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The quantization effect in transitions to chaos and periodic orbits is analyzed in this paper through
a specific application, the zero-average-dynamics- (ZAD-) controlled buck power converter.
Several papers have studied the quantization effects in the one periodic orbit and some authors
have given guidelines to design digitally controlled power converter avoiding limit cycles. On
the other hand many studies have been devoted to analyze the ZAD-controlled buck power
converter, but these past studies did not include hardware considerations. In this paper, analog-
to-digital conversion process is explicitly introduced in the modeling stage. As the feedback
gain is varied, the dynamic behavior depending on the analog-to-digital converter resolution is
numerically analyzed. Particularly, it is observed that including the quantizer in the model carries
out several changes in the transitions to chaos, which include interruption of band-merging process
by cascades of periodic inclusions, disappearing of band transitions, and multiple coexisting
of periodic orbits. Many of these phenomena have not been reported as a consequence of the
quantization effects.

1. Introduction

In the recent years, many physical systems have been modelled using the theory of non-
smooth dynamical systems (NSDSs) [1]. The piecewise smooth dynamical system (PWS)
approach has mainly been used to model nonsmooth phenomena such as switching,
saturation, sliding, or impacting events [2, 3]. A good compromise between simplicity and
accuracy has been achieved using PWS models in many works [4, 5]. However, some
applications could require additional considerations to achieve equivalence between the
mathematical model and real system responses, as we report in this paper.
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Nonsmooth systems controlled by digital techniques can require more elaborate
models depending on hardware specifications or the sensitivity of the systems. Analog-to-
digital conversion (ADC) processes can modify the dynamic behavior of the system due to
phenomena such as quantization level or conversion time.

Power converters are modelled as PWS due to the switching action of transistors and
diodes and saturation action in the PWM controller (see, e.g., [6]). Bifurcations and chaos
have been detected in many power electronic models. For a broad study of nonlinear phe-
nomena exhibited by power converters, see [7]. On the other hand, in the last decade the ZAD
strategy has been developed for controlling DC-DC buck power converters. This controller
forces a defined function to have zero average for each sampling period. In this case, the
function spwml(t) is defined as a linear combination of the values of the error and its derivative
at the switching instants (i.e., spwml(t) := f(e(kT), ė(kT)). Previous theoretical and numerical
studies have demonstrated that the ZAD strategy offers two important advantages: very low
error [8] and fixed switching frequency [9, 10]. In [10] a complete study for an ideal model
of the ZAD-controlled converter was presented, when the parameter Ks varies.

In this paper, a newmodel for the ZAD-controlled buck power converter is introduced
and the ADC process is included explicitly for acquisition of the state variables values,
that is, current flowing to the inductor and voltage across the capacitor. Data acquisition
by the sensors and signal digitizing by the A/D converters are two crucial processes in
the performance of the ZAD controller; however, in this paper only the dynamic behavior
depending on the resolution of the A/D converters is analyzed. This resolution affects
the accuracy of the state variable values changing the performance of the ZAD controller.
Although some authors have included digitalization effects of analog-to-digital (A/D) and
digital-to-analog (D/A) converters in different systems, either linear [11, 12] or nonlinear
(such as power converters) [13, 14], their main conclusions are that the ADC processes can
generate limit cycles in the dynamic behavior of the systems.

The paper is organized as follows: Section 2 presents the mathematical framework
to analyze and control the buck converter. Section 3 presents a detailed analysis of
the quantization effects in the transition to chaos for a ZAD-controlled buck converter,
introducing the model of the ADC process and changing its resolution n (n ∈ {8, 12, 16}).
In Section 4, conclusions are presented.

2. Mathematical Model and Physical Considerations

2.1. Buck Converter

A complete study of the applications and design of power converters can be found in [15, 16].
A simplified diagram of the closed-loop synchronous buck converter is shown in Figure 1(a).
Its main feature is that the output value Vo is lower than the source Vin (step-down converter).
The switches S1 and S2 operate in a complementary way; that is, when S1 is on, the switch S2

is off and vice versa.
The mathematical model for the synchronous buck converter can be expressed in a

compact form as:
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Figure 1: Schematic diagram for digitally controlled buck power converter and digital conversion process.

where x1 = vC, x2 = iL, and u belongs to discrete set {0, 1}. The objective of controlling the
buck converter is related to regulation or tracking tasks. In this paper the converter is used as
a regulator. The next step is to design a control strategy so that the load voltage is regulated
to a desired value. the duty cycle d, which is defined as the ratio between the time that the
switch S1 is on (u = 1) and the sampling time T in each T (T = 50µs in this work). In
particular the duty cycle is computed as d = sat (Dk/T), and Dk is computed according to
ZAD control technique as it is explained in Section 2.2. After the duty cycle is computed, the
control sequence to be applied to (2.1) during one sampling time is given by

u =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if kT ≤ kT +
dT

2
,

0 if kT +
dT

2
< t < (k + 1)T − dT

2
,

1 if (k + 1)T − dT

2
≤ t ≤ (k + 1)T.

(2.2)

2.2. ZAD Strategy

The control strategy is based on the concept of zero-average dynamics on the function spwl

[9, 17, 18]. The ZAD strategy can be summarized as follows: (1) to choose dynamics that
will be forced to have a zero average, (2) to force the dynamics to have zero average in each
sampling period, and (3) to compute the duty cycle. As reported in [9, 19, 20], one of the
possibilities for choosing the output dynamics is to define it as a piecewise-linear function
given by

spwl(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s1 + (t − kT)ṡ1 if kT ≤ t ≤ t1,

s2 + (t − t1)ṡ2 if t1 < t < t2,

s3 + (t − t2)ṡ1 if t2 ≤ t ≤ (k + 1)T.

(2.3)
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Taking into account (2.2) where u = 1 in the first part of the interval, after u = 0 to finally
return to u = 1, then each part of spwl(t) is defined as

s1 =
(
x1 − ref +Ksẋ1

√
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,
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2
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(2.4)

Ks is a dimensionless positive constant and k ∈ 0, 1, 2 . . .. Therefore, the zero average condi-
tion is

∫ (k+1)T

kT

spwl(t)dt = 0. (2.5)

To find Dk, (2.5) is solved to obtain

Dk =
2s1 + Tṡ2
ṡ2 − ṡ1

. (2.6)

Finally, due to saturation effects, it is necessary to limit the duty cycle based on the
sampling time. The duty cycle to be applied to the system is defined as

d =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if
Dk

T
> 1,

Dk

T
if 0 ≤ Dk

T
≤ 1,

0 if
Dk

T
< 0.

(2.7)

2.3. Analog-to-Digital Conversion Process

As the ZAD strategy will be implemented in a digital platform, the ADC process must be
included in the modelling stage. The main parts of the ADC process are sample and hold,
and quantization and encoder processes [21].



Mathematical Problems in Engineering 5

2.3.1. Sample and Hold

The sample and hold process consists of catching the value of the signal to be sampled at a
given instant kT (sampling) and holding it until the instant kT + T . Then the value of the
signal x(t) := x(kT)∀t ∈ [kT, kT + T).

2.3.2. Quantization Process

The quantization process consists of transforming a continuous signal into a finite set of
values. The quantization refers to an operation characterized by the relationship between the
output signal, that is, one element of the finite discrete set, and the input signal, a continuous
value. In Figure 1(b), the dashed line represents the input, and the staircase functions are the
output. h is the quantization level, that is, the value of the least significant bit (LSB) of the
quantization process, and it can be expressed mathematically as

h =
Vrefhi

2n
, (2.8)

where n is the number of bits of the analog-to-digital converter and Vrefhi = 5V is the upper
reference voltage.

3. Bifurcation Analysis

In this section, the dynamic behavior of a DC-DC buck power converter controlled by the
ZAD strategy is analyzed, when the ADC process is included in the modeling stage.

The transition from periodicity to chaos in the system without the ADC process was
studied in [9, 10]. Although in those papers the signal control u ∈ {−1, 1}, the bifurcation
diagrams do not show important changes when u ∈ {0, 1}. The dynamic behavior of the
system with 8-, 12- or 16-bit ADC resolution has significant differences from the system
without an ADC process.

In this section, bifurcation diagrams of the model for different resolutions of the A/D
converter are shown. Later, the observed dynamics are compared and discussion about the
quantization effects is presented. In this particular case R = 20Ω, C = 40µF, L = 2mH,
and Vin = 40V. The desired output voltage is ref = 32V. All bifurcation diagrams are made
considering the samples of the states every T seconds, that is, based on the stroboscopic map.

The system without ADC process (or with an ideal ADC process) has an asymptoti-
cally stable 1T -periodic orbit for values ofKs larger than 3.25. Bifurcation diagrams of a buck
converter controlled with the ZAD strategy and neglecting the ADC process are presented in
Figure 2. The first bifurcation occurs near Ks = 3.25, and it is a flip type. As Ks is reduced,
the system undergoes successive smooth and nonsmooth bifurcations. Period-doubling and
border-collision bifurcations generate 2T -, 4T -, and 8T -periodic orbits and chaotic bands
with different numbers of saturated cycles, depending on nonsmooth transitions. A rigorous
continuation method was applied in [19] to determinate ranges of stability and existence
for the 1T -, 2T -, and 4T -periodic orbits. The successive smooth and nonsmooth bifurcations
in a very narrow range of Ks close to 3 cause the transition from periodic orbits to chaotic
bands. Band-merging processes due to crisis bifurcations are observed for Ks ∈ [0.1, 3). The
transition between one-band chaos and two-band chaos occurs near Ks ≈ 0.4, the transition
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Figure 2: Bifurcation diagrams of the system without ADC process (or with an ideal ADC process).

between two-band chaos and four-band chaos is close to Ks ≈ 0.75, and the transition
between four-band chaos and eight-band chaos is close to Ks ≈ 1.2. The period-doubling
band process continues until the Ks value is close to 3.

The inclusion of the ADCprocess affects the dynamic behavior of the system. Technical
specifications of the A/D converters, mainly their resolution, change the behavior of the
ZAD-controlled buck converter. Other aspects such as resolution of the digital PWM, noise, or
precision of arithmetic calculations in the digital platform also have effects on the transition
to chaos. In this paper it is considered that digital PWM has infinity resolution.

Figure 3 shows bifurcation diagrams of the model with the ADC process when Ks is
varied.

Three ADC resolutions are considered: 8, 12, and 16 bits. The remaining parameters are
the same in all cases. To compare regulation errors, voltage error (e1(kT)) and current error
(e2(kT)) are depicted instead of capacitor voltage (VC(kT)) and inductor current (IL(kT)).
The variables e1(kT) and e2(kT) are defined as follows:

e1(kT) =
100(VC(kT) − ref)

ref
,

e2(kT) =
100(IL(kT) − ref2)

ref2

(3.1)
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Figure 3: Bifurcation diagrams varying Ks and the ADC resolution. ((a)–(c)) Voltage error diagrams (e1)
for 8, 12 and 16 bits, respectively. ((d)–(f)) Current error diagrams (e2) for 8, 12, and 16 bits, respectively.
((g)–(i)) Duty cycle diagrams for 8, 12, and 16 bits, respectively.

with ref2 = ref/R. The quantization effects in the dynamical behavior of the system can be
divided into two analyses.

(i) Quantization effects in chaos and band chaos dynamics. In this case, the parameter
Ks is bounded to the range (0.1, 3), and the ADC resolution belongs to the set
{8, 12, 16}.

(ii) Quantization effects in periodic dynamics. In this case, the parameterKs is bounded
to the range (3, 7), and the ADC resolution belongs to the set {8, 12, 16}.

Next, the main effects of A/D converters on aperiodic and periodic dynamics are
analyzed. Interesting phenomena can be seen.



8 Mathematical Problems in Engineering

3.1. Quantization Effects in Chaos and Band Chaos Dynamics

The system without an A/D converter has a period-doubling band bifurcation scenario in
the range between Ks = 0.1 and Ks = 3 (see Figure 2). The structure of the chaos and
band chaos dynamics is affected by the A/D converter resolution. Drastic variations in
the dynamic behavior can be observed when the A/D converter resolution is fixed to n =
8 bits. The band-merging process is interrupted by cascades of periodic inclusions. Only the
transition between one-band chaos and two-band chaos is preserved near Ks ≈ 0.4. Other
band transitions disappear. The presence of chaos and band chaos dynamics drastically
diminishes, and the sensitivity to initial conditions and coexistence of periodic solutions
increase considerably. The system converges to different basins of attraction depending on
the initial conditions. Dynamics with 8-bit A/D converters move to the right in the axis VC

and remain in the same range in the axis IL. Therefore, voltage error at the sampling time
(e1(kT)) increases approximately from 0.2% to 0.3%, while current error (e2(kT)) remains in
the range between −10% and 10% (see Figures 3(a) and 3(d)).

Figures 3(b), 3(e), and 3(h) show bifurcation diagrams of the system for 12-bit ADC
resolution. Overlapping cascades of periodic orbits interspersed with chaos and band chaos
attractors are observed. Two band transitions are preserved: one-band chaos to two-band
chaos near Ks ≈ 0.4 and two-band chaos to four-band chaos near Ks ≈ 0.75. The presence of
chaos and band chaos increases.

An interesting phenomenon associated with the two crisis bifurcations was detected.
The bifurcation diagrams (Figures 3(b), 3(e), and 3(h)) show an abrupt change of dynamic
behavior between the two crisis bifurcations in the interval Ks ∈ (0.54, 0.61). Different
periodic windows can be seen depending on the initial conditions. Chaotic transients and
fractal basin boundaries are also present. These phenomena have been studied in several
works [22–24]. The appearance of transient chaos is relevant to the evolution of the saddle
sets [25]. A chaotic saddle, also known as a nonattracting chaotic set, usually leads to
chaotic transients and fractal basin boundaries [26]. In our case, the collision between the
chaotic attractor and the unstable periodic orbit when the crisis occurs for Ks ≈ 0.4 induces
the formation of transient chaos and fractal basins of attraction. Figure 4 shows transient
responses for Ks = 0.55 with different initial conditions. Small variations in VC0 demonstrate
the extreme sensitivity to the initial conditions of the system.

However, very high periodic orbits (of order 100 or 1000) could be mistaken for chaos
attractors. Some attractors have a chaotic shape, but the state variables are located with a
bounded dispersion. This finding suggests the existence of a sequence with a very long
periodic pattern. Figure 5 was generated to illustrate this phenomenon. State variables gener-
ated by nonsaturated duty cycles are shown in blue. State variables generated by saturated
duty cycles to dk = 0% are shown in green, and state variables generated by saturated duty
cycles to dk = 100% are shown in red.

Figures 5(a), 5(b), and 5(c) show the chaotic dynamics for the system with an ideal
ADC process. A one-band chaos attractor for Ks = 0.125, two-band chaos attractor for Ks =
0.5, and four-band chaos attractor for Ks = 1 are presented. Any periodic pattern can be
defined because the state variables are always located at different points.

The presence of chaotic dynamics diminishes as ADC resolution decreases. The system
does not have chaotic attractors for any value of Ks ∈ {0.125, 0.5, 1} if the AD converter
has 8-bit resolution. Different periodic orbits are observed: an 8T -periodic orbit with seven
nonsaturated cycles and one saturated cycle to dk = 100% for Ks = 0.5 (Figure 5(k)) and
an 18T -periodic orbit with 14 nonsaturated cycles and 4 saturated cycles to dk = 100% for
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Figure 4: Transient responses of the system for 12-bit ADC resolution and different voltage initial
conditions VC0. The ZAD parameter is Ks = 0.55 and the current initial condition (IL0) is 1.8.

Ks = 1 (Figure 5(l)). The attractor for Ks = 0.125 has a chaotic shape, but the state variables
are located in a finite set of values. The size of this set is near 200; therefore, the periodicity of
this attractor is near 200 (Figure 5(j)).

The same situation occurs with the attractors generated with 12-bit ADC resolution.
Attractors generated with Ks in the set {0.125, 0.5, 1} have chaotic shapes, but the state
variables are located in sets of finite size. The size of these sets is of the order of 1000. See
Figures 5(g), 5(h), and 5(i).

Figures 3(c), 3(f), and 3(i) show the bifurcation diagrams of the system for 16-bit
ADC resolution. These bifurcation diagrams are very close to the responses for an ideal
ADC process. The band-merging process is observedwithout significant changes. Three band
transitions are distinguished: one-band to two-band near Ks ≈ 0.4, two-band to four-band
transition near Ks ≈ 0.75, and four-band to eight-band transition near Ks ≈ 1.2. The presence
of chaos and band chaos dynamics is more clear. Attractors generated with Ks in the set
{0.125, 0.5, 1} have chaotic shapes and the dispersion of state variables is very close to the
ideal case. All numerical proofs indicate that the responses shown in Figures 5(d), 5(e), and
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Figure 5: VC versus IL phase portraits varying Ks and the ADC resolution. ((a), (d), (g), (j)) Ks = 0.125
without and with 16-, 12-, and 8-bit ADC, respectively. ((b), (e), (h), (k)) Ks = 0.5 without and with 16-,
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Table 1: Variation of the mean values and standard deviations of the state variables when the ADC
resolution is varied and Ks = 0.125.

n
mn (VC) mn (IL) std (VC) std (IL)

[V] [A] [V] [A]
2 34.2861 1.7138 4.0534 1.0586
4 32.3086 1.6155 0.2946 0.2923
6 31.8776 1.5940 0.5102 0.2898
8 31.7666 1.5886 0.2693 0.2427
10 31.7014 1.5853 0.2494 0.2516
12 31.6907 1.5847 0.2471 0.2488
14 31.6884 1.5846 0.2466 0.2493
16 31.7022 1.5854 0.2459 0.2431

Table 2: Variation of the mean values and standard deviations of the state variables when the ADC
resolution is varied and Ks = 1.

n
mn (VC) mn (IL) std (VC) std (IL)

[V] [A] [V] [A]
2 35.5555 1.7778 0.4310 0.2999
4 32.3764 1.6191 0.2086 0.2097
6 32.1625 1.6086 0.0115 0.0999
8 32.0059 1.6008 0.0099 0.0932
10 31.9680 1.5989 0.0058 0.0999
12 31.9575 1.5983 0.0076 0.1000
14 31.9537 1.5981 0.0074 0.1002
16 31.9529 1.5981 0.0074 0.1002

5(f) are chaos and band chaos dynamics. In these cases, the possibility of extremely high
periodic patterns is not considered because the dispersion of the state variables cannot be
limited to a finite set.

Although the dynamic properties show important variations when ADC resolution is
varied, the statistical properties are not significantly modified. Table 1 shows the evolution of
the mean value and standard deviations when the ADC resolution is varied between 2 bits
and 16 bits for Ks = 0.125. Differences between chaotic dynamics and very high periodic
orbits are not detected by these statistical measures. However, the results of this table confirm
that 8- or fewer-bit A/D converter resolution affects the regulation condition of the system.
Table 2 summarizes the same test for Ks = 1, when the ideal model has four-band chaos.
These results are very close when the ADC resolution is 10, 12, 14, or 16.

3.2. Quantization Effects in Periodic Dynamics

The system without an A/D converter has a 1T -periodic orbit for Ks ∈ (Kc, 7). At Ks =
Kc ≈ 3.25, the system experiences a flip bifurcation, and a stable 2T -periodic orbit exists for
Ks ∈ (3, Kc). Significant changes in the dynamical behavior can be observed for 8-bit ADC
resolution; periodic and quasiperiodic orbits are induced in the range Ks ∈ (3, 7).

Quasiperiodic and periodic dynamics coexist when the resolution of the ADC
converter is fixed to 8 bits and the range of Ks ∈ (3, 6), while coexisting periodic solutions
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Figure 6: Examples of periodic and quasi periodic orbits for the system with 8-, 12-, and 16-bit ADC,
respectively.

are detected when Ks > 6. Figure 6(d) shows an example of a quasiperiodic dynamic of
the system for an 8-bit ADC process and Ks = 5.2. Low-frequency oscillation is induced
by the ADC process. Figure 6(a) shows an example of a 2T -periodic orbit when Ks = 6.5.
Other periodic dynamics are also possible depending on the initial conditions. Coexistence
phenomena will be analyzed shortly.

Periodic and quasiperiodic orbits can be identified for 12-bit ADC resolution
depending on Ks and the initial conditions. Periodic behavior can be interrupted by
quasiperiodic windows and extreme sensitivity to initial conditions can be distinguished.
Figures 6(b) and 6(e) show examples of periodic and quasiperiodic orbits in the system with
a 12-bit ADC process.

Dynamic behavior for 16-bit ADC resolution is very close to the behavior with an ideal
ADC process. Quasiperiodic behavior can be detected near the flip transition for Ks ≈ 3.25.
The induced oscillation has lower frequency than the cases with 8 and 12 bits. See Figure 6(f).

Statistical measures show that the dynamic behavior tends toward the response of the
ideal ADC process when ADC resolution is increased. Table 3 summarizes the mean values
and standard deviations of state variables when ADC resolution is varied from n = 2 to n = 16
and Ks = 4.5.

Coexistence of dynamics is the most interesting and representative phenomenon
detected in these bifurcation scenarios. A particular case when the ZAD parameter is fixed to
Ks = 6.5 and ADC resolution is selected from the set {8, 12, 16} is presented in the following.

Three common characteristics were identified in the three cases:

(i) multiple coexisting periodic solutions depending on the initial conditions,

(ii) fractal basin boundaries characterized by extreme sensitivity to the initial values,
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Table 3: Variation of the mean values and standard deviations of the state variables when the ADC
resolution is varied and Ks = 4.5.

n
mn(VC) mn(IL) std(VC) std(IL)
[V] [A] [V] [A]

2 28.5714 1.4286 0.1832 0.2888
4 31.5433 1.5776 0.0010 0.1060
6 32.1952 1.6103 0.0067 0.0389
8 31.9844 1.5997 0.0022 0.0073
10 31.9896 1.6000 0.0006 0.0036
12 31.9814 1.5996 0.0001 0.0005
14 31.9806 1.5995 0.0001 0.0004
16 31.9804 1.5995 0.0000 0.0006

Table 4: Examples of coexisting periodic orbits for 8-bit ADC resolution and Ks = 6.5. IL0 = 1.5.

Case (VC0, IL0) Orb. Duty cycle characteristics
([V], [A])

1 (0.4, 1) 1 per. d1 = 79.53%
2 (0, 1) 2 per. d1 = 79.09% and d2 = 80.78%
3 (0.1, 1) 2 per. d1 = 77.4% and d2 = 82.47%
4 (0.5, 1) 2 per. d1 = 77.85% and d2 = 81.22%
5 (4.9, 1) 2 per. d1 = 75.71% and d2 = 84.16%
6 (32.4, 2) 2 per. d1 = 72.34% and d2 = 87.53%
7 (20.2, 0) 2 per. d1 = 74.47% and d2 = 84.6%
8 (14.3, 0) 2 per. d1 = 76.16% and d2 = 82.91%
9 (32.9, 2) 3 per. d1,2 = 79.89% and d2 = 81.58%
10 (33.6, 2) 6 per. d1,3 = 74.83%, d5 = 76.51%, d4,6 = 84.96% and d2 = 86.65%
11 (33.6, 1) 6 per. d1,3 = 73.14%, d5 = 74.83%, d4,6 = 86.65% and d2 = 88.33%
12 (33.9, 1) 6 per. d1,3 = 76.51%, d5 = 78.2%, d4,6 = 83.27% and d2 = 84.96%
13 (32.6, 2) 10 per. d1,3,5 = 78.65%, d6,7,8,9,10 = 80.34% and d2,4 = 82.02%
14 (32.5, 2) 10 per. d1,3,5 = 76.96%, d7,9 = 78.65%, d6,8,10 = 82.02% and d2,4 = 83.71%

15 (32.54, 1.247) 11 per. d1,3,5 = 78.65%, d6,7,8,9,10,11 = 80.34%, d6,8,10 = 82.02%
and d2,4 = 82.02%

16 (32.24, 1.357) 22 per. d1,3,5 = 76.96%, d7,9,11,17,19,21 = 78.65%, d12,13,14,15,16 = 80.34%,
d6,8,10,18,20,22 = 82.02%, and d2,4 = 83.71%

(iii) duty cycle sequences of coexisting periodic solutions are composed by nonsatu-
rated values; that is, 0% < d < 100%. Additionally, some nonsaturated duty cycles
can be the same for two or more coexisting solutions. Small changes in a duty cycle
value or in a recurrence pattern produce different periodic solutions.

Table 4 summarizes the characteristics of sixteen periodic orbits for Ks = 6.5 and 8-
bit ADC resolution. Also, 1T -, 2T -, 3T -, 6T -, 10T -, 11T -, and 22T -periodic orbits are possible
depending on the initial conditions of the voltage capacitor VC0 and inductor current IL0.
Figure 7 shows the evolution of several cases presented in Table 4. For VC0 = 0.4 and IL0 = 1
there is a stable 1T -periodic orbit. The 1T -periodic orbit is characterized by a duty cycle of
79.53%, reaching low stationary error and fixed-frequency condition.
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Figure 7: Examples of coexisting periodic orbits for 8-bit ADC resolution and Ks = 6.5. More analysis is
presented in Table 4.
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Table 5: Examples of coexisting periodic orbits for 12-bit ADC resolution and Ks = 6.5. IL0 = 1.5.

Case VC0 [V ] Orb. Duty cycle characteristics
1 30.04 3 per. d1,2 = 79.92% and d3 = 80.02%
2 30.22 6 per. d1,3 = 79.81%, d5 = 79.92%, d4,6 = 80.02% and d2 = 80.13%
3 33.79 6 per. d1 = 79.76%, d3,5 = 79.86%, d4 = 80.07% and d2,6 = 80.18%
4 33.34 6 per. d1 = 79.86%, d3,4,5 = 79.97% and d2,6 = 80.07%

5 32.14 11 per. d1 = 79.68%, d3,10 = 79.79%, d5,8 = 79.89%
d6,7 = 80%, d4,9 = 80.1% and d2,11 = 80.21%

6 32 18 per. d1 = 79.57%, d3,17 = 79.68%, d5,15 = 79.79%, d7,10,13 = 79.89%
d8,9,11,12 = 80%, d6,14 = 80.1%, d4,16 = 80.21% and d2,18 = 80.31%

7 30.63 22 per. d1,3,7,9 = 79.81%, d5,11,12,14,15,17,18,20,21 = 79.92%
d4,6,10,13,16,19,22 = 80.02% and d2,8 = 80.13%

8 31.99 22 per. d1 = 79.57%, d3,21 = 79.68%, d5,12,19 = 79.79%, d7,10,14,17 = 79.89%
d8,9,15,16 = 80%, d6,11,13,18 = 80.1%, d4,20 = 80.21% and d2,22 = 80.31%

9 32.02 22 per.
d1 = 79.47%, d3,21 = 79.57%, d5,19 = 79.68%, d7,17 = 79.79%,
d9,12,15 = 79.89%, d10,11,13,14 = 80%, d8,16 = 80.1%,
d6,18 = 80.21%, d4,20 = 80.31% and, d2,22 = 80.42%

10 30.02 34 per. d1,3,7,9,13,15 = 79.81%, d5,11,17,18,20,21,23,24,26,27,29,30,32,33 = 79.92%
d4,6,10,12,16,19,22,25,28,31,34 = 80.02%, d2,8,14 = 80.13%

Seven possibilities for 2T -periodic orbits are detected. All of them are defined by two
nonsaturated cycles (d1 and d2). The 3T -periodic dynamics can be obtained with a duty
cycle sequence (d1, d2, d3) where d1 = d2 = 79.89% and d3 = 81.58%. Figure 7(g) shows the
evolution of the 3T -periodic orbit.

The 6T -periodic orbits are defined by duty cycle sequences (d1, d2, d3, d4, d5, d6) with
four different values, where d1 = d3 and d4 = d6. Two possibilities for 10T -periodic orbits are
identified depending on the duty cycle sequence. Both options have four different values. The
first has d1 = d3 = d5, d2 = d4, and d6 = d7 = d8 = d9 = d10, and the second has d1 = d3 = d5,
d2 = d4, d7 = d9, and d6 = d8 = d10. The 11T - and 22T -periodic orbits are possible with four
and five different values of the duty cycle, respectively.

The presence of multiple coexisting periodic orbits diminishes as ADC resolution
increases. Ten different stable periodic orbits were detected in the fractal basin boundaries
for 12-bit ADC, but only six coexisting periodic orbits were detected for the 16-bit ADC
case. Additionally, the range of variation of the state variables becomes narrower as ADC
resolution increases. The current is confined to the range (1.56, 1.66) for 8-bit ADC, to (1.596,
1.602) for 12-bit ADC, and to (1.5985, 1.5995) for 16-bit ADC.

Table 5 and Figure 8 summarize the dynamics found for 12-bit ADC resolution, while
Table 6 and Figure 9 summarize the case for 16-bit ADC.

4. Conclusions

In this paper, the dynamic behavior of a DC-DC buck power converter controlled by the ZAD
strategy when the ADC process is included in the modeling stage is analyzed. It has been
shown that the dynamic behavior of the system with an ADC process has very important
changes compared to the ideal system (without ADC). However, if Ks > 3.5 and depending
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Figure 8: Examples of coexisting periodic orbits for 12-bit ADC resolution and Ks = 6.5. More analysis is
presented in Table 5.

Table 6: Examples of coexisting periodic orbits for 16-bit ADC resolution and Ks = 6.5. IL0 = 1.5.

Case VC0 [V ] Orb. Duty cycle characteristics

1 32.3905 1 per. d1 = 79.956%
2 32.055 2 per. d1 = 79.877% and d2 = 80.035%
3 30.22 7 per. d1 = 79.946%, d3,4,5,6 = 79.953% and d2,7 = 79.959%

4 30.01 14 per. d1 = 79.926%, d3,5,11,13 = 79.933%, d7,9 = 79.94%

d8 = 79.966%, d4,6,10,12 = 79.973% and d2,14 = 79.979%

5 30.05 14 per. d1 = 79.933%, d3,5,11,13 = 79.94%, d7,9 = 79.946%

d8 = 79.959%, d4,6,10,12 = 79.966% and d2,14 = 79.973%

6 30.09 26 per. d1,3,5,7,9,11,13 = 79.949%, d14,15,16,17,18,19 = 79.956%

and d2,4,6,8,10,12 = 79.962%
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Figure 9: Examples of coexisting periodic orbits for 16-bit ADC resolution and Ks = 6.5. More analysis is
presented in Table 6.

on the application, 8-, 12- or 16-bit ADC resolutions are enough to reach 1T periodic orbit
with low regulation error.

It has been determined that the ADCprocess has global consequences in the dynamical
behavior of the system. Global phenomena such as the coexistence of periodic and aperiodic
attractors, fractal basin boundaries, or transient chaos are exclusively caused by the A/D
converters.

A route to chaos of the ZAD-controlled buck converter without an ADC process has
been studied in many works [9, 10, 19]. In all works, this bifurcation scenario has been
studied using local techniques based on the Jacobian matrix, the Lyapunov exponents, and
the Floquet exponents. Smooth and nonsmooth bifurcations do not have a global incidence
and the dynamics do not depend on initial conditions. Few results of the global dynamics can
be obtained analytically due to the difficulty involved. Therefore, the numerical analysis for
the global dynamics is usually the main approach [25].

We have numerically studied the quantization effects on chaos and periodic dynamics
when the resolution of the A/D converters is varied in the set {8, 12, 16}. We have shown that
these effects cannot be detected using statistical measures.

It has been detected that the doubling band transitions depend on ADC resolution.
Only the transition from one-band chaos to two-band chaos is preserved for 8 bits, two-band
transitions are preserved for 12 bits, and three-band transitions are preserved for 16 bits.

Band-merging process interrupted by cascades of periodic inclusions was detected.
Paradoxical behavior can be distinguished. The ADC process diminishes the presence

of chaos dynamics, but the sensitivity to initial conditions strongly increases. Therefore, the
long-term behaviors can be classified as high or very high periodic orbits, but fractal basin
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boundaries result in several possible long-term behaviors that depend heavily on initial
value.

Period doubling route to chaos with an ideal ADC process is perturbed by quasiperi-
odic dynamics when ADC is included in the model. Other authors have studied the effects
of ADC process in the dynamic behavior of the systems [11–14] and quasiperiodic route to
chaos [27, 28], but as far as we know, the inclusion of quasiperiodic dynamics in route to
chaos due to a quantization process has not been reported in the literature.
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