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We, for the first time, investigate the basic behaviours of a chaotic switching fractional system
via both theoretical and numerical ways. To deeply understand the mechanism of the chaos gen-
eration, we also analyse the parameterization of the switching fractional system and the dynamics
of the system’s trajectory. Then we try to write down some detailed rules for designing chaotic or
chaos-like systems by switching fractional systems, which can be used in the future application.
At last, for the first time, we proposed a new switching fractional system, which can generate three
attractors with the positive largest Lyapunov exponent.

1. Introduction

Over the last two decades, since chaos has been demonstrated that it can be useful and
well controlled [1–3], increasing interests have been found in many areas such as secure
communication [4], data encryption [5], nonlinear optimization [6], synchronization [7],
and biology [8] (for more areas, see [3]). Therefore, generating chaos, especially generating
chaos via simple physical devices, has been paid extensive and massive attention [9–14]. Just
like the n-scroll Chua’s circuit [15], switching piecewise-linear function can easily generate
various chaos dynamic behaviours. Especially the literatures [16–18] and give great details
to generate chaos via switching systems.

On the other hand, fractional calculus is a mathematical branch which has more than
300 years of history but just been interested recently in physics [19], chemistry, biology, and
engineering [20]. Since fractional-order calculus can be treated as an expanding concept of
integer-order calculus, there are many chaos systems that are expanded from integer-order
ones: the fractional-order Chua system [21, 22], the fractional-order Duffing system [23], the
fractional jerk model [24], the fractional-order Lorenz system [25], the fractional-order Chen
system [26], the fractional-order Lü system [27], the fractional-order Rössler system [28],
the fractional-order Arneodo system [29], the fractional-order Newton-Leipnik system [30],
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and the fractional-order Genesio-Tesi system [31]. And also, the fractional-order Ikeda delay
system [32], non-integer-order cellular neural networks [33], and the fractional-order systems
proposed in [34, 35] all can generate chaos.

Generating a new chaotic or chaos-like system is always on the core of the chaos
research with great theoretical and applied meanings. In addition a new chaotic system
usually gets more complex dynamic behaviours being less recognized by people who does
not catch up with the nonlinear dynamics. Thus, a new chaos system may be popular used
in chaotic secure communication and encryption. Not like lots of the existing switching
systems literatures [15–18], there are few literatures about switching fractional systems, even
generating a fractional chaos easily is an increasing topic of many applied and theoretical
fields. Also, as far as we know, there have not been basic dynamical behaviours given to
any chaotic or chaos-like switching fractional systems ever. A significant work of switching
fractional systems is proposed by S. Mohammad and H. Mohammad in [36]. The paper
discussed the switching rules and how to choose the parameters to generate chaos and the
rule of designing switching function have been discussed. However, the detailed relationship
between the parameters and the behaviours of the chaos has not been discussed, not even
being part of some analysis of the basic behaviours of the systems. In the present paper, we
try to research the relationship between the parameters of the system and the behaviours of
the chaos in both analytic and numerical ways. And we even epitomized some more detailed
rules of generating chaotic or chaos-like dynamic behaviours via switching fractional systems
then Mohammad did. Under these rules, we can generate chaotic or chaos-like dynamic
behaviours easily via simple switching fractional systems. At last, we propose a new chaotic
or chaos-like switching fractional system and count out its Lyapunov exponent.

The paper is organized as follows. Section 2 introduces basic definitions and some
theories and lemmas, which are useful in following sections. In Section 3, we analyse an
existing chaos generator and do numerical simulations to research quantificationally the
relationship between the parameter and the dynamic behaviours. And we propose a new
switching fractional systems, which can generate chaotic or chaos-like dynamic behaviours.
Finally Section 4 concludes the paper.

2. Background of Fractional Calculus

2.1. Basic Definitions

There exits three main definitions of fractional-order derivatives. They are Grünwald-
Letnikov fractional derivatives (G-L):

aD
α
t f(t) = lim

h→ 0
nh=t−a

h−α∑n

r=0
(−1)r

(
α

r

)
f(t − rh) (α > 0), (2.1)

Riemann-Liouville fractional derivatives (R-L):

αD
α
t f(t) =

1
Γ(m − α)

dm

dtm

∫ t

a

(t − τ)m−α−1f(τ)dτ (m − 1 ≤ α < m, α > 0), (2.2)
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and Caputo’s fractional derivative:

C
aD

α

t f(t) =
1

Γ(α − n)

∫ t

a

f (n)(τ)dτ

(t − τ)α+1−n
(n − 1 ≤ α < n, α > 0). (2.3)

And since they can transform to each other, our use of fractional derivatives can be free for
all of these three definitions.

2.2. Some Theories and Lemmas

For the requirement in the next part, we list several theories and lemmas. All of them come
from [37].

We first define γ(ε, ϕ) [36]. γ(ε, ϕ) (ε > 0, 0 < ϕ < π) denotes the contour consisting
of the following three parts:

(i) arg τ = ϕ, |τ | ≥ ε,
(ii) −ϕ ≤ arg τ ≤ ϕ, |τ | = ε,
(iii) arg τ = −ϕ, |τ | ≥ ε.

More details of γ(ε, ϕ) can be found in literature [36].

Lemma 2.1. If α < 2, πα/2 < μ < min{π,πα} and ε > 0 is arbitrary, for arbitrary complex z the
following expansion holds:

1
Γ(z)

=
1

2παi

∫

γ(ε,μ)
exp
(
ς1/α
)
ς(1−z−α)/αdς, (2.4)

here Γ(z) is Euler’s gamma function.

Lemma 2.2. If α > 0, β > 0, one obtains

∫z

0
Eα,β(λtα)tβ−1dt = zβEα,β+1(λzα). (2.5)

Theorem 2.3. If 0 < α < 2, β is an arbitrary complex number, and μ is an arbitrary real number such
that

πα

2
< μ < min{π,πα}, (2.6)

then for an arbitrary integer p ≥ 1 the following expansion holds:

Eα,β(z) = −
∑p

k=1

z−k

Γ
(
β − αk

) + Ip(z),

|z| −→ ∞, μ ≤ ∣∣arg(z)∣∣ ≤ π,

(2.7)
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where

Ip(z) =
1

2παizp

∫

γ(1,φ)
exp
(
ς1/α
)
ς
(1−β)/α+p

dς. (2.8)

Using Lemma 2.1 and Theorem 2.3, if 0 < α < 2, |z| → ∞, πα/2 < | arg(z)| ≤ π, we
can quickly obtain the following:

Eα,α(z) =
z−1

Γ(−α) , (2.9)

Eα,α+1(z) =
(

1
Γ(1 − α)

− 1
)
z−1, (2.10)

which will be used in the next section of our paper.

Consider the following initial value problem for a nonhomogeneous fraction differen-
tial equation under nonzero initial conditions:

0D
α
t y(t) − λy(t) = h(t) (t > 0),

[
0D

α−k
t y(t)

]

t=0
= bk (k = 1, 2, . . . , n),

n − 1 < α < n, (2.11)

then we obtain the following solution:

y(t) =
∑n

k=1
bkt

α−kEα,α−k+1(λtα) +
∫ t

0
(t − τ)α−1Eα,α

(
λ(t − τ)α

)
h(τ)dτ. (2.12)

3. Chaos Generation

3.1. Analysis of an Existing Chaos Generator

First, we discuss the chaos generated by the switching fractional system S1 and S2 with the
switching function (3.2):

S1 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dα11x1 = a1x1 + b1y1,

Dα12y1 = −b1x1 + a1y1,

Dα13z1 = −c1z1,

S2 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dα21x2 = a2x2 + b2y2,

Dα22y2 = −b2x2 + a2y2,

Dα23z2 = −c2z2 + p,

(3.1)
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where 0 < α11, α12, α13, α21, α22, α23 < 1, a1, a2, b1, b2, c1, c2, p /= 0,

g
(
x, y, z

)
= x2 + y2 + z2 − 1. (3.2)

This kind of chaos was proposed by the literature [36]. That paper has discussed how
to design the switching rule to generate chaos, how to choose the parameters to generate
chaos, and how to design the switching function to generate chaos. Here we want to discuss
the dynamic behaviours of the chaos more carefully and research the relationship between
the parameters of the system and the dynamic behaviours of the chaos more carefully and
quantificationally.

Here we design the switching rule as follows: when S1 is active, the system will
switch to S2 at the time g(x1(t), y1(t), z1(t)) ≥ 0 with the initial condition of S2 being
(x1(t), y1(t), z1(t)). Similarly, when S2 is active, the system will switch to S1 at the time
g(x2(t), y2(t), z2(t)) < 0 with the initial condition of S1 being (x2(t), y2(t), z2(t)).

And we take S2 to be asymptotically stable and take S1 to be unstable. Then we get
the restricted conditions of the parameters: c2 > 0, |b2| > a2 max{tan(α21π/2), tan(α22π/2)},
|p/c2| < 1, and c1 < 0 or |b1| < a1 tan(α11π/2) or |b1| < a1 tan(α12π/2), only one of
the establishments of the last three conditions is enough. Here we choose |b1| < a1

min{tan(α11π/2), tan(α12π/2)} and make c1 > 0, so that, under the discussion in paper [36],
the switching fractional system will perform chaos.

Then we want to discuss the dynamic behaviours of the chaos more carefully. The
switching function (3.2) and the switching rules divide the whole space into two regions,
which we denote Σ = {(x, y, z) | x2 + y2 + z2 − 1 ≤ 0} and Σ = {(x, y, z) | x2 + y2 + z2 − 1 > 0},
respectively. When the system is in Σ, S2 is active. Since S2 is asymptotically stable, S2 will
converge to its fixed point, which will be discussed in the following. Either the system orbits
reach or does not reach the fixed point, because g(0, 0, p/c2) < 0, as we take above, the system
orbits will go through the plane x2 + y2 + z2 = 1 and then switch to Σ. When the system is in
Σ, S1 is active. Since S1 is unstable, the system orbits will diverge and go through the plane
x2 + y2 + z2 = 1 and then switch to Σ. We will discuss S1 and S2 in the following analytically,
respectively.

We first rewrite S2 as follows:

S2 : Dαν = Aν +U, (3.3)

where

ν =
(
x2, y2, z2

)
, A =

⎡
⎢⎢⎣

a2 b2 0

−b2 a2 0

0 0 −c2

⎤
⎥⎥⎦, U =

⎡
⎢⎢⎣

0 0 0

0 0 0

0 0 p

⎤
⎥⎥⎦. (3.4)

And we can obtain the eigenvalues: λ21,22 = a2 ± ib2, λ23 = −c2. Under the constricted
conditions of the parameters, we can obtain

αijπ

2
<
∣∣arg

(
λij
)∣∣ (

i = 2, j = 1, 2, 3
)
. (3.5)
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Since the eigenvalues are different, we obtain a transformation matrix:

T =

⎡
⎢⎢⎣

−i i 0

1 1 0

0 0 1

⎤
⎥⎥⎦,

T−1 =

⎡
⎢⎢⎢⎢⎢⎣

1
2i

1
2

0

−1
2i

1
2

0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦
,

(3.6)

so that we obtain

Dαν′ = Λν′ +U, (3.7)

where

ν′ = Tν, (3.8)

Λ = TAT−1 = diag(λ21, λ22, λ23). (3.9)

Because of (3.5), we can solve the transformed fractional differential equations (3.7) in
the solution (2.12)with (2.9), so that we obtain

x′
2 = b21

λ21t
−1

Γ(−α21)
, (3.10)

b21 =
[
0D

α21−1
t x2(t)

]

t=0
, (3.11)

y′
2 = b22

λ22t
−1

Γ(−α22)
, (3.12)

b22 =
[
0D

α22−1
t y2(t)

]

t=0
, (3.13)

z′2 = b23
λ−123 t

−1

Γ(−α23)
+ p

∫ t

0
(t − τ)α23−1Eα23,α23

(
λ23(t − τ)α23

)
dτ, (3.14)

b23 =
[
0D

α23−1
t z2(t)

]

t=0
, (3.15)
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By using Lemma 2.2, we obtain

z′2 = b23
λ−123 t

−1

Γ(−α23)
+ ptα23Eα23,α23+1(λ23t

α23). (3.16)

Taking (2.10) into account, we obtain

z′2 = b23
λ−123 t

−1

Γ(−α23)
+

p

λ23

(
1

Γ(1 − α23)
− 1
)
. (3.17)

Using (3.8), we can obtain

x2
2 + y2

2 =
1
2

(
−x′2

2 + y′2
2

)
, z2 = z′2, (3.18)

taking (3.10) and (3.12) into account, we can obtain

x2
2 + y2

2 =
1
2
t−2
(
− 1
Γ2(−α21)

b221

(a2 + ib2)
2
+

1
Γ2(−α22)

b222

(a2 − ib2)
2

)
. (3.19)

when

t −→ +∞,
√
x2
2 + y2

2 −→ 0, z2 −→
p

λ23

(
1

Γ(1 − α23)
− 1
)
. (3.20)

Sowe see that the trajectory of S2 is a spiral line. And (0, 0, (p/λ23)(1/Γ(1−α23)−1)) is the fixed
point of S2. And we can slightly change the restricted condition of the parameters |p/c2| < 1
to

∣∣∣∣
p

−c2

(
1

Γ(1 − α23)
− 1
)∣∣∣∣ < 1. (3.21)

For S1, taking c1 > 0, we can obtain

α13π

2
<
∣∣arg(λ13)

∣∣. (3.22)

Then we can quickly write

z1 = b13
λ−113 t

−1

Γ(−α13)
, (3.23)

when

t −→ +∞, z1 −→ 0 (3.24)

So we see that the trajectory of S1 will fall into the plane z = 0. For x1, y1, because of
their complexity, we do not give their analytic solutions.
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Figure 1: The chaotic attractor generated by the switching fractional system (3.1).

3.2. Numerical Simulations

Now we can do some numerical simulations and research in quantities of relationship
between the parameters and the dynamic behaviours of the chaos. We take all the parameters
under the restricted conditions we proposed above, so that the switching fractional system
(3.1) will show chaos behaviours. Below in this part, we take α11 = α12 = α13 = α21 = α22 =
α23 = 0.9. Taking the parameters: a1 = 1, b1 = 2, c1 = 5, a2 = 0.7, b2 = 6, c2 = 1, p = 1,
the switching fractional system (3.1) has a chaotic attractor, which is shown in Figure 1.
The maximum Lyapunov exponent of this attractor is LE = 0.0155. And Figure 2 shows the
directions of the trajectory of the switching fractional system (3.1) under the parameters:
a1 = 1, b1 = 2, c1 = 5, a2 = 0.6, b2 = 5, c2 = 1, p = 1. The trajectory is denoted by the arrows.

We first focus on the parameters a2 and b2. In this segment, we fix the parameters:
a1 = 1, b1 = 2, c1 = 5, c2 = 1, p = 1. We first take the parameter a2 = 0.7 and increase b2
from 6 to 7 with step 1. Figure 3 shows the phase portraits of the switching fractional system
(3.1) under these parameters. From Figure 3, we can conclude that the increase of b2 makes S2

converge faster. This conclusion is established in all conditions, which satisfy a2 ∈ (−∞,+∞)
and |b2| > a2 max{tan(α21π/2), tan(α22π/2)}. Then we take the parameter b2 = 6 and increase
a2 from 0.5 to 0.6 with step 0.1. Figure 4 shows the phase portraits of the switching fractional
system (3.1) under these parameters. From Figure 4, we can conclude that the increase of
a2 makes S2 converge slower. This conclusion is established in all conditions, which satisfy
a2 ∈ (−∞,+∞) and |b2| > a2 max{tan(α21π/2), tan(α22π/2)}.

Then we focus on the parameters c2 and p. In this segment, we fix the parameters:
a2 = 0.7, b2 = 6, a1 = 1, b1 = 2, c1 = 5. We increase c2 and p simultaneously from 1 to 2 with
step 1. Figure 5 shows the phase portraits of the switching fractional system (3.1) under these
parameters. From Figure 5, we can conclude that the increase of c2 makes S2 reach the plane

XYZ′ =
(
0, 0,

p

−c2

(
1

Γ(1 − α23)
− 1
))

(3.25)

faster. This conclusion is established in all conditions, which satisfy c2 > 0.
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Figure 2: The trajectory of the switching fractional system (3.1).
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(a) b2 = 6
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(b) b2 = 7

Figure 3: Phase portraits of the switching fractional system (3.1).
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(a) a2 = 0.5
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(b) a2 = 0.6

Figure 4: Phase portraits of the switching fractional system (3.1).
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(a) c2 = 1
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(b) c2 = 2

Figure 5: Phase portraits of the switching fractional system (3.1).
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(a) a1 = 1
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(b) a1 = 3

Figure 6: Phase portraits of the switching fractional system (3.1).

For S1, we first focus on the parameters a1 and b1. In this segment, we fix the
parameters: c1 = 4, a2 = 0.7, b2 = 6, c2 = 1, p = 1. We first take the parameter b1 = 6
and increase a1 from 1 to 3 with step 2. Figure 6 shows the phase portraits of the switching
fractional system (3.1) under these parameters. From Figure 6, we can conclude that the
increase of a1 makes S1 diverge faster. This conclusion is established in all conditions,
which satisfy a1 ∈ (−∞,+∞) and |b1| < a1 min{tan(α11π/2), tan(α12π/2)}. Then we take
the parameter a1 = 1 and increase b1 from 3 to 6 with step 3. Figure 7 shows the phase
portraits of the switching fractional system (3.1) under these parameters. From Figure 7, we
can conclude that the increase of b1 makes S1 diverge slower. This conclusion is established
in all conditions, which satisfy a1 ∈ (−∞,+∞) and |b1| < a1 min{tan(α11π/2), tan(α12π/2)}.

Then we focus on the parameters c1. In this segment, we fix the parameters: a1 = 1,
b1 = 2, a2 = 0.7, b2 = 6, c2 = 1, p = 1. We increase c1 from 1 to 2 with step 1. Figure 8 shows
the phase portraits of the switching fractional system (3.1) under these parameters. From
Figure 8, we can conclude that the increase of c1 makes S1 reach the plane

XYZ = (0, 0, 0) (3.26)

faster. This conclusion is established in all conditions, which satisfy c1 > 0.
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Figure 7: Phase portraits of the switching fractional system (3.1).
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Figure 8: Phase portraits of the switching fractional system (3.1).

3.3. More Detailed Rules to Design Chaotic or Chaos-Like Fractional
Switching Systems

Here we epitomize some more detailed rules of relationship of the dynamic behaviours of
the switching fractional systems and the parameters of the switching fractional systems. Take
the switching fractional system (3.1) with the parameters under the restricted conditions of
the parameters, which we proposed previously, for example. There are two fixed points of
the switching fractional system (3.1). The parameters c1, c2, and p control the speed of the
switching fractional system to reach the fixed points, respectively. The parameters a1 and
b1 control the speed of S1 to diverge. The parameters a2 and b2 control the speed of S2

to converge. Taking the experiments, we did above, into account, we conclude that if we
want the switching fractional system to arrive at the fixed points faster, we can increase the
parameters c1, c2, and p. However, c1, c2, and p should also not be so large that the orbits of
the switching fractional system will cross through the plane x2 + y2 + z2 = 1, because the sum
x2
1+y

2
1+z

2
1−1 will be bigger or smaller than 0, respectively; if we want S1 to diverge faster, we

can increase the parameter a1 or decrease the parameter b1; if we want S2 to converge faster,
we can increase the parameter b2 or decrease the parameter a2.
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So the rules are that we should balance all the parameters when we apply the rules
obtained in the literature [36]. If we find that S2 converges too fast, we may decrease the
value of either b2 or c2 or increase a2; it is also very similar to S1. But remember if either S1

or S2 converges or diverges so fast that it cannot reach its own fixed point plane, the pattern
we get may not show two attractors. Even if we obey these rules, we can design a chaotic or
chaos-like switching fractional system with a wide range of the parameter values.

3.4. A New Chaotic or Chaos-Like Switching Fractional System

Under the rules above, we here propose a new chaotic or chaos-like switching fractional
system S1, S2, and S3 with the switching function (3.2). Actually, under the rules above, lots
of chaotic or chaos-like switching fractional systems can also be proposed:

S1 :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dα11x1 = a1x1 + b1y1,

Dα12y1 = −b1x1 + a1y1,

Dα13z1 = −c1z1 + p1,

S2 :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dα21x2 = a2x2 + b2y2,

Dα22y2 = −b2x2 + a2y2,

Dα23z2 = −c2z2,

S3 :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dα31x3 = a3x3 + b3y3,

Dα32y3 = −b3x3 + a3y3,

Dα33z3 = −c3z3 + p2,

(3.27)

where 0 < α11, α12, α13, α21, α22, α23, α31, α32, α33 < 1, a1, a2, a3, b1, b2, b3, c1, c2, c3, p1, p2 /= 0,

g1
(
x, y, z

)
= x2 + y2 + z2 − 1, g2

(
x, y
)
= xy. (3.28)

We take the switching rule as follows: when S2 is active, the systemwill switch to S1 at
the time g1(x2(t), y2(t), z2(t)) ≥ 0 and g2(x2(t), y2(t)) ≥ 0 with the initial condition of S1 being
(x2(t), y2(t), z2(t)) and the system will switch to S3 at the time g1(x2(t), y2(t), z2(t)) ≥ 0 and
g2(x2(t), y2(t)) < 0 with the initial condition of S1 being (x2(t), y2(t), z2(t)). When S1 is active,
the system will switch to S2 at the time g1(x1(t), y1(t), z1(t)) < 0 with the initial condition
of S2 being (x1(t), y1(t), z1(t)). When S3 is active, the system will switch to S2 at the time
g1(x3(t), y3(t), z3(t)) < 0 with the initial condition of S2 being (x3(t), y3(t), z3(t)).



Mathematical Problems in Engineering 13

−2
−1

0
1

2

−2
−1

0
1

2

x(t)
y(t)

z
(t
)

−1

−0.5

0

0.5

1

Figure 9: The chaotic attractor generated by the switching fractional system (3.27).

We take S1, S3 to be asymptotically stable, while we take S2 to be unstable. Then we
determine the parameters:

|b1| > a1 max
{
tan
(α11π

2

)
, tan

(α12π

2

)}
, c1 > 0,

∣∣∣∣
p1
−c1

(
1

Γ(1 − α13)
− 1
)∣∣∣∣ < 1,

|b2| < a2 min
{
tan
(α21π

2

)
, tan

(α22π

2

)}
, c2 > 0,

|b3| > a3 max
{
tan
(α31π

2

)
, tan

(α32π

2

)}
, c3 > 0,

∣∣∣∣
p3
−c3

(
1

Γ(1 − α33)
− 1
)∣∣∣∣ < 1.

(3.29)

We take the parameters: a1 = 0.6, b1 = 9, c1 = 5, p1 = 5, a2 = 1, b2 = 2, c2 = 5, a3 = 0.6,
b3 = 9, c3 = 5, p2 = −5, α11 = α12 = α13 = α21 = α22 = α23 = α31 = α32 = α33 = 0.9. The switching
fractional system (3.27), has a chaotic attractor, which is shown in Figure 9. The maximum
Lyapunov exponent of this attractor is LE = 0.0434.

We take the parameters: a1 = 0.6, b1 = 9, c1 = 5, p1 = 5, a2 = 1, b2 = 2, c2 = 5,
a3 = 0.6, b3 = 9, c3 = 5, p2 = −5, α11 = α12 = α21 = α22 = α31 = α32 = 0.9, α13 = α23 =
α33 = 0.5. The switching fractional system (3.27), has a chaotic attractor, which is shown in
Figure 10. The maximum Lyapunov exponent of this attractor is LE = 0.0255. From Figure 10,
we can obtain that the switching fractional system (3.27), under variant parameters αij (i =
1, 2, 3, j = 1, 2, 3) can also perform chaotic or chaos-like dynamic behaviours.

4. Conclusions

In this paper, we for the first time study the basic behaviours of a chaotic switching fractional
system both theoretically and numerically. We also analyse the parameterization of the
switching fractional system and the dynamics of the system’s trajectory. Then we try to write
down some more detailed rules for designing chaotic or chaos-like systems by switching
fractional systems based on the basic rules given in the literature [36]. At last, for the first
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Figure 10: The chaotic attractor generated by the switching fractional system (3.27).

time, we proposed a new switching fractional system, which can generate three attractors
with the positive largest Lyapunov exponent.
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[18] J. H. Lü, X. H. Yu, and G. R. Chen, “Generating chaotic attractors with multiple merged basins of
attraction: a switching piecewise-linear control approach,” IEEE Transaction on Circuits and Systems,
vol. 50, no. 2, pp. 198–207, 2003.

[19] E. Goldfain, “Fractional dynamics and the standard model for particle physics,” Communications in
Nonlinear Science and Numerical Simulation, vol. 13, no. 7, pp. 1397–1404, 2008.

[20] X. Y. Wang and Y. H. He, “Projective synchronization of fractional order chaotic system based on
linear separation,” Physics Letters, Section A, vol. 372, no. 4, pp. 435–441, 2008.

[21] T. T. Hartley, C. F. Lorenzo, and H. K. Qammer, “Chaos in a fractional order Chua’s system,” IEEE
Transactions on Circuits and Systems, vol. 42, no. 8, pp. 485–490, 1995.
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