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Numerical solutions for the general Rosenau-RLW equation are considered and an energy conserv-
ative linearized finite difference scheme is proposed. Existence of the solutions for the difference
scheme has been shown. Stability, convergence, and a priori error estimate of the scheme are
proved using energy method. Numerical results demonstrate that the scheme is efficient and
reliable.

1. Introduction

In this paper, we examine the use of the finite differencemethod for the general Rosenau-RLW
equation

ut + uxxxxt − uxxt + ux + (up)x = 0, x ∈ [xl, xr], t ∈ [0, T], (1.1)

with an initial condition

u(x, 0) = u0(x), x ∈ [xl, xr], (1.2)
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and boundary conditions

u(xl, t) = u(xr, t) = 0, uxx(xl, t) = uxx(xr, t) = 0, t ∈ [0, T], (1.3)

where p ≥ 2 is a integer and u0(x) is a known smooth function. When p = 2, the equation (1.1)
is called usual Rosenau-RLW equation. When p = 3, (1.1) is called modified Rosenau-RLW
equation.

It can be proved easily that the problem (1.1)–(1.3) possesses the following conserva-
tive laws:

Q(t) =
∫xr

xl

u(x, t)dx =
∫xr

xl

u0(x, t)dx = Q(0), (1.4)

E(t) = ‖u‖2L2
+ ‖ux‖2L2

+ ‖uxx‖2L2
= E(0). (1.5)

As already pointed out by Fei et al. [1], the nonconservative difference schemes may
easily show nonlinear blow-up, and the conservative difference schemes perform better than
the non-conservative ones. In [2–15], some conservative finite difference schemes were
used for Sine-Gordon equation, Cahn-Hilliard equation, Klein-Gordon equation, a system
of Schrödinger equation, Zakharov equations, Rosenau equation, GRLW equation, Klein-
Gordon-Schrödinger equation, respectively. Numerical results of all the schemes are very
good.

As far as computational studies are concerned, Zuo et al. [16] have proposed a
Crank-Nicolson difference scheme for the Rosenau-RLW equation. The difference scheme
in [16] is nonlinear implicit, so it requires heavy iterative calculations and is not suitable for
parallel computation. In a recent work [14], we have made some preliminary computation by
proposing a conservative linearized difference scheme for GRLW equation which is uncondi-
tionally stable and reduces the computational work, and the numerical results are encourag-
ing. In this paper, we continue our work and propose a conservative linearized difference
scheme for the general Rosenau-RLW equation which is unconditionally stable and second-
order convergent and simulates conservative laws (1.4)-(1.5) at the same time.

The remainder of this paper is organized as follows. In Section 2, an energy conserva-
tive linearized difference scheme for the general Rosenau-RLW equation is described and the
discrete conservative laws of the difference scheme are discussed. In Section 3, we show that
the scheme is uniquely solvable. In Section 4, convergence and stability of the scheme are
proved. In Section 5, numerical experiments are reported.

2. An Average Linearized Conservative Scheme and
Its Discrete Conservative Law

In this section, we describe a new conservative difference scheme for the problems of (1.1)–
(1.3). Let h and τ be the uniform step size in the spatial and temporal direction, respectively.
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Denote xj = jh (0 ≤ j ≤ J), tn = nτ (0 ≤ n ≤ N), un
j ≈ u(xj , tn) and Z0

h = {u = (uj) | u0 = uj =
0, j = 0, 1, 2, . . . , J}. Define

(
un
j

)
x
=

un
j+1 − un

j

h
,

(
un
j

)
x
=

un
j − un

j−1
h

,
(
un
j

)
x̂
=

un
j+1 − un

j−1
2h

,

(
un
j

)
t
=

un+1
j − un

j

τ
,

(
un
j

)
t̂
=

un+1
j − un−1

j

2τ
, un

j =
un+1
j + un−1

j

2
,

(un, vn) = h
J−1∑
j=1

un
j v

n
j , ‖un‖2 = (un, un), ‖un‖∞ = max

1≤j≤J−1

∣∣∣un
j

∣∣∣,

(2.1)

and in the paper, C denotes a general positive constant which may have different values in
different occurrences.

Notice that (up)x = (p/(p + 1))[up−1ux + (up)x]. We consider the following three-level
average linearized conservative scheme for the IBV problems (1.1)–(1.3):

(
un
j

)
t̂
+
(
un
j

)
xxx xt̂

−
(
un
j

)
xxt̂

+
1 − θ

2

(
un+1
j + un−1

j

)
x̂
+ θ

(
un
j

)
x̂

+
p

p + 1

{(
un
j

)p−1(
un
j

)
x̂
+
[(

un
j

)p−1(
un
j

)]
x̂

}
= 0, 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N − 1,

(2.2)

u0
j = u0

(
xj

)
, 1 ≤ j ≤ J, (2.3)

un
0 = un

J = 0,
(
un
0

)
xx =

(
un
J

)
xx

= 0, 0 ≤ n ≤ N, (2.4)

where 0 ≤ θ ≤ 1 is a real constant. The scheme (2.2)–(2.4) is three level and linear implicit,
so it can be easily implemented. It should be pointed out that we need another suitable two-
level scheme (such as C-N scheme) to compute u1. For convenience, the last term of (2.2) is
defined by

Φ
(
un, un) =

p

p + 1

{(
un
j

)p−1(
un
j

)
x̂
+
[(

un
j

)p−1(
un
j

)]
x̂

}
. (2.5)

Lemma 2.1 (see [17]). For any two mesh functions: u, v ∈ Z0
h
, one has

((
uj

)
x
, vj

)
= −

(
uj,

(
vj

)
x

)
,

(
vj ,

(
uj

)
xx

)
= −

((
vj

)
x
,
(
uj

)
x

)
,

(
uj,

(
uj

)
xx

)
= −

((
uj

)
x
,
(
uj

)
x

)
= −‖ux‖2.

(2.6)
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Furthermore, if (un
0)xx = (un

J )xx = 0, then

(
uj,

(
uj

)
xxx x

)
= ‖uxx‖2. (2.7)

Theorem 2.2. Suppose u0 ∈ H2
0[xl, xr] and u(x, t) ∈ C5,3. Then the scheme (2.2)–(2.4) admits the

following invariant:

Qn =
h

2

J−1∑
j=1

(
un+1
j + un

j

)
= Qn−1 = · · · = Q0, (2.8)

En =
1
2

(∥∥∥un+1
∥∥∥2

+ ‖un‖2
)
+
1
2

(∥∥∥un+1
xx

∥∥∥2
+ ‖un

xx‖2
)

+
1
2

(∥∥∥un+1
x

∥∥∥2
+ ‖un

x‖2
)
+ θhτ

J−1∑
j=1

(
un
j

)
x̂
un+1
j

= En−1 = · · · = E0.

(2.9)

Proof. Multiplying (2.2) with h, according to the boundary conditions (2.4), then summing
up for j from 1 to J − 1, we obtain

h

2

J−1∑
j=1

(
un+1
j − un−1

j

)
= 0. (2.10)

Let

Qn =
h

2

J−1∑
j=1

(
un+1
j + un

j

)
. (2.11)

Then we obtain (2.8) from (2.10).
Taking the inner product of (2.2)with 2un, according to Lemma 2.1, we have

1
2τ

(∥∥∥un+1
∥∥∥2 −

∥∥∥un−1
∥∥∥2
)
+

1
2τ

(∥∥∥un+1
xx

∥∥∥2 −
∥∥∥un−1

xx

∥∥∥2
)

+
1
2τ

(∥∥∥un+1
x

∥∥∥2 −
∥∥∥un−1

x

∥∥∥2
)
+ θh

J−1∑
j=1

(
un
j

)
x̂
un+1
j

− θh
J−1∑
j=1

(
un−1
j

)
x̂
un
j +

(
Φ
(
un, un), 2un

j

)
= 0.

(2.12)
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Now, computing the last term of the left-hand side in (2.12), we have

(
Φ
(
un, un), 2un

j

)
=

2p
p + 1

h
J−1∑
j=1

{(
un
j

)p−1(
un
j

)
x̂
+
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un
j
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j

]
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}
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j
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p
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)
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(
un
j+1

)p−1
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j+1 −

(
un
j−1

)p−1
un
j−1

]
un
j

=
p

p + 1

J−1∑
j=1

[(
un
j

)p−1
un
j+1u

n
j −

(
un
j+1

)p−1
un
j+1u

n
j

]

− p

p + 1

J−1∑
j=1

[(
un
j−1

)p−1
un
j u

n
j−1 −

(
un
j

)p−1
un
j u

n
j−1

]

= 0.

(2.13)

Substitute (2.13) into (2.12), and we let

En =
1
2

(∥∥∥un+1
∥∥∥2

+ ‖un‖2
)
+
1
2

(∥∥∥un+1
xx

∥∥∥2
+ ‖un

xx‖2
)

+
1
2

(∥∥∥un+1
x

∥∥∥2
+ ‖un

x‖2
)
+ θhτ

J−1∑
j=1

(
un
j

)
x̂
un+1
j .

(2.14)

By the definition of En, (2.9) holds.

3. Solvability

In this section, we will prove the solvability of the difference scheme (2.2).

Theorem 3.1. The difference scheme (2.2) is uniquely solvable.

Proof. By the mathematical induction. It is obvious that u0 is uniquely determined by (2.3).
We can choose a second-order method to compute u1 (such as C-N scheme [16]). Assuming
that u1, . . . , un are uniquely solvable, consider un+1 in (2.2)which satisfies

1
2τ

un
j +

1
2τ

(
un
j

)
xxx x

− 1
2τ

(
un
j

)
xx

+
1 − θ

2

(
un+1
j

)
x̂

+
p

2
(
p + 1

)
{(

un
j

)p−1(
un+1
j

)
x̂
+
[(

un
j

)p−1
un+1
j

]
x̂

}
= 0.

(3.1)

Taking the inner product of (3.1)with un+1, we obtain

1
2τ

∥∥∥un+1
∥∥∥2

+
1
2τ

∥∥∥un+1
xx

∥∥∥2
+

1
2τ

∥∥∥un+1
x

∥∥∥2
+
(
Ψ
(
un, un+1

)
, un+1

)
= 0, (3.2)

where Ψ(un, un+1) = (p/2(p + 1))(un
j )

p−1(un+1
j )

x̂
+ [(un

j )
p−1un+1

j ]
x̂
.
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Notice that

(
Ψ
(
un, un+1

)
, un+1

)
=

ph

2
(
p + 1

)
J−1∑
j=1

{(
un
j

)p−1(
un+1
j

)
x̂
+
[(

un
j

)p−1
un+1
j

]
x̂

}
un+1
j .

=
p

4
(
p + 1

)
J−1∑
j=1

[(
un
j

)p−1(
un+1
j+1 − un+1

j−1
)

+
(
un
j+1

)p−1
un+1
j+1 −

(
un
j−1

)p−1
un+1
j−1

]
un+1
j

= 0.

(3.3)

It follows from (3.2) that

1
2τ

∥∥∥un+1
∥∥∥2

+
1
2τ

∥∥∥un+1
xx

∥∥∥2
+

1
2τ

∥∥∥un+1
x

∥∥∥2
= 0. (3.4)

That is, there uniquely exists trivial solution satisfying (3.1). Hence, un+1
j in (2.2) is uniquely

solvable. This completes the proof of Theorem 3.1.

Remark 3.2. All results above in this paper are correct for IBV problem of the general Rosenau-
RLW equation with finite or infinite boundary.

4. Convergence and Stability of Finite Difference Scheme

First we will consider the truncation error of the difference scheme of (2.2)–(2.4). Denote
vn
j = u(xj , tn). We define the truncation error as follows:

Ernj =
(
vn
j

)
t̂
+
(
vn
j

)
xxxxt̂

−
(
vn
j

)
xxt̂

+
1 − θ

2

(
vn+1
j + vn−1

j

)
x̂
+ θ

(
vn
j

)
x̂

+
p

p + 1

{(
vn
j

)p−1(
vn
j

)
x̂
+
[(

vn
j

)p−1(
vn
j

)]
x̂

}
.

(4.1)

Using Taylor expansion, we obtain that Ernj = O(τ2 + h2) holds if τ, h → 0.
This is that.

Lemma 4.1. Assume u(x, t) is smooth enough, then the local truncation error of difference scheme
(2.2)–(2.4) is O(τ2 + h2).

Next, we will discuss the convergence and stability of finite difference scheme (2.2)–
(2.4). The following two lemmas are introduced.
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Lemma 4.2 (discrete Sobolev’s inequality [18]). There exist two constants C1 and C2 such that

‖un‖∞ ≤ C1‖un‖ + C2‖un
x‖. (4.2)

Lemma 4.3 (discrete Gronwall inequality [18]). Suppose w(k), ρ(k) are nonnegative mesh
functions and ρ(k) is nondecreasing. If C > 0 and

w(k) ≤ ρ(k) + Cτ
k−1∑
l=0

w(l), ∀k, (4.3)

then

w(k) ≤ ρ(k)eCτk, ∀k. (4.4)

Lemma 4.4. Suppose u0 ∈ H2
0[xl, xr], then the solution un of (2.2) satisfies ||un|| ≤ C, ||un

x|| ≤ C,
which yield ‖un‖∞ ≤ C (n = 1, 2, . . . ,N).

Proof. It follows from (2.9) that

1
2

(∥∥∥un+1
∥∥∥2

+ ‖un‖2
)
+
1
2

(∥∥∥un+1
xx

∥∥∥2
+ ‖un

xx‖2
)
+
1
2

(∥∥∥un+1
x

∥∥∥2
+ ‖un

x‖2
)

= C − θhτ
J−1∑
j=1

(
un
j

)
x̂
un+1
j ≤ C +

1
2
θτ

(∥∥∥un+1
∥∥∥2

+ ‖un
x‖2

)
.

(4.5)

Thus

1
2

[
(1 − θτ)

∥∥∥un+1
∥∥∥2

+ ‖un‖2
]
+
1
2

(∥∥∥un+1
xx

∥∥∥2
+ ‖un

xx‖2
)

+
1
2

[
(1 − θτ)‖un

x‖2 +
∥∥∥un+1

x

∥∥∥2
]
≤ C.

(4.6)

This implies for small τ which satisfies 1 − θτ > 0, we get

‖un‖ ≤ C, ‖un
x‖ ≤ C. (4.7)

Using Lemma 4.2, we obtain

‖un‖∞ ≤ C. (4.8)

Remark 4.5. Lemma 4.4 implies that scheme (2.2)–(2.4) is unconditionally stable.

Theorem 4.6. Assume that u0 ∈ H2
0[xl, xr] and u(x, t) ∈ C5,3. Then the solution un of the scheme

(2.2)–(2.4) converges to the solution of problem (1.1)–(1.3) and the rate of convergence isO(τ2 + h2)
by the ‖ · ‖∞ norm.
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Table 1: The errors of numerical solutions at t = 10 with p = 2 and τ = 0.1.

h ‖vn − un‖ ‖vn − un‖∞

∥∥∥∥∥∥v
n

4 − u

n

4

∥∥∥∥∥∥/‖v
n − un‖ ‖vn/4 − un/4‖∞/‖vn − un‖∞

0.25 1.456039e − 4 1.967455e − 4 — —
0.125 3.657043e − 5 5.032358e − 5 3.981465 3.909609
0.0625 9.084201e − 6 1.257422e − 5 4.025718 4.002124
0.03125 2.202821e − 6 3.052964e − 6 4.123894 4.118692

Table 2: The errors of numerical solutions at t = 10 with p = 4 and τ = 0.1.

h ‖vn − un‖ ‖vn − un‖∞ ‖vn/4 − un/4‖/‖vn − un ‖ ‖vn/4 − un/4‖∞/‖vn − un‖∞
0.25 2.447510e − 4 3.299748e − 4 — —
0.125 6.146847e − 5 8.525290e − 5 3.981732 3.870541
0.0625 1.526817e − 5 2.119579e − 5 4.025923 4.022161
0.03125 3.702240e − 6 5.159101e − 6 4.124036 4.108427

Proof. Subtracting (4.1) from (2.2) and letting enj = vn
j − un

j , we have

Ernj =
(
enj

)
t̂
+
(
enj

)
xxxxt̂

−
(
enj

)
xxt̂

+
(
enj

)
x̂

+
1 − θ

2

(
en+1j + en−1j

)
x̂
+ θ

(
enj

)
x̂

+
p

p + 1

{(
vn
j

)p−1(
vn
j

)
x̂
+
[(

vn
j

)p−1
vn
j

]
x̂

}

− p

p + 1

{(
un
j

)p−1(
un
j

)
x̂
+
[(

un
j

)p−1
un
j

]
x̂

}
.

(4.9)

Taking the inner product in (4.9) with 2en, we obtain

(
Ernj , 2e

n
)
=

1
2τ

(∥∥∥en+1
∥∥∥2 −

∥∥∥en−1
∥∥∥2

)
+

1
2τ

(∥∥∥en+1xx

∥∥∥2 −
∥∥∥en−1xx

∥∥∥2
)

+
1
2τ

(∥∥∥en+1x

∥∥∥2 −
∥∥∥en−1x

∥∥∥2
)

+ θh
J−1∑
j=1

(
enj

)
x̂

(
en+1j + en−1j

)
+
(
I + II, 2en

)
,

(4.10)

where

I =
p

p + 1

[(
vn
j

)p−1(
vn
j

)
x̂
−
(
un
j

)p−1(
un
j

)
x̂

]
,

II =
p

p + 1

{[(
vn
j

)p−1(
vn
j

)]
x̂

−
[(

un
j

)p−1
un
j

]
x̂

}
.

(4.11)
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Table 3: The errors of numerical solutions at t = 10 with p = 8 and τ = 0.1.

h ‖vn − un‖ ‖vn − un‖∞ ‖vn/4 − un/4‖/‖vn − un‖ ‖vn/4 − un/4‖∞/‖vn − un‖∞
0.25 2.854206e − 4 3.856020e − 4 — —
0.125 7.170514e − 5 9.871671e − 5 3.980476 3.906148
0.0625 1.781268e − 5 2.465926e − 5 4.025511 4.003231
0.03125 4.319352e − 6 5.988124e − 6 4.123924 4.118027

Table 4: Discrete mass and energy of scheme (2.2) for a few of θ values at different time t with h = τ = 0.1
and p = 2.

θ = 0 θ = 0.5 θ = 1
t Qn En Qn En Qn En

2 3.7953131 1.0663504 3.7953130 1.0661275 3.7953129 1.0659045
4 3.7953035 1.0663504 3.7953024 1.0661275 3.7953024 1.0659045
6 3.7952587 1.0663504 3.7952598 1.0661275 3.7952591 1.0659045
8 3.7950800 1.0663504 3.7950814 1.0661275 3.7950829 1.0659045
10 3.7943581 1.0663504 3.7943658 1.0661275 3.7943715 1.0659045

According to Lemma 4.4, the fifth term of right-hand side of (4.10) is estimated as follows:

(
I, 2en

)
=

2p
p + 1

h
J−1∑
j=1

[(
vn
j

)p−1(
vn
j

)
x̂
−
(
un
j

)p−1(
un
j

)
x̂

]
en

=
2p

p + 1
h
J−1∑
j=1

(
vn
j

)p−1(
enj

)
x̂
en +

2p
p + 1

h
J−1∑
j=1

[(
vn
j

)p−1 −
(
un
j

)p−1](
un
j

)
x̂
en

=
2p

p + 1
h
J−1∑
j=1

(
vn
j

)p−1(
enj

)
x̂
en +

2p
p + 1

h
J−1∑
j=1

[
enj

p−2∑
k=0

(
vn
j

)p−2−k(
un
j

)k
](

un
j

)
x̂
en

≤ C
(∥∥enx∥∥2 + ‖en‖2 + ∥∥en∥∥2

)

≤ C

(∥∥∥en+1x

∥∥∥2
+
∥∥∥en−1x

∥∥∥2
+
∥∥∥en+1

∥∥∥2
+ ‖en‖2 +

∥∥∥en−1
∥∥∥2

)
,

(4.12)

and similarly we can prove

(
II, 2en

) ≤ C

(∥∥∥en+1x

∥∥∥2
+
∥∥∥en−1x

∥∥∥2
+
∥∥∥en+1

∥∥∥2
+ ‖en‖2 +

∥∥∥en−1
∥∥∥2

)
. (4.13)

In addition, it is obvious that

(
Ernj , 2e

n
)
≤ ‖Ern‖2 + 1

2

(∥∥∥en+1
∥∥∥2

+
∥∥∥en−1

∥∥∥2
)
, (4.14)
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Table 5: Discrete mass and energy of scheme (2.2) for a few of θ values at different time t with h = τ = 0.1
and p = 4.

θ = 0 θ = 0.5 θ = 1
t Qn En Qn En Qn En

2 6.2655606 2.8676742 6.2655603 2.8670879 6.2655600 2.8665016
4 6.2653440 2.8676742 6.2653437 2.8670879 6.2653435 2.8665016
6 6.2648079 2.8676742 6.2648083 2.8670879 6.2648086 2.8665016
8 6.2635545 2.8676742 6.2635570 2.8670879 6.2635595 2.8665016
10 6.2606441 2.8676742 6.2606529 2.8670879 6.2606616 2.8665016

Table 6: Discrete mass and energy of scheme (2.2) for a few of θ values at different time t with h = τ = 0.1
and p = 8.

θ = 0 θ = 0.5 θ = 1
t Qn En Qn En Qn En

2 9.7202265 4.7351269 9.7202105 4.7345960 9.7201954 4.7340650
4 9.7140074 4.7351270 9.7139777 4.7345960 9.7139486 4.7340650
6 9.7024346 4.7351270 9.7023976 4.7345960 9.7023610 4.7340650
8 9.6834925 4.7351270 9.6834566 4.7345960 9.6834209 4.7340650
10 9.6536097 4.7351270 9.6535850 4.7345960 9.6535602 4.7340650

h
J−1∑
j=1

(
enj

)
x̂

(
en+1j + en−1j

)
≤ ‖enx‖2 +

1
2

(∥∥∥en+1
∥∥∥2

+
∥∥∥en−1

∥∥∥2
)
. (4.15)

Substituting (4.12)–(4.15) into (4.10), we get

1
2τ

(∥∥∥en+1
∥∥∥2 −

∥∥∥en−1
∥∥∥2
)
+

1
2τ

(∥∥∥en+1xx

∥∥∥2 −
∥∥∥en−1xx

∥∥∥2
)
+

1
2τ

(∥∥∥en+1x

∥∥∥2 −
∥∥∥en−1x

∥∥∥2
)

≤ ‖Ern‖2 + 1
2

(∥∥∥en+1
∥∥∥2

+
∥∥∥en−1

∥∥∥2
)
+ θ

[
‖enx‖2 +

1
2

(∥∥∥en+1
∥∥∥2

+
∥∥∥en−1

∥∥∥2
)]

+ C

(∥∥∥en+1∥∥∥2
+
∥∥∥en−1∥∥∥2

+ ‖en‖2 +
∥∥∥en+1x

∥∥∥2
+ ‖enx‖2 +

∥∥∥en−1x

∥∥∥2
)
.

(4.16)

Let Bn = (1/2)(‖en+1‖2 + ‖en‖2) + (1/2)(‖en+1xx ‖2 + ‖enxx‖2) + (1/2)(‖en+1x ‖2 + ‖enx‖2), then (4.16)
can be written as follows:

Bn − Bn−1 ≤ τ‖Ern‖2 + Cτ
(
Bn + Bn−1

)
. (4.17)

Thus

(1 − Cτ)
(
Bn − Bn−1

)
≤ 2CτBn−1 + τ‖Ern‖2. (4.18)
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Figure 1: Errors in the sense of ‖en‖∞ computed by the scheme (2.2)when h = τ = 0.1 and p = 4.

Hence, for τ sufficiently small, such that 1 − Cτ > 0, we obtain

Bn − Bn−1 ≤ CτBn−1 + Cτ‖Ern‖2. (4.19)

Summing up (4.19) from 1 to n yields

Bn ≤ B0 + Cτ
n∑
l=1

∥∥∥Erl
∥∥∥2

+ Cτ
n∑
l=1

Bl. (4.20)

Choose a second-order method to compute u1 (such as C-N scheme) and notice that

τ
n∑
l=1

∥∥∥Erl
∥∥∥2 ≤ nτ max

1≤l≤n

∥∥∥Erl
∥∥∥2 ≤ T ·O

(
τ2 + h2

)2
. (4.21)

From the discrete initial conditions, we know that e0 is of second-order accuracy, then

B0 = O
(
τ2 + h2

)2
. (4.22)

Then we obtain

Bn ≤ O
(
τ2 + h2

)2
+ Cτ

n−1∑
l=0

Bl. (4.23)
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Figure 2: Errors in the sense of ‖en‖2 computed by the scheme (2.2)when h = τ = 0.1 and p = 4.

An application of Lemma 4.3 yields

Bn ≤ O
(
τ2 + h2

)2
. (4.24)

Thus

‖en‖ ≤ O
(
τ2 + h2

)
, ‖enx‖ ≤ O

(
τ2 + h2

)
, ‖enxx‖ ≤ O

(
τ2 + h2

)
. (4.25)

It follows from Lemma 4.2 that

‖en‖∞ ≤ O
(
τ2 + h2

)
. (4.26)

This completes the proof of Theorem 4.6.

Similarly, we can prove stability of the difference solution.

Theorem 4.7. Under the conditions of Theorem 4.6, the solution of the scheme (3.1)–(2.4) is
unconditionally stable by the ‖ · ‖∞ norm.

5. Numerical Experiments

In this section, we conduct some numerical experiments to verify our theoretical results
obtained in the previous sections.
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Figure 3: Exact solutions of u(x, t) at t = 0 and numerical solutions computed by the scheme (2.2) at
t = 5, 10 with θ = 0 for p = 2.
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Figure 4: Exact solutions of u(x, t) at t = 0 and numerical solutions computed by the scheme (2.2) at
t = 5, 10 with θ = 1 for p = 4.

Consider the general Rosenau-RLW equation

ut + uxxxxt − uxxt + ux + (up)x = 0, x ∈ [xl, xr], t ∈ [0, T], (5.1)

with an initial condition

u(x, 0) = u0(x), x ∈ [xl, xr], (5.2)
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and boundary conditions

u(xl, t) = u(xr, t) = 0, uxx(xl, t) = uxx(xr, t) = 0, t ∈ [0, T]. (5.3)

The exact solution of the system (5.1)-(5.2) has the following form:

u(x, t) = eln{(p+3)(3p+1)(p+1)/[2(p
2+3)(p2+4p+7)]}/(p−1)sech4/(p−1)

⎡
⎢⎣ p − 1√

4p2 + 8p + 20
(x − ct)

⎤
⎥⎦, (5.4)

where p ≥ 2 is a integer and c = (p4 + 4p3 + 14p2 + 20p + 25)/(p4 + 4p3 + 10p2 + 12p + 21).
It follows from (5.4) that the initial-boundary value problem (5.1)–(5.3) is consistent

to the initial value problem (5.1)-(5.2) for −xl 
 0, xr 
 0. In the numerical experiments, we
take −xl = xr = 30, T = 10, and consider three cases p = 2, 4, 8, respectively. The errors in the
sense of L∞-norm and L2-norm of the numerical solutions are listed on Tables 1, 2, and 3 for
three cases p = 2, 4, 8 with θ = 1. Tables 1, 2, and 3 verify the second-order convergence and
good stability of the numerical solutions.

We have shown in Theorem 2.2 that the numerical solution un of the scheme (2.2)
satisfies the conservation of discrete mass and energy, respectively. In Tables 4, 5, and 6,
the values of (h/2)

∑J−1
j=1 (u

n+1
j + un

j ) and( 1/2)(‖un+1‖2 + ‖un‖2) + (1/2)(‖un+1
xx ‖2 + ‖un

xx‖2) +
(1/2)(‖un+1

x ‖2 + ‖un
x‖2) + θhτ

∑J−1
j=1 (u

n
j )x̂u

n+1
j for the scheme (2.2) are presented for three cases

p = 2, 4, 8 under steps h = τ = 0.1 with θ = 0, 0.5 and 1, respectively. It is easy to see from
Tables 4, 5, and 6 that the scheme (2.2) preserves the discrete mass and discrete energy very
well; thus it can be used to computing for a long time.

We make a comparison between C-N scheme [16] and our scheme with θ = 0, 0.5, 1
under the meshes h = τ = 0.1 in Figures 1 and 2 when p = 4. It is obvious from Figures 1 and
2 that our scheme performs better than C-N scheme [16] in the numerical precision when
θ = 0.5 and 1. Figures 1 and 2 also show that numerical precision of the scheme (2.2) depends
on the choice of parameter θ. The curves of the solitary waves with time computed by the
scheme (2.2)with θ = 0 for p = 2 and θ = 1 for p = 4 under mesh sizes of h = τ = 0.1 are given
in Figures 3 and 4, respectively; the waves at t = 5, 10 agree with the ones at t = 0 quite well,
which also demonstrate the accuracy of the scheme in present paper.

From the numerical results, the scheme of this paper is accurate and efficient.
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