

j∈J
cj(i) +

L∑

j=1

hjxj +

∑
j/∈J

(
dj − xj

)+

∑L
j=1 dj

C − g +
m+1∑

r=0

pirv
(
r, x′)

⎤

⎦,

v(PM,x)

⎫
⎬

⎭
.

(2.10)
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If xj = Kj for some values of j ∈ {1, . . . , L}, we must change in the above equations cj(i) to
c̃j(i) for these values of j. In view of part (i) of the above lemma we have the following result.

Corollary 2.2. v(i, x) ≤ v(i + 1, x), 0 ≤ i ≤ m, 0 ≤ xj ≤ Kj, j = 1, . . . , L.

The following proposition gives a characterization of the form of the optimal policy.

Proposition 2.3. For fixed contents x1, . . . , xL (0 ≤ xj ≤ Kj, j = 1, . . . , L) of buffers B1, . . . , BL,
there exists a critical working condition i∗(x1, . . . , xL) such that the policy that minimizes the expected
long-run average cost per unit time initiates a preventive maintenance of the installation if and only if
its working condition i ∈ {0, . . . , m} is greater than or equal to i∗(x1, . . . , xL).

Proof. Suppose that for some fixed x = (x1, . . . , xL) such that 0 ≤ xj < Kj, 1 ≤ j ≤ L, the
optimal policy initiates a preventive maintenance of the installation at state (i, x) where i ∈
{0, . . . , m − 1}. This implies that

v(PM,x) ≤ min
J⊆{1,...,L}

⎡

⎣
∑

j∈J
cj(i) +

L∑

j=1

hjxj +

∑
j/∈J

(
dj − xj

)+

∑L
j=1 dj

C − g +
m+1∑

r=0

pirv
(
r, x′)

⎤

⎦. (2.11)

To show that the optimal policy prescribes a preventive maintenance on the installa-
tion at state (i + 1, x) it is enough to show that

v(PM,x) ≤ min
J⊆{1,...,L}

⎡

⎣
∑

j∈J
cj(i + 1) +

L∑

j=1

hjxj +

∑
j/∈J

(
dj − xj

)+

∑L
j=1 dj

C − g +
m+1∑

r=0

pi+1,rv
(
r, x′)

⎤

⎦.

(2.12)

From Conditions 1 and 6 and Corollary 2.2, it follows that the right-hand side of (2.12) is
greater than or equal to the right-hand side of (2.11). Hence (2.11) implies (2.12). The same
result is obtained similarly if xj = Kj for some values of j ∈ {1, . . . , L}.

Remark 2.4. In the above proposition, if for fixed contents x1, . . . , xL of the buffers
i∗(x1, . . . , xL) = m + 1, then the optimal policy never initiates a preventive maintenance of the
installation whenever the buffer Bj, j = 1, . . . , L, contains xj units or raw material j.

2.2. Numerical Results

Example 2.5. Suppose that L = 2, m = 5, aI = 0.6, bI = 0.4, cp = 10, cf = 15, K1 = 5, K2 = 20,
h1 = 1, h2 = 1, p1 = 2, d1 = 1, p2 = 2, d2 = 1, c1(i) = 0.8(i + 1), c̃1(i) = 0.5(i + 1), c2(i) = 0.7
(i + 1), c̃2(i) = 0.5(i + 1), 0 ≤ i ≤ m, and pir = 1/(m + 2 − i), 0 ≤ i ≤ m, i ≤ r ≤ m + 1. It
can be readily checked that these probabilities satisfy Condition 5. We computed the optimal
policy if C is equal to 0.5 or 15.5 by implementing the value-iteration algorithm (see Chapter
3 of Tijms [14]). Our numerical results verify the result of Proposition 2.3. In Table 1 we
present the critical numbers i∗(x1, x2), 0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 20. In each cell of this table the
first number corresponds to C = 0.5 and the second number corresponds to C = 15.5. The
minimum average cost was found to be 7.49 if C = 0.5 which is, as expected, considerably
smaller than the minimum average cost if C = 15.5, which was found to be 11.63.
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Table 1: The critical numbers i∗(x1, x2) for C = 0.5, 15.5.

x2\x1 0 1 2 3 4 5
0 3, 6 3, 5 3, 5 4, 6 4, 6 4, 6
1 3, 5 2, 4 2, 4 1, 6 1, 4 1, 4
2 3, 5 2, 3 1, 2 0, 3 0, 3 2, 3
3 4, 6 1, 4 0, 3 0, 2 0, 2 3, 3
4 3, 6 1, 1 0, 0 0, 0 0, 0 3, 3
5 4, 6 1, 4 0, 0 0, 2 0, 1 3, 3
6 4, 6 1, 4 0, 2 0, 1 0, 1 2, 4
7 4, 6 0, 4 0, 2 0, 1 0, 1 2, 3
8 4, 6 0, 4 0, 2 0, 0 0, 0 1, 3
9 4, 6 0, 4 0, 2 0, 0 0, 0 2, 3
10 4, 6 0, 4 0, 2 0, 0 0, 0 1, 3
11 4, 6 0, 4 0, 2 0, 0 0, 0 1, 3
12 4, 6 0, 4 0, 2 0, 0 0, 0 1, 3
13 4, 6 0, 4 0, 1 0, 0 0, 0 1, 3
14 4, 6 0, 4 0, 1 0, 0 0, 0 1, 3
15 4, 6 0, 4 0, 1 0, 0 0, 0 1, 3
16 4, 6 0, 4 0, 1 0, 0 0, 0 1, 2
17 4, 6 0, 4 0, 1 0, 0 0, 0 1, 3
18 4, 6 0, 4 0, 1 0, 0 0, 0 1, 2
19 4, 6 0, 4 0, 1 0, 0 0, 0 1, 3
20 4, 6 0, 4 0, 1 0, 0 0, 0 1, 2

We observe that for x1 ∈ {0, . . . , 5} and x2 ∈ {0, . . . , 20} the critical number that
corresponds to C = 0.5 is smaller than or equal to the critical number that corresponds
to C = 15.5. This is intuitively reasonable since if the cost due to production delay takes
large values it seems disadvantageous to have all or most of the buffers empty when a
maintenance is performed on the installation. Therefore in this case it seems preferable to
initiate a preventive maintenance of the installation only if its degree of deterioration is
relatively high. We also observe that when C = 15.5 and buffer B1 or buffer B2 is empty,
the optimal policy in most cases never initiates a preventive maintenance of the installation.
For example i∗(0, 3) = 6 = m + 1. It can be also seen from the Table 1 that i∗(x1, x2) is not
a monotone function with respect to x1 ∈ {0, . . . , 5} and with respect to x2 ∈ {0, . . . , 20} for
constant x2 and x1, respectively. Note that, when i < i∗(x1, x2), 0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 20, the
value iteration algorithm gives the optimal action for the operation of the installation. For
example, if C = 0.5, x1 = 0, x2 = 18, the optimal action when the working condition of the
installation is 3 is to transfer rawmaterial 1 to buffer 1 (i.e., J = {1}). IfC = 15.5, x1 = 1, x2 = 1,
the optimal action when the working condition of the installation is 2 is to transfer raw
material 1 to buffer 1 and raw material 2 to buffer 2 (i.e., J = {1, 2}).

Example 2.6. Suppose that L = 2, m = 15, aI = 0.3, bI = 0.2, cp = 10, cf = 15, h1 = 1, h2 = 1, C =
80, p1 = 4, d1 = 2, p2 = 3, d2 = 2, c1(i) = 1.5(i + 1), c̃1(i) = 0.75(i + 1), c2(i) = 2(i + 1), c̃2(i) =
i + 1, 0 ≤ i ≤ m, pir = 1/(m + 2 − i), 0 ≤ i ≤ m, i ≤ r ≤ m + 1. In Table 2 below we present the
minimum average cost g obtained by the value-iteration algorithm for K1 ∈ {1, . . . , 10} and
K2 ∈ {5, 10}.
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Table 2: The minimum average cost as K1 or K2 varies.

K1 K2 = 5 K2 = 10
1 51.20 51.17
2 48.55 48.49
3 47.55 47.50
4 45.94 45.88
5 45.60 45.56
6 44.87 44.83
7 44.78 44.75
8 44.49 44.45
9 44.46 44.43
10 44.39 44.37

From the above table we see that as K1 or K2 increases, the minimum average cost
decreases. This is intuitively reasonable because in this example it seems favourable to have
buffers with large, capacities since the cost rate C due to production delay is relatively large
while the probabilities aI , bI of successful maintenances and the storage cost rates h1, h2 are
relatively small.

3. The Problem when the Production Unit Deteriorates Stochastically

We consider the same production-inventory system (see Figure 1) as the one introduced in the
previous section with the following modifications: (i) the installation is always in operative
condition while the production unit may experience a failure as time evolves and (ii) as long
as the buffer Bj, j = 1, . . . , L, is not empty and the production unit is in operative condition,
the production unit may pull the raw material j from buffer Bj at a constant rate of dj(> pj)
units of raw material j per unit of time. When the buffer Bj is empty and the production unit
is in operative condition, the production unit reduces its pull rate from dj to pj .

We assume that the production unit is monitored at discrete equidistant time epochs
τ = 0, 1, . . . (say every day), and is classified into one of n+2working conditions 0, . . . , n+1.We
suppose that working condition i is better than working condition i + 1. Working condition
0 means that the production unit is new (or functioning as good as new), while working
condition n + 1 means that the production unit does not function, and it cannot pull the
materials from the buffers. The intermediate working conditions 1, . . . , n are operative. If the
working condition at time epoch τ is i then the working condition at time epoch τ + 1 will
be r with probability qir . The probability that the deterioration process of the production unit
reaches eventually the failure state n + 1 from any initial working condition i is assumed
to be nonzero. If at a time epoch τ the production unit is found to be at the failure state
n + 1, a corrective maintenance is compulsory. If it is found to be at any working condition
i ≤ n, a preventive maintenance is optional. The production unit does not operate when it is
under preventive maintenance, and it does not pull any raw material from its buffer. When a
preventive or a corrective maintenance is performed and the buffer Bj, j = 1, . . . , L, contains
xj units of raw material j, the installation transfers min(pj ,Kj − xj) units of raw material
j to buffer Bj during one unit of time. The preventive and corrective maintenance times
(expressed in time units) are geometrically distributed with probability of success aP and bP ,
respectively. Both maintenances bring the production unit to its perfect condition 0. The state
space of the system is the set S̃ = {0, . . . , n+ 1, PM}×{0, . . . , K1}× · · · × {0, . . . , KL}, where PM
represents the situation that the production unit is under a preventive repair. The possible
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actions are the same as the ones considered in the problem studied in Section 2 with the
following modification: action J ⊆ {1, . . . , L} is the action of pulling raw materials only from
buffers Bj, j ∈ J . If at a time epoch τ the production unit is found to be at working condition
i ∈ {0, . . . , n}, then we may choose either the action of initiating a preventive maintenance or
action J ⊆ {1, . . . , L}.

The cost structure includes operating costs of the production unit, storage costs,
maintenance costs, costs due to production delay, and penalty costs. The storage costs
hj , j ∈ {1, . . . , L}, and the maintenance costs cp, cf are defined exactly in the same way as in
the problem studied in the previous section. If the working condition of the production unit
is i ∈ {0, . . . , n} and the buffer Bj, j ∈ {1, . . . , L}, is nonempty (or empty), the cost of pulling
dj (or pj) units of raw material j from buffer Bj during one unit of time is equal to cj(i) (or
c̃j(i)). We assume that the cost rate due to production delay as long as a maintenance of the
production unit lasts is equal to C > 0. Therefore, if at a time epoch τ the action J ⊆ {1, . . . , L}
is selected and the content of buffer Bj, j = 1, . . . , L, is xj ∈ {0, . . . , Kj}, then the cost due to
production delay until time epoch τ + 1 is equal to C(

∑
j/∈J dj +

∑
j∈J(dj − pj − xj)

+)/
∑L

j=1 dj,

where (dj − pj − xj)
+ = max(dj − pj − xj , 0) is the unavailable quantity of raw material j ∈ J

during one unit of time. A penalty cost per unit time which is equal to Pj > 0, j = 1, . . . , L, is
also imposed for each unit or raw material j that is not stored in buffer Bj during a corrective
or a preventive maintenance of the production unit when the buffer Bj is full. This cost is
due to the necessary labor for transferring and storing the raw material in another place until
the completion of the maintenance. We assume that Conditions 1–5 on the cost structure that
we introduced for the problem studied in the previous section are valid if we replace bI with
bP , aI with aP , and m with n. We consider a discrete-time Markov decision process in which
we aim to find a stationary policy which minimizes the expected long-run average cost per
unit of time. Note that for L = 1, the problem was studied in Pavitsos and Kyriakidis [2].

Since the state space S̃ is finite and the state (0, K1, . . . , KL) is accessible from every
other state under any stationary policy, it follows that there exist numbers w(s), s ∈ S and
a constant g that satisfy the average-cost optimality equations. For the states (i, x), 0 ≤ i ≤
n, 0 < xj ≤ Kj , j = 1, . . . , L, the optimality equations have the following form:

w(i, x) = min
{

min
J⊆{1,...,L}

A(J), w(PM,x)
}

, (3.1)

where

A(J) =
∑

j∈J
cj(i) +

L∑

j=1

hjxj +

∑
j/∈J dj +

∑
j∈J

(
dj − pj − xj

)+

∑L
j=1 dj

C

+
∑

j/∈J
Pj

(
pj + xj −Kj

)+ − g +
m+1∑

r=0

qirw
(
r, x′),

(3.2)

w(PM,x) =
L∑

j=1

hjxj + C +
L∑

j=1

Pj

(
pj + xj −Kj

)+

− g + aPw
(
0,min

(
x1 + p1, K1

)
, . . . ,min

(
xL + pL,KL

))

+ (1 − aP )w
(
PM,min

(
x1 + p1, K1

)
, . . . ,min

(
xL + pL,KL

))
.

(3.3)
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If xj = 0 for some values of j ∈ {1, . . . , L}, we must change in (3.2) cj(i) to c̃j(i) for these
values. Note that x′ in (3.2) is a vector with L components in which the jth component is
equal to (xj + pj − dj)

+ if j ∈ J , while, if j /∈ J , it is equal to (xj − dj)
+. It is possible to

prove that w(i, x) ≤ w(i + 1, x), 0 ≤ i ≤ n, 0 ≤ xj ≤ Kj, j = 1, . . . , L, using the dynamic
programming equation for the corresponding finite-horizon problem. The method is exactly
the same as that used for the proof of Corollary 2.2 in the previous section and, therefore,
we omit the details. An immediate consequence of the above monotonicity result is that the
result of Proposition 2.3 is valid for the problem of the optimal preventive maintenance of the
production unit.

3.1. Numerical Examples

Example 3.1. Suppose that L = 2, K1 = 7, K2 = 10, n = 10, aP = 0.6, bP = 0.4, cp = 0.4, cf =
0.8, h1 = 1, h2 = 2, C = 0.5, P1 = 1, P 2 = 1, p1 = 1, d1 = 2, p2 = 1, d2 = 2, c1(i) = 2(i +
1), c̃1(i) = 1.5(i + 1), c2(i) = 3(i + 1), c̃2(i) = 2.5(i + 1), 0 ≤ i ≤ n, and pir = 1/(n + 2 − i), 0 ≤
i ≤ n, i ≤ r ≤ n + 1. We computed the optimal policy by implementing the value-iteration
algorithm. Theminimum average cost was found to be 15.67. In Table 3, we present the critical
numbers i∗(x1, x2), 0 ≤ x1 ≤ 7, 0 ≤ x2 ≤ 10.

We can see from Table 3 that i∗(x1, x2) is not a monotone function with respect to x1 ∈
{0, . . . , 7} or with respect to x2 ∈ {0, . . . , 10}, respectively. Note that, when i < i∗(x1, x2), 0 ≤
x1 ≤ 7, 0 ≤ x2 ≤ 10, the value-iteration algorithm gives the optimal action for the operation
of the production unit. For example, if x1 = 0, x2 = 9, the optimal action when the working
condition of the installation is i ∈ {0, 1, 2, 3, 4} is to pull rawmaterial 1 from buffer B1 and raw
material 2 from buffer B2 (i.e., J = {1, 2}), while, when the working condition is i ∈ {5, 6, 7}
the optimal condition is to pull only raw material 2 from buffer B2 (i.e., J = {2}).

Example 3.2. Suppose that L = 2, K1 = 5, K2 = 15, n = 10, a = 0.6, b = 0.4, cp = 0.5, cf =
0.8, C = 0.5, P 1 = 1, P2 = 1, p1 = 1, d1 = 2, p2 = 1, d2 = 2, c1(i) = 2(i + 1), c̃1(i) = 1.5(i +
1), c2(i) = 3(i + 1), c̃2(i) = 2.5(i + 1), 0 ≤ i ≤ n, and pir = 1/(n + 2 − i), 0 ≤ i ≤ n, i ≤ r ≤
n + 1. In Figure 2 we present the graph of the minimum average cost g(h1) as a function of
h1 ∈ {1, . . . , 10}, if h2 = 1, and the graph of the minimum average cost g(h2) as a function of
h2 ∈ {1, . . . , 10}, if h1 = 1. We observe that g(hi), i = 1, 2, increases as hi increases. The increase
of the minimum average cost is more intense when h2 increases. This can be explained by the
fact that the capacity of buffer B2 is considerably greater than the capacity of buffer B1.

4. Conclusions and Future Research

We presented two discrete-time Markov decision models for the optimal condition-based
preventive maintenance of a production system which consists of two machines and L
intermediate buffers. The first machine transfers L different raw materials to the buffers,
and the second machine draws the raw materials from the buffers. The second machine is
considered to be a production unit that assembles the raw materials in order to produce
the final product. In the first model, it is assumed that only the first machine deteriorates
stochastically over time while the production unit is always in operative condition. It is
possible to monitor the first machine at discrete equidistant time epochs and to classify it
into one working condition that describes its level of deterioration. If the first machine is
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Table 3: The critical numbers i∗(x1, x2), 0 ≤ x1 ≤ 7, 0 ≤ x2 ≤ 10.

x2\x1 0 1 2 3 4 5 6 7
0 2 6 7 7 7 6 4 2
1 8 9 9 9 9 9 8 8
2 9 10 10 10 10 10 9 9
3 10 10 10 10 10 10 10 1
4 10 10 10 10 10 10 10 10
5 10 10 10 10 10 10 10 10
6 10 10 10 10 10 10 10 10
7 10 10 10 10 10 10 10 10
8 10 10 10 10 10 10 10 10
9 8 8 9 9 9 9 9 9
10 3 4 4 5 5 5 4 3
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Figure 2: The minimum average cost g(h1) and g(h2).

in failed condition a corrective maintenance must be commenced; otherwise a preventive
maintenance may be performed or the action of transferring raw materials to any subset of
the set of L buffers may be selected. The maintenances bring the first machine to its perfect
condition. In the second model it is assumed, that only the production unit deteriorates over
time, and the first machine is always in operative machine. It is possible to determine the level
of deterioration of the production unit after inspecting it at discrete equidistant time epochs. If
the production unit is in failed condition a corrective maintenance must be started; otherwise
a preventive maintenance may be initiated or the action of pulling the raw materials from
any subset of the set of L buffers may be selected. Both maintenances bring the production
unit to its perfect condition.

In both models we considered the problem of determining the policy that minimizes
the expected long-run average cost per unit time. If the maintenance times are geometrically
distributed we proved that, in both models, the optimal policy is of control-limit type, that is,
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for fixed contents of the buffers it prescribes a preventive maintenance of the first machine or
the production unit if and only if its degree of deterioration exceeds some critical level. The
proof was achieved through the corresponding finite-horizon problem.

A topic for future research could be a more complicated problem in which the first
machine transfers the raw materials to the buffers and the production unit draws them from
the buffers in a random manner. Another topic for future research could be the study of the
maintenance problems that we would have if the maintenance times are not geometrically
distributed but follow some general distributions with suitable conditions.
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