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We present the propagation of optical beams and the properties of one-dimensional (1D) spatial
solitons (“bright” and “dark”) in saturated Kerr-type and quadratic nonlinear media. Special
attention is paid to the recent advances of the theory of soliton stability. We show that the
stabilization of bright periodic waves occurs above a certain threshold power level and the
dark periodic waves can be destabilized by the saturation of the nonlinear response, while the
dark quadratic waves turn out to be metastable in the broad range of material parameters. The
propagation of (1+1) a dimension-optical field on saturated Kerr media using nonlinear
Schrödinger equations is described. Amodel for the envelope one-dimensional evolution equation
is built up using the Laplace transform.

1. Introduction

The discrete spatial optical solitons have been introduced and studied theoretically as
spatially localized modes of periodic optical structures [1]. A standard theoretical approach
in the study of the discrete spatial optical solitons is based on the derivation of an effective
discrete nonlinear Schrödinger equation and the analysis of its stationary localized solitons-
discrete localized modes [1, 2].

The spatial solitons may exist in a broad branch of nonlinear materials, such as cubic
Kerr, saturable, thermal, reorientation, photorefractive, and quadratic media, and periodic
systems. Furthermore, the existence of solitons varies in topologies and dimensions [3].

The theory of spatial optical solitons has been based on the nonlinear Schrödinger
(NLS) equation with a cubic nonlinearity, which is exactly integrable by means of the inverse
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scattering (IST) technique. From the physical point of view, the integrable NLS equation
describes the (1+1)-dimensional beams in a Kerr (cubic) nonlinear medium in the framework
of the so-called paraxial approximation [4].

Bright solitons are formed due to the diffraction or dispersion compensated by self-
focusing nonlinearity and appear as an intensity hump in a zero background. Solitons, which
appear as intensity dips with a CW background, are called dark soliton [3].

Kerr solitons rely primarily on a physical effect, which produces an intensity-
dependent change in refractive index [3].

The periodic wave structures play an important role in the nonlinear wave domain
so that they are core of instability modulation development and optics chaos on continuous
nonlinear media, modes of quasidiscrete systems or discrete system on mechanic and electric
domain. Thus, periodic wave structures are unstable in the propagation process. For example,
photorefractive crystals accept relatively high nonlinearity of saturated character at an
already known intensity for He-Ne laser in continuous regime.

2. Methodology

The propagation of the optical radiation in (1+1) dimensions in saturable Kerr-type medium
is described by the nonlinear Schrödinger equation for the varying field amplitude Φ(ς, ρ)
[5]:
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The transverse ς and the longitudinal ρ coordinates are scaled in terms of the
characteristic pulse (beam) width and dispersion (diffraction) length, respectively; S is the
saturation parameter; σ = −1 (+1) stands for focusing (defocusing) media [5]
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The simplest periodic stationary solutions of (2.1) have the following form:
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where h is the propagation constant.
By replacing the field in such a form into (2.1), one gets
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To perform the linear stability analysis of periodic waves in the saturable medium,
we use the mathematical formalism initially developed for periodic waves in cubic nonlinear
media [5].

We consider an analytic model, which used the Laplace transform of (2.4):
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With the boundary conditions,

U
(
ρ
)∣∣

ρ=0 = U(0) = U0,

∂U
(
ρ
)

∂ρ

∣∣∣∣∣
ρ=0

= 0.
(2.6)

From (2.5) we get the Laplace transform of the field:

(i) direct form:
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(ii) inverse transformation form:
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where u is a finite number.

For the integration on real (h > 0) and imaginary (h < 0) poles, we calculated the
complex amplitude of nonlinear equation such as

U
(
ρ
)
= U0ch

(
2
√
hρ
)
− 4
∫+∞

0
d

⎛

⎜
⎝

sh2
√
h
(
ρ − ρ′

)

(
2
√
h
)2

⎞

⎟
⎠

(
U3(ρ′

)

1 + SU2
(
ρ′
)

)

,

U
(
ρ
)
= U0 cos

(
2
√
hρ
)
+ 4
∫+∞

0
dρ′
(

U3(ρ′
)

1 + SU2
(
ρ′
)

)(
cos 2

√
h
(
ρ − ρ′

)

2
√
h

)

.

(2.9)



4 Mathematical Problems in Engineering

For the harmonic case (h < 0) integration form of the complex amplitude is
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By using the integration, we get
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The total phase of the optical field envelope is as follows:
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We assume a frequency (ω) as a speed variation of total phase such as
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We have the complex amplitude of envelope field with the following form:
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Figure 1: Numerical simulations of complex amplitude and phase.

The hyperbolic secant plays this equation resulting in a conservative effect. The longi-
tudinal component is
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Some numerical simulations of the complex amplitude of the nonlinear equation and
the total phase of the optical field depending on the propagation constant and an integer
number n are illustrated in Figure 1.
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Figure 1 represents the model amplitude and the phase functions of the complex total
number, which explained the theoretical model presented. Thanks to the complex model, the
initial solution includes the hyperbolic secant and the conjugate complex part
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3. Conclusions

We have described the propagation in quadratic nonlinear media of the periodic waves in sat-
urated Kerr type. The analytic solution for one-dimensional, bright and dark spatial solitons
was found. To describe the spatial optical solitons in saturated Kerr type and the quadratic
nonlinear media, we propose an analytical model based on Laplace transform. The theoretical
model consists in solving analytically the Schrödinger equation with photonic network
using Laplace transform. The propagation properties were found by using different forms
of saturable nonlinearity. However, an exact analytic solution of the propagation problem
presented herein creates possibilities for further theoretical investigation. As a result, it is a
useful structure, which obtains one-dimensional “bright” and “dark” solitons with transver-
sal structure and transversal one-dimensional periodic waves.
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