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The nonlinear model is crucial to prepare, supervise, and analyze mechanical system. In this paper,
a new nonparametric and output-only identification procedure for nonlinear damping is studied.
By introducing the concept of the stochastic state space, we formulate a stochastic inverse problem
for a nonlinear damping. The solution of the stochastic inverse problem is designed as probabilistic
expression via the hierarchical Bayesian formulation by considering various uncertainties such as
the information insufficiency in parameter of interests or errors in measurement. The probability
space is estimated using Markov chain Monte Carlo (MCMC). The applicability of the proposed
method is demonstrated through numerical experiment and particular application to a realistic
problem related to ship roll motion.

1. Introduction

The energy dissipation in dynamic system is often neglected or overly simplified in engi-
neering design. However, there are many practical cases where an appropriate nonlinear
model of damping is essential and an effective identification is needed. One example could
be a material with high damping which is widely used for vibration and noise reduction.
In addition, the increasing demands for enhanced and reliable performance of vibrating
structures are requiring appropriate modeling of nonlinear damping for mechanical system.
This is because of the fact that different types of nonlinear model could yield different
responses of a system.

The identification problems of nonlinear system are very important in engineering in
order to avoid unwanted instabilities or failure of the system. There have been considerable
numbers of studies on the identification of nonlinear damping. For example, Iourtchenko
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et al. [1] successfully proposed an identification method. Iourtchenko and Dimentberg
[2] further described a procedure based on the stochastic averaging method for in-
service identification of the damping characteristic from a measured stationary response.
Mohammad et al. [3] introduced a method to estimate nonlinear damping for linear and
nonlinear structures. Tomme [4] introduced a method, based on modal analysis, to evaluate
damping from measurements in materials and structures. The related studies mentioned
previously are parametric identification methods, which focus on direct estimations of co-
efficients of assumed form for nonlinear damping in the nonlinear system.

Recently, Jang et al. [5] proposed a nonparametric identification method based on
deterministic inverse approach, Landweber regularization method. Jang et al. [6] proved
the applicability of the method through experimental work. The results presented in the
literatures [5, 6] are very encouraging because this method does not require any assumption
of the form of nonlinear damping unlike parametric identification method. However, this
method has some limitations because it is dependent on the deterministic inverse approach.
This kind of technique is content with singling out one solution without quantifying the
related uncertainties or rigorously considering the stochastic nature of data noise driven
by approximation errors, rounding errors, and measurement errors. Furthermore, it is not
possible to explain the variability of the possible solutions because there exists an ensemble
of inverse solutions consistent with the data due to unstable nature.

In this study, we proposed a new method based on a stochastic inverse approach to
identify a nonlinear damping of nonlinear oscillatory system. The unique features of this
paper are as follows. Firstly, an original method for the identification of nonlinear damping is
proposed. Themethod can also be classified as nonparametric methodwhich does not require
any assumption of the form of nonlinear damping. That is, this method can be applicable
to a system when no or little information is available about the actual form of nonlinear
damping unlike the parametric method [1–4] which is limited to be used when there is
enough knowledge about the nonlinear damping. Secondly, we formulate a stochastic inverse
problem of identifying nonlinear damping by introducing a stochastic state space. The
stochastic inverse problem studied here can naturally resolve the computational difficulty
of the deterministic inverse model [5–10], that is, lack of stability. In addition, it can quantify
various uncertainties arising from an insufficiency of information on parameter of interests
or measurement errors. Thirdly, we develop methodologies enabling probabilistic modeling
for the solution based on hierarchical Bayesian formulation [11–14]. There have been lots
of studies on the use of the hierarchical models applied to very challenging problems
which arise in atmospheric chemistry, environmental sciences, or metabolic models [15–17].
Although this study considers a relatively simple mathematical model which is expressed
as nonlinear single degree of freedom system, the present work may provide some insights
into the work involved in nonlinear system identification. The main novelty is that we do not
focus directly on the hierarchical model, but rather, on the identification procedure. Lastly,
the method presented in this paper only requires system output, that is, motion responses. If
the input, the prescribed external force, is acted on the system, then the nonlinearity of the
system is easily found through the “black-box” model.

The outline of this paper is as follows. Section 2 introduces the mathematical descrip-
tion for the problem. In Section 3, nonlinear damping identification problem is discussedwith
its instable characteristics. Section 4 illustrates the formulation of stochastic inverse problem.
In addition, probabilistic modeling of the stochastic inverse solution with the explanation
of Markov random field [18, 19] is also described. Hierarchical Bayesian formulation and
exploration of the posterior state space via Markov chain Monte Carlo [20] are introduced in
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Sections 5 and 6, respectively. Section 7 illustrates the identification procedure with numerical
examples. The particular application to a realistic problem is demonstrated in Section 8. The
problem is concerned with identifying nonlinear roll damping of a ship from free-roll decay
experiment. Finally, we summarize the result and make conclusion in Section 9.

2. Mathematical Description

Consider nonlinear single degree of freedom system as

mÿ + B
(
y, ẏ
)
+M

(
y
)
= 0, (2.1)

with initial conditions

y(0) = α, ẏ(0) = β. (2.2)

In (2.1), B and M are nonlinear damping and restoring force, respectively. In this study, the
nonlinear restoring function is considered to be known a priori and assumed to have the form

M
(
y
)
= ML

(
y
)
+MNL

(
y
)
= ky +MNL

(
y
)
, (2.3)

whereML(y) andMNL(y) are linear and nonlinear restoring components. Then, (2.1) can be
rewritten as

mÿ + B
(
y, ẏ
)
+ k1y +MNL

(
y
)
= 0. (2.4)

From the concept of variation of parameters, nonlinear motion equation (2.1) can be trans-
formed to following nonlinear Volterra integral equation of the second kind [21]:

y(t) =
α

μ
ξ1(t) +

β

ν
ξ2(t) −

∫ t

0

ξ1(τ)ξ2(t) − ξ1(t)ξ2(τ)
mW(τ)

{
B
(
y, ẏ
)
+MNL

(
y
)}

dτ, (2.5)

where ξ1 and ξ2 satisfy

mξ̈1 + k1ξ1 = 0, ξ1(0) = μ,ξ̇1(0) = 0,

mξ̈2 + k1ξ2 = 0, ξ2(0) = 0,ξ̇2(0) = ν,
(2.6)

and Wronskian W is

W ≡
∣∣∣∣
ξ1 ξ2
ξ̇1 ξ̇2

∣∣∣∣. (2.7)
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3. Nonlinear Damping Identification

The focus of this study is to identify nonlinear damping of the nonlinear dynamic system
when dynamic responses are observed. The identification of this unknown nonlinear damp-
ing becomes feasible with measurement of responses during 0 < t < T . Let y denote the
measured response data, that is, y = [y1, y2, . . . , ym]; then we can obtain the following system
for unknown nonlinear damping θ(τj) = B[y(τj), ẏ(τj)]:

gi = Hijθj , (3.1)

where

Hij = Δτ
ξ1(ti)ξ2

(
τj
) − ξ1

(
τj
)
ξ2(ti)

mW
(
τj
) for ti < τj , (3.2)

g(ti) = y(ti) − α

μ
ξ1(ti) −

β

ν
ξ2(ti) + Δτ

∑

ti<τj

ξ1(ti)ξ2
(
τj
) − ξ1

(
τj
)
ξ2(ti)

mW
(
τj
) MNL

[
y; τj

]
. (3.3)

The identification of the unknown nonlinear damping B can be achieved by solving
(3.1) regardless of any assumption on the form of nonlinear damping. Therefore, this method
can be classified as the nonparametric method. The merit of nonparametric method is that
this method does not require the specific form of a system explicitly.

However, unfortunately, (3.1) becomes ill-conditioned system causing computational
difficulty to obtain inverse solution. This is mainly because the system (3.1) is obtained by
approximating the first-kind integral operator. According to inverse problem theory [22, 23],
the approximation of the first-kind integral operator yields ill-conditioned system regardless
of the choice of approximate methods such as the quadrature method and the Galerkin
method [22]with orthonormal basis functions. Thus, the identification of nonlinear damping
is very difficult to achieve both mathematically and numerically because even very small
amount of noisy data in the measured displacement can be amplified and can give an effect
on an inverse solution.

4. Stochastic Inverse Formalism

To address the difficulty discussed in the previous section, we newly formulate a stochastic
inverse problem for the identification of the nonlinear damping by introducing a stochastic
state space. A stochastic inverse problem can be formulated by considering variables g and
θ in (3.1) as random variables. Let us define a multivariate random variables Θ : Ω → Rm;
then a multivariate random variable G : Ω → Rn can be defined by

G = HΘ. (4.1)

For each realization g = {g1, g2, . . . , gn} of g = G, the following relationship is given:

g = Hθ, (4.2)
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where θ = {θ1, θ2, . . . , θm} is a realization of the random variable Θ. Equation (4.2) can be
interpreted as a stochastic function corresponding to (3.1) because it is a function of random
variables. Therefore, the problem of finding θ given a realization g is the stochastic inverse
problem. Unlike the ill-conditioned system in (3.1), (4.2) becomes wellposed in an expanded
stochastic space and gives a solution with distribution of random unknowns.

Assume that the dynamic response y is observed, then a single realization of directly
observable parameter g can be obtained from (3.3), and then the solution to the stochastic
inverse problem can be expressed by Bayes’ rule [11–14]:

p(θ | g) = p(g | θ)p(θ)
p(g)

, (4.3)

where p(g | θ), p(θ), and p(g) are known as the likelihood, the prior probability density
function, and the normalizing constant, respectively. It is noted that the normalizing constant
is not necessary to be computed for sampling procedure [11–14]. Posterior probability density
function p(θ | g) in (4.3) can then be evaluated as follows:

p(θ | g) ∝ p(g | θ)p(θ). (4.4)

It is usually easy to obtain the likelihood p(g | θ) provided that the measurement data
is contaminated by Gaussian random noise ε with zero-mean and standard deviation σ. The
likelihood then depends on the distribution of random noise. Consequently, the likelihood is
given by

p(θ | g) ∝
(
σ2
)−m/2

exp

(

−‖Hθ − g‖22
2σ2

)

, (4.5)

where ‖ · ‖2 andm refer to Euclidean norm and the number of measurements, respectively.
Next, we should consider the prior probability density function p(θ)which reflects the

information of the unknown θ prior to collecting the data. In this paper, we adopt Gaussian
model with Markov random field [18, 19], which is the most popular model for prior. A
Gaussian Markov random field for the unknown θ is of the following form:

p(θ) ∝ λn/2 exp
(
−1
2
λθTWθ

)
. (4.6)

Here, n is dimension of θ, λ is the scaling parameter, and the matrix W ∈ Rn×n is
determined as

Wij =

⎧
⎪⎪⎨

⎪⎪⎩

ni, i = j,

−1, i ∼ j,

0, otherwise,

(4.7)
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where ni is the number of neighbors for the point i. Then, with the likelihood (4.5) and the
prior distribution (4.6), posterior probability density function (4.3) can be formulated as

p(θ | g) ∝
(
σ2
)−m/2

exp

(

−‖Hθ − g‖22
2σ2

)

λn/2 exp
(
−1
2
λθTWθ

)
. (4.8)

5. Hierarchical Bayesian Formulation

The maximum a posteriori (MAP) estimate [11–14] for posterior probability density function
(4.8) can be derived as

θmap = argmin
θ

{
‖Hθ − g‖22 + λσ2θTWθ

}
, (5.1)

and the MAP estimation is similar to Tikhonov regularization method [22–24], the represent-
ative deterministic inverse approach, which minimizes the functional

A(θ) = ‖Hθ − g‖22 + ηθTWθ (5.2)

with η = λσ2. Therefore, it can be easily found that the scaling parameter λ and the
standard deviation σ play an important role like the regularization parameter in the
deterministic approaches. Furthermore, the standard deviation σ describes the noise level
of the measurement data, and it is hard to quantify directly, except when the experiment for
acquisition of data is not carried out repeatedly. In almost all deterministic approaches, the
performance of methods highly depends on the regularization parameter and this parameter
needs to be chosen a priori [5, 6, 22–24]. However, the choice of the optimal regularization
parameter has never been trivial.

Unlike the deterministic inverse approach, a hierarchical Bayesian model, which is
known as modern Bayesian analysis, provides a flexible way to choose hyperparameters
σ and λ by treating these parameters as random variables [11–14]. As a result, the
hyperparameters are automatically chosen through the hierarchical Bayesian formulation
and there is no need to worry about the choice of optimal regularization parameter unlike
deterministic inverse approach. This is one of distinct features of stochastic inverse problem.
The hierarchical Bayesian model [11–14] for the present identification problem can then be
formulated as

p(θ, λ, σ | g) ∝
(
σ2
)−m/2

exp

(

−‖Hθ − g‖22
2σ2

)

λn/2 exp
(
−1
2
λθTWθ

)

· λα1−1 exp
(−β1λ

) 1

(σ2)α2+1
exp
(
− β2

σ2

)
,

(5.3)

where (α1, β1) and (α2, β2) are pairs for gamma distribution for λ and inverse gamma
distribution for σ:

p(λ) ∝ λα1−1 exp
(−β1λ

)
, p

(
σ2
)
∝ 1

(σ2)α2+1
exp
(
− β2

σ2

)
. (5.4)
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(i) initialize θ(0), λ(0) and σ(0)

(ii) For i = 0 : NMCMC − 1
Sample θ1

(i+1) ∼ p(θ1 | θ(i+1)
−1 , λ(i), σ(i))

Sample θ2
(i+1) ∼ p(θ2 | θ(i+1)

−2 , λ(i), σ(i))
. . .

Sample θn
(i+1) ∼ p(θn | θ(i+1)

−n , λ(i), σ(i))
Sample λ(i+1) ∼ p(λ|θ(i+1), σ(i))
Sample u1 ∼ U(0, 1)
Sample λ(∗) ∼ q(λ(∗) | λ(i))
if u1 < A(λ(i), λ(∗)) = min

{

1,
p(λ(∗) | θ(i+1), σ(i))q(λ(i) | λ(∗))
p(λ(i) | θ(i+1), σ(i))q(λ(∗) | λ(i))

}

λ(i+1) = λ(∗)

else
λ(i+1) = λ(i)

Sample u2 ∼ U(0, 1)
Sample σ(∗) ∼ q(σ(∗) | σ(i))

if u2 < A(σ(i), σ(∗)) = min

{

1,
p(σ(∗) | θ(i+1), λ(i+1))q(σ(i) | σ(∗))

p(σ(i) | θ(i+1), λ(i+1))q(σ(∗)|σ(i))

}

σ(i+1) = σ(∗)

else
σ(i+1) = σ(i)

Algorithm 1

6. Posterior State Exploration

The posterior probability density function (5.3) corresponding to the solution of inverse
problem in (4.2)was formulated. This probability function quantifies associated uncertainties
and includes a stochastic nature of data driven by various errors. The posterior probability
density function (5.3) needs to be estimated for the purpose of identification of nonlinear
damping which is desired solution of the stochastic inverse problem.

The estimation can be achieved through Markov chain Monte Carlo combined with
Metropolis-Hastings and Gibbs algorithms [25, 26].

In Algorithm 1,NMCMC is the total number of samples, θ(i+1)
−j refers to {θ(i+1)

1 , . . . , θ
(i+1)
j−1 ,

θ
(i)
j+1, . . . , θ

(i)
m }, q(σ(∗) | σ(i)) is an easy-to-sample proposal distribution, and the conditional

p(θi | θ−i, λ, σ) which follows a multivariate Gaussian distribution can be expressed by

p(θi | θ−i, λ, σ) ∝ exp

(

−
(
θi − μi

)2

2σ2
i

)

,

μi =
bi
2ai

, σi =

√
1
ai
,

ai =
n∑

s=1

Hsi

σ2
+ λWii, bi = 2

n∑

s=1

μsHsi

σ2
− λμp,

μs =
∑

t /= i

Hstθt, μp =
∑

j /= i

Wjiθj +
∑

k /= i

Wikθk.

(6.1)
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Figure 1: The simulated responses of the numerical example.

In a similar manner, the full conditional p(λ | θ, σ) and p(σ | θ, λ) can also be derived as

p(λ | θ, σ) ∝ λn/2+α1−1 exp
(
−
(
1
2
θTWθ + β1

)
λ

)
,

p(σ | θ, λ) ∝
(
σ2
)−m/2+α2−1

exp

(

−‖Hθ − g‖22
2σ2

− β2

σ2

)

.

(6.2)

7. Numerical Experiments

In order to demonstrate the workability of the method proposed to identify nonlinear damp-
ing, the numerical experiments are carried out. As a numerical example, Van der Pol Equation
[27] is considered as

ÿ − μ
(
1 − y2

)
ẏ + y = 0, (7.1)

where μ = 1. Comparison of (2.1) and (7.1) shows that B(y, ẏ) = μ(1 − y2)ẏ andM(y) = y.
As first step toward the identification of nonlinear damping, the nonlinear model (7.1)

is simulated using numerical integration scheme such as the Runge-Kutta method with the
initial conditions y(0) = 1 and ẏ(0) = 0. Figure 1 plots the simulated responses and phase
diagram with respect to time. In this study, the simulated displacement is considered as the
measured data for the inverse identification of nonlinear damping. If the displacement is
measured, the pseudo-displacement g which is necessary data for the identification of the
nonlinear damping can be calculated through (3.3) and is plotted in Figure 2. In practice, the
measured data is contaminated with the various noises such as approximation errors and
rounding errors. In order to examine this kind of uncertainties, the synthetic noisy data is
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Figure 2: The calculated pseudo-displacement g and noisy data gδ for the first example.
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Figure 3: The numerical solution of the numerical example through pseudoinversion.

generated by adding Gaussian random noise with zero mean and unit standard deviation.
The noisy data gδ = g + ewith 10.1% noise is also plotted in Figure 2.

To show the instability of the original mathematical model in (3.1), the numerical
solution without any numerical treatments is first shown in Figure 3. That is, after decom-
posing (3.1) into singular systems [28] with singular values and vectors, the pseudoinverse
[22, 23] is conducted. For the numerical experiments, the number of measurement and the
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Figure 4: The distribution of the singular values.

dimension of unknown θ are considered as (m,n) = (301, 301) and the elapsed time T is
15 s. The magnitude of the solution in Figure 3 is unrealistically high and thus this solution is
completely useless. Figure 4 shows the distribution of the singular values from the singular
value decomposition [28] of the approximated system. Some of singular values become very
small, and this makes the original mathematical model very unstable. In order to address this
difficulty, we follow the solution procedure by formulating the stochastic inverse problem.

The hierarchical Bayesian formulation (5.3) is adopted as a probabilistic model for
the stochastic inverse solution. In order to explore the posterior state, Markov chain Monte
Carlo is used as described in Section 6. For the algorithm, the initial guesses λ(0) and σ(0)

for hyperparameters are taken to be 1 and 0.1 and θ(0) is considered to be zero vectors. In
addition, the pairs of parameters (α1, β1) and (α2, β2) are taken to be (1, 0.1) and (1, 0.1),
respectively. The total number of samples NMCMC for Algorithm 1 is taken to be 50,000, and
the last 25,000 realizations are used to estimate statistics such as mean and standard deviation
for the nonlinear damping θ.

The numerical results are shown in Figure 5. The upper and lower dotted lines
denote the 95% credible interval. It is easily found that the posterior mean E{θ} is fairly
accurate compared with exact solution, and the credible interval shows the quantification of
its associated uncertainty corresponding to the measured data. Note here that the number
of samples means the number of realization for the unknown θ = {θ1, θ2, . . . , θm}, and
for each element θi of the unknown θ has 25,000 realizations. Examples of trace plots are
illustrated in Figure 6 for θ1 and θ100 : θ1 and θ100 correspond to the samples for t = 0 s
and 5 s, respectively. The quality of the MCMC sample may be estimated by inspecting the
autocorrelation of a solution sequence [13]. The scale parameter σq for a proposal distribution
q(σ | σ∗) ∝ exp(−(σ − σ∗)2/(2σq

2)) can affect the efficiency of the Markov chain. The stronger
correlation may result in poor sampling efficiency. Here, we used σq = 0.05 to produce a
sample with reasonably low autocorrelation.

Now it is time to determine the nonlinear damping. Once the solution is obtained,
the nonlinear damping can be determined from the relationship θ(t) = −B[y(t), ẏ(t)]. In
this study, the posterior mean E{θ} is used and the result is depicted in Figure 7. Finally,
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Figure 5: The numerical results from MCMC computations.

the displacement and velocity are resimulated by using the identified nonlinear damping
in Figure 8. It is confirmed that the results are in well coincidence with exact motion
response.

8. A Particular Application to Realistic Problem: Ship Roll Motion

The results in the numerical example illustrated in Section 7 are fairly good. However,
the results have a limitation that the order of damping magnitude is same order with the
restoring. In practice, the order of damping magnitude is so low in relative to restoring force;
the identification of damping is thus always more problematic. Considering this point, we
also applied the present identification procedure to a realistic problem related to ship roll
motion by conducting some experiments.

The roll motion of ships, barges, and similar floating structures are highly involved in
strong nonlinearity. This is mainly because of the complex interaction between floating body
and surrounding fluid; see Figure 9. The more important thing is that the dynamic stability
of floating body in realistic sea is dependent on its rolling motion. For this purpose, accurate
prediction of motion response to various loading conditions is necessary and it requires the
precise information on roll damping.

8.1. Experimental Set-Up

All experiments were conducted in Ocean Engineering Basin at the University of Tokyo. The
basin, which is also called as towing tank, is designed to perform various tests related to
various kinds of floating structures. A model tested is shown in Figure 10 and its particulars
are summarized in Table 1. For experiments, the model ship was restrained in all degrees of
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Figure 6: Continued.
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Figure 6: The trace plots for θ1 and θ100 and their posterior distributions.

Table 1: Particulars of the model ship.

Length Lpp (m) 2500
Breadth B (m) 0.387
Draft D (m) 0.132
Displacement volume (m3) 0.110
GM (m) 0.074

freedom during experiments, excepting roll motion. The model ship is placed at the center of
the basin and roll angle is measured with potentiometer attached to the center of gravity of
the model ship.

8.2. Analysis of Model Test Data

The mathematical model of ship rolling in calm water is generally written as a second-order
differential equation:

(I +A44)φ̈ + B
(
φ̇
)
+ C44φ = 0, (8.1)

where I represents the actual mass moment of inertia; A44 is the added mass moment of
inertia; B represents the nonlinear roll damping; C44 represents the coefficient of restoring
moment that is hydrostatic force induced by hydrostatic pressure (the static buoyancy
force) exerted by a fluid at equilibrium due to the force of gravity. The coefficient C44 is
simply expressed as the multiplication of the displacement of ship and the distance between
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Figure 7: (a) The identified nonlinear damping 3D plots and (b) its 2D projection on the planes (y, B) and
(dy/dt, B).

metacentric height and center of gravity GM:C44 = W · GM. By eliminating the inertia
coefficient, (8.1) can be rewritten as

φ̈ + B̃
(
φ̇
)
+ωn

2φ = 0, (8.2)

whereωn is the resonance frequency of a ship and it can be obtained by analyzing the free-roll
decay curve in Figure 11. For the test model, ωn = 6.905 rad/s.

In a similar way described in previous section, we first start with the roll response
data in Figure 11. The calculated pseudo-displacement g is shown in Figure 12. Now, we
can construct the approximate system as in (3.1). Figure 13 shows the solution through
pseudo inverse and it turns out to be very illconditioned. To address this difficulty, we also
try to consider the original ill-conditioned system in the stochastic space by following the
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Figure 8: The resimulated responses using the identified nonlinear damping in Figure 7.
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Figure 9: Interaction between ship hull and surrounding water.

procedures described in Section 4. By adopting the hierarchical Bayesian formulation (5.3),
the original system can be treated as well-posed system in an expanded stochastic space. The
solution θ can be obtained through Markov chain Monte Carlo and illustrated in Figure 14.
The nonlinear damping in Figure 15 can be identified by the relationship θ(t) = −B̃[φ̇(t)].

Sometimes, it may be convenient to express nonlinear damping as a class of functions
rather than a set of data. We caution that it is sometimes extremely difficult to find an analytic
function for nonlinear damping as illustrated in the numerical example in Section 7. For such
cases, we have to pay attention to choose a class of functions for the identified damping.
However, for the present example, we can find that the damping is mainly dependent on the
roll angular velocity. In this case, we can approximate the nonlinear damping as a polynomial
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Figure 10: Test model of vessel.
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Figure 11: Roll responses of free-decay test.

of the roll angular velocity depicted in Figure 15 through the least squares method which
minimizes the residual

R =
N∑

n=1

(
B
(
φ̇
) − pn

(
φ̇
))2

. (8.3)

The solid-line in Figure 15 shows a polynomial approximation of the third order for the
identified nonlinear damping: p(φ̇) = 0.2144φ̇3+0.0264φ̇2+0.3113φ̇. If we know the analytical
solution of the nonlinear damping, the order of polynomial can then be decided by comparing



Mathematical Problems in Engineering 17

0 2 4 6 8 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t

g(
t)

Figure 12: The calculated pseudo-displacement g for the identification of roll damping of a ship.
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Figure 13: The numerical solution through pseudoinversion for the identification of roll damping of a ship.

the norm between the analytic solution and the polynomial approximation pn(φ̇)with respect
to the order n. However, the analytical solution to the nonlinear damping B is not available for
this application. To ensure the validity of the identified solution, we compare the resimulated
roll response using identified nonlinear roll damping with the measured roll response data.
For the simulation, the Runge-Kutta method is used. The result is shown in Figure 16. The
result is well coincident with the measured roll response. This proves the validity of the
present identification procedure and thus the polynomial approximation.

9. Conclusions

An original output-only and nonparametric procedure for the identification of nonlin-
ear damping in nonlinear oscillatory motion was proposed. The nonlinear damping
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Figure 14: The numerical results fromMCMC computations for the identification of roll damping of a ship.
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Figure 15: Identified nonlinear roll damping and its polynomial approximation.

identification was formulated as a stochastic inverse problem defined on the state space.
Probabilistic modeling for the stochastic inverse problem was developed. The way to design
computational tools for stochastic inverse solutions with full-probabilistic specification was
also illustrated.

Numerical experiments were made to show the workability and applicability of the
proposed method. In addition, the present procedure was also applied to a realistic problem
related to ship roll motion. From the results, it was concluded that the proposed method
is well justified for detecting the nonlinear damping in the nonlinear oscillatory system.
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Figure 16: The resimulated responses using the identified nonlinear damping.

Through the results, it was also shown that the stochastic inverse formalism has lots of
distinct features over deterministic inversion. Although this study has some limitations that
the only nonlinear single degree of system is considered, the results of the present work may
give an insight applicable to many other nonlinear system identification procedures.
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