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We report a new numerical algorithm for solving one-dimensional linear parabolic partial
differential equations (PDEs). The algorithm employs optimal quadratic spline collocation (QSC)
for the space discretization and two-stage Gauss method for the time discretization. The new
algorithm results in errors of fourth order at the gridpoints of both the space partition and the
time partition, and large time steps are allowed to save computational cost. The stability of the
new algorithm is analyzed for a model problem. Numerical experiments are carried out to confirm
the theoretical order of accuracy and demonstrate the effectiveness of the new algorithm.

1. Introduction

Quadratic spline collocation (QSC) is a kind of numerical methods for solving systems of
differential equations, which gives rise to an approximate solution in the quadratic spline
space. An interesting property of the QSC method is that the optimal order of convergence
can be obtained by adding appropriate perturbations to the spatial differential operators.
Such an idea is used in the smooth cubic spline collocation for a special linear initial value
problem [1]. Then a modified version of the cubic spline collocation is formed in [2] for more
general problems. On this basis, the cubic B-spline scaling function has been studied and
applied widely for a variety of problems [3–8]. The optimal QSC method is applied for the
solution of boundary value problems (BVPs) in [9–11] and extended to solve elliptic partial
differential equations (PDEs) in [12], as well as parabolic PDEs in [13, 14].

In [13, 14], the optimal QSC is combined with the Crank-Nicolson (CN) method to
formulate several revised one-step QSC-CN algorithms for linear parabolic PDEs. These
algorithms give fourth-order accuracy at the midpoints and gridpoints of the space partition
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and second-order accuracy at the gridpoints of the time partition, while they require solving a
tridiagonal linear system at each time step. However, the time step of the QSC-CN algorithms
should be small enough to achieve the overall high performance. In addition, the oscillations
are likely to be introduced by the application of the CN method. In fact, we can employ the
optimal QSC method directly for the parabolic PDE and use high-order numerical methods
for the resulting collocation equations, such as the two-stage Gauss method [15, 16].

Based on QSC and the two-stage Gauss method, we can propose a QSC-TG algorithm
in this paper for linear parabolic PDEs. The new algorithm gives high-order accuracy at
the gridpoints of both the space partition and the time partition. Because large time steps
are allowed by the two-stage Gauss method, we do not need too much computations to
reach a comparable order of accuracy. Moreover, the QSC-TG algorithm has competitive
stability properties superior to the QSC-CN algorithms presented in [13, 14] and immunes
to oscillations.

The remainder of this paper is organized as follows. In Section 2, we formulate the
QSC-TG algorithm for one-dimensional linear parabolic PDEs and present the corresponding
order of accuracy. In Section 3, we analyze numerically the stability properties of the new
algorithm. Numerical experiments are given in Section 4 to illustrate the effectiveness of the
new algorithm.

2. The QSC-TG Algorithm for Linear Parabolic PDEs

We consider the numerical solution of the one-dimensional linear parabolic PDE

∂u

∂t
= p(x, t)

∂2u

∂x2
+ q(x, t)

∂u

∂x
+ r(x, t)u + f(x, t), a < x < b, 0 < t < T, (2.1)

subjecting to the initial condition

u(x, 0) = γ(x), a ≤ x ≤ b (2.2)

and the boundary conditions

u(a, t) = α(t), u(b, t) = β(t), 0 ≤ t ≤ T. (2.3)

For simplicity, we consider in this paper the homogeneous Dirichlet boundary conditions as
follows:

u(a, t) = 0, u(b, t) = 0, 0 ≤ t ≤ T, (2.4)

where p, q, r, f, and γ are given functions, [a, b] is the space domain, [0, T] is the time
interval, and the function u(x, t) is to be computed. Here, we assume that p(x, t) > 0.

For convenience, we denote the spatial differential operator L by

Lu = p(x, t)
∂2u

∂x2
+ q(x, t)

∂u

∂x
+ r(x, t)u. (2.5)
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Then (2.1) is equivalent to the equation

∂u

∂t
= Lu + f(x, t), a < x < b, 0 < t < T. (2.6)

2.1. QSC for Parabolic PDEs

Following [13, 14], we consider a uniform partition of the space domain

Δ =
{
a = x0 < x1 < · · · < xJ = b

}
(2.7)

with mesh size Δx = (b − a)/J . Denote P2([xj , xj+1]) as the set of the quadratic polynomials
on [xj , xj+1], and let

P2
Δ,1 =

{
v ∈ C1([a, b]) | v ∈ P2([xj , xj+1

])
, j = 0, 1, . . . , J − 1

}
, (2.8)

where C1([a, b]) is the set of the functions with continuous first-order derivatives on [a, b].
Because of the three coefficients to be determined in each quadratic polynomial and

the continuity of the first-order derivative at the gridpoints, the dimension of the space P2
Δ,1

is J + 2. Furthermore, let {φ0, φ1, . . . , φJ+1} be a set of piecewise polynomial basis functions of
the space P2

Δ,1.
The approximate solution in space P2

Δ,1 to system (2.1), (2.2), and (2.4) can be written
as

uΔ(x, t) =
J+1∑

j=0

cj(t)φj(x), (2.9)

where cj(t), j = 0, 1, . . . , J + 1, are degrees of freedom. For any fixed value of t, J + 2 relations
are needed to specify the approximate solution uΔ(x, t). Obviously, two relations of them can
be obtained from the boundary conditions. Therefore, we have to choose other J points on
(a, b), from which the J relations can be found. The J points together with the two boundary
points are called collocation points, which can be denoted by

{
τ0 = a; τj =

xj−1 + xj

2
, 1 ≤ j ≤ J ; τJ+1 = b

}
. (2.10)

With the collocation points, we can obtain the following relations:

∂uΔ
(
τj , t

)

∂t
= LuΔ

(
τj , t

)
+ f

(
τj , t

)
,

uΔ(a, t) = uΔ(b, t) = 0,

(2.11)

where uΔ(τj , 0) is the value at the point τj on the interpolation of γ in P2
Δ,1. For some specially

chosen basis functions for P2
Δ,1, the relations (2.11) have simple forms.
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Let

φ(x) =
1
2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x2, 0 ≤ x ≤ 1,
−2(x − 1)2 + 2(x − 1) + 1, 1 ≤ x ≤ 2,
(3 − x)2, 2 ≤ x ≤ 3,
0, elsewhere.

(2.12)

We choose a set of quadratic B-splines

φj(x) = φ

(
x − a

Δx
− j + 2

)
, j = 0, 1, . . . , J + 1 (2.13)

as the basis functions of the space P2
Δ,1. Following [13], we denote by P̃2

Δ,1 the space of
quadratic splines satisfying homogeneous Dirichlet boundary conditions. The dimension of
the space P̃2

Δ,1 is J , and a set of its basis functions is

{
φ̃1 = φ1 − φ0; φ̃j = φj, j = 2, . . . , J − 1; φ̃J = φJ − φJ+1

}
. (2.14)

Then the quadratic spline approximate solution of system (2.1), (2.2), and (2.4) can be written
as

uΔ(x, t) =
J∑

j=1

cj(t)φ̃j(x). (2.15)

The values of the quadratic spline basis functions and their derivatives at the collocation
points are

φ̃j(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8
, x = τj−1,

3
4
, x = τj ,

1
8
, x = τj+1,

φ̃′
j(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2Δx

, x = τj−1,

0, x = τj ,

−1
2Δx

, x = τj+1,

φ̃′′
j (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Δx2

, x = τj−1,

−2
Δx2

, x = τj ,

1
Δx2

, x = τj+1,

(2.16)

respectively.
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Denote diag{} as a diagonal matrix with the diagonal elements listed in the brackets.
Let

Dp(t) = diag
{
p(τ1, t), . . . , p

(
τJ , t

)}
,

Dq(t) = diag
{
q(τ1, t), . . . , q

(
τJ , t

)}
,

Dr(t) = diag
{
r(τ1, t), . . . , r

(
τJ , t

)}
,

�f(t) =
(
f(τ1, t), . . . , f

(
τJ , t

))T
.

(2.17)

The relations (2.11) lead to the following system of ODEs:

Q0
dc(t)
dt

=
1

Δx2

[
Dp(t)Q2 +

Δx

2
Dq(t)Q1 + Δx2Dr(t)Q0

]
c(t) + �f(t), t ∈ [0, T],

c(0) = c0,

(2.18)

where c(t) = [c1(t), . . . , cJ(t)]
T,

Q0 =
1
8

⎛

⎜⎜⎜⎜⎜⎜
⎝

5 1 0
1 6 1

. . . . . . . . .
1 6 1

0 1 5

⎞

⎟⎟⎟⎟⎟⎟
⎠

J×J

, Q1 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 1 0
−1 0 1

. . . . . . . . .
−1 0 1

0 −1 −1

⎞

⎟⎟⎟⎟⎟⎟
⎠

J×J

,

Q2 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

−3 1 0
1 −2 1

. . . . . . . . .
1 −2 1

0 1 −3

⎞

⎟⎟⎟⎟⎟⎟
⎠

J×J

.

(2.19)

The vector c0 ∈ RJ satisfiesQ0c0 = �γ , where �γ is the interpolation of γ(x) at collocation points.
The spline collocation approximate solution from system (2.18) has second-order

accuracy. Similar to the way to get optimal spline collocation approximation for BVPs in
[9, 13], the optimal-order approximation to the system (2.1), (2.2), and (2.4) can be obtained
by the following system of ODEs with extra perturbations:

Q0
dc(t)
dt

=
1

Δx2

[
Dp(t)

(
Q2 +

1
24

Qxx

)
+
Δx

2
Dq(t)

(
Q1 − 1

24
Qx

)
+ Δx2Dr(t)Q0

]
c(t) + �f(t),

c(0) = c0,

(2.20)
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where

Qxx =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

−11 16 −14 6 −1 0 · · · 0
−5 6 −4 1 0 0 · · · 0
1 −4 6 −4 1 0 · · · 0

. . . . . . . . . . . . . . .
0 · · · 0 1 −4 6 −4 1
0 · · · 0 0 1 −4 6 −5
0 · · · 0 −1 6 −14 16 −11

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

J×J

,

Qx =

⎛

⎜
⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

7 −2 −4 4 −1 0 · · · 0
3 0 −2 1 0 0 · · · 0
−1 2 0 −2 1 0 · · · 0

. . . . . . . . . . . . . . .
0 · · · 0 −1 2 0 −2 1
0 · · · 0 0 −1 2 0 −3
0 · · · 0 1 −4 4 2 −7

⎞

⎟
⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

J×J

.

(2.21)

By the system (2.20) from the optimal QSC, the discretization error O(Δx4) at the
midpoints and gridpoints of the uniform space partition can be given.

2.2. The Two-Stage Gauss Method for the Collocation Equation

Denote the matrices

L(t) = Dp(t)Q2 +
Δx

2
Dq(t)Q1 + Δx2Dr(t)Q0,

P(t) =
1
24

Dp(t)Qxx − 1
24

Δx

2
Dq(t)Qx,

(2.22)

and system (2.20) can be rewritten as

Q0
dc(t)
dt

=
1

Δx2 (L(t) + P(t))c(t) + �f(t), t ∈ [0, T],

c(0) = c0.

(2.23)
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We employ a kind of two-stage implicit Runge-Kutta methods for system (2.23), with the
following scheme:

Cn+1 = Cn +
1
2
(K1 +K2),

Q0K1 =
Δt

Δx2 (L(tn +ω1Δt) + P(tn +ω1Δt))
(
Cn +

1
4
K1 +ω3K2

)
+ Δt �f(tn +ω1Δt),

Q0K2 =
Δt

Δx2 (L(tn +ω2Δt) + P(tn +ω2Δt))
(
Cn +ω4K1 +

1
4
K2

)
+ Δt �f(tn +ω2Δt),

(2.24)

whereω1 = 1/2+
√
3/6, ω2 = 1/2−√3/6, ω3 = 1/4+

√
3/6, ω4 = 1/4−√3/6, Δt = T/N, and

Cn is an approximation to c(nΔt). The Runge-Kutta method (2.24), which is based on Gauss-
Legendre quadrature, is also called the two-stage Gauss method, with the fourth order of
accuracy.

Based on the results {Cn}Nn=1 from scheme (2.24), we can obtain the approximate
solution of system (2.1), (2.2), and (2.4) by {Un|Un = Q0Cn}Nn=1. The hybrid algorithm by
QSC and the two-stage Gauss method (2.24) is called QSC-TG algorithm in this paper, which
gives rise to discretization errors of O(Δt4 + Δx4).

3. Stability of QSC-TG

In this section, we consider the stability of QSC-TG for a model problem as follows:

∂u

∂t
= p

∂2u

∂x2
, a < x < b, 0 < t < T,

u(x, 0) = γ(x), a ≤ x ≤ b,

u(a, t) = 0, u(b, t) = 0, 0 ≤ t ≤ T,

(3.1)

where p is a positive constant, γ is a given function, [a, b] is the space domain, [0, T] is the
time interval, and u(x, t) is the unknown function.

For system (3.1), the optimal QSC gives rise to the following collocation equation:

Q0
dc(t)
dt

= p
1

Δx2

(
Q2 +

1
24

Qxx

)
c(t), t ∈ [0, T],

Q0c(0) = �γ,

(3.2)
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where �γ is the interpolation of γ(x) at the collocation points. The two-stage Gauss method for
system (3.2) is

Cn+1 = Cn +
1
2
(K1 +K2),

Q0K1 = p
Δt

Δx2

(
Q2 +

1
24

Qxx

)(
Cn +

1
4
K1 +ω3K2

)
,

Q0K2 = p
Δt

Δx2

(
Q2 +

1
24

Qxx

)(
Cn +ω4K1 +

1
4
K2

)
,

(3.3)

where Q0, Q2, and Qxx are defined in (2.20). Denote σ = p(Δt/Δx2) and Q = σ(Q2 +
(1/24)Qxx). Substitute K1 and K2 of (3.3) into the first equation of (3.3), then we have

Cn+1 = Cn +
1
2
(
I I

)

⎛

⎜
⎝

Q0 − 1
4
Q −ω3Q

−ω4Q Q0 − 1
4
Q

⎞

⎟
⎠

−1(
Q 0
0 Q

)(
Cn

Cn

)
� QCn, (3.4)

where the matrix Q is of size J × J , which can be regarded as the iteration matrix for the
scheme described by (3.4). We denote by Qi the ith power of Q and follow the stability
analysis presented in [14]. The stability of (3.4) is guaranteed if limΔx→ 0(maxi=0,1,...,T/Δt‖Qi‖∞)
is bounded independently of Δx.

For (3.4), we consider the quantities ‖Qi‖∞, with p = 1,Δx = (b−a)/J , andΔt = σΔx2,
for several values of σ and J . Figure 1 shows how ‖Qi‖∞ behaves as i increases, with σ = 20,
for several values of J . It can be observed that the quantities ‖Qi‖∞ are bounded by a constant
which is independent of J , and thus limΔx→ 0(maxi=0,1,...,T/Δt‖Qi‖∞) is bounded independently
of Δx. Therefore, the scheme of QSC-TG for the model problem (3.1) is stable without any
restriction on the time step size.

To illustrate the advantages on the stability of QSC-TG, we recall the QSC-CN0
algorithm presented in [13, 14] for the model problem (3.1). Applying the QSC-CN0
algorithm to the model problem (3.1) gives rise to the linear equations of the form

Aci+1 = Bci, (3.5)

with the matrices

A = Q0 −
p

2
Δt

Δx2
Q2, B = Q0 +

p

2
Δt

Δx2
Q2 +

p

24
Δt

Δx2
Qxx, (3.6)
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where

Qxx =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
−5 6 −4 1
1 −4 6 −4 1

. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

1 −4 6 −4 1
1 −4 6 −5

0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.7)

Let Q = A
−1
B, which is the iteration matrix of the scheme described by (3.5). It has been

analyzed in [13, 14] that the QSC-CN0 algorithm for themodel problem (3.1) is stable without
any restriction on the time step size. The results by the comparison between the behaviors of

‖Qi‖∞ and ‖Qi‖∞, with the same values of σ and J , are also shown in Figure 1. It can be seen
clearly that, for fixed value of J , the upper bound of the quantities ‖Qi‖∞ is smaller than the

upper bound of the quantities ‖Qi‖∞.
In Figure 2, we compare the spectral radii of the iteration matrix Q with the spectral

radii of the iteration matrix Q, versus σ, for different values of J . We can observe that the
spectral radii of the matrix Q are smaller than those of Q for all values of σ. It seems that the
QSC-TG algorithm is better than QSC-CN0 as far as stability is concerned.

4. Numerical Experiments

We compute a linear parabolic PDE as follows:

∂

∂t
u(x, t) = p

∂2

∂x2
u(x, t) +

(
2pπ2 − 1

)
e−t/2 sin(πx),

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 5,

u(x, 0) = 2 sin(πx), 0 ≤ x ≤ 1,

(4.1)

where p is a constant. The exact solution of system (4.1) is

u(x, t) = 2e−t/2 sin(πx), 0 ≤ x ≤ 1, 0 ≤ t ≤ 5. (4.2)

To perform the QSC-TG algorithms, we employ a uniform partition

{
0 = x0 < x1 < · · · < xJ = 1

}
(4.3)

for the space domain [0, 1] with mesh size Δx = 1/J and choose the collocation points

{
τj =

(
j − 1

2

)
Δx, j = 1, 2, . . . , J

}
. (4.4)
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Figure 1: The infinity norm of the powers of the iteration matrix for the scheme of QSC-TG and that for
QSC-CN0 applied to the model problem (3.1); σ = 20.

The resulting collocation equation can be written as

Q0
dc(t)
dt

=
p

Δx2

(
Q2 +

1
24

Qxx

)
c(t) +

(
2pπ2 − 1

)
e−t/2�g, t ∈ [0, 5],

c(0) = 2Q0�g,

(4.5)

where the vector �g = (sin(πτ1), sin(πτ2), . . . , sin(πτJ))
T and the matrices Q0, Q2, and Qxx, of

size J × J , are the same as the matrices in system (2.20).
By the QSC-TG algorithm, we can obtain an approximate solution uΔ to system (4.1).

The resulting error is measured by

max
1≤j≤J, 0≤i≤N

∣∣uΔ
(
j, i

) − u
(
τj , ti

)∣∣, (4.6)

where uΔ(j, i) denotes the (j, i)th entry of uΔ, and u(τj , ti) is the true solution at (τj , ti).
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Figure 2: The spectral radii of the iteration matrices for the scheme of QSC-TG and these for QSC-CN0
applied to the model problem (3.1).

Table 1: Observed errors and orders of accuracy by QSC-TG for system (4.1)with p = 1, for several values
of J , where Δt = 1/1024.

J Error Order J Error Order
8 8.62e − 005 — 64 6.91e − 009 4.05
16 2.25e − 006 5.26 128 4.30e − 010 4.01
32 1.14e − 007 4.30 256 2.76e − 011 3.96

Table 2: Observed errors and orders of accuracy by QSC-TG for system (4.1)with p = 1, for several values
of time steps, where Δx = 1/1024.

Δt Error Order Δt Error Order
1/4 1.84e − 005 — 1/32 4.58e − 009 3.99
1/8 1.16e − 006 3.99 1/64 3.29e − 010 3.80
1/16 7.26e − 008 4.00 1/128 6.49e − 011 2.34
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Table 3: Observed errors and time cost by QSC-CN0 and QSC-TG for system (4.1) with p = 1, for several
values of time steps and mesh sizes.

Δx

QSC-CN0 QSC-TG
Δt = 98Δx2 Δt = 100Δx2 Δt = Δx

Error Time (s) Error Time (s) Error Time (s)
1/64 1.04e − 008 0.025 2.44e − 008 0.025 7.19e − 009 0.61
1/128 3.39e − 010 0.34 1.38e − 009 0.33 4.48e − 010 0.80
1/256 1.09e − 011 10.25 8.25e − 011 9.87 2.87e − 011 4.07
1/512 3.66e − 012 316.13 8.49e − 012 312.41 4.74e − 012 21.59

Table 4: Observed errors and time cost by QSC-CN0 and QSC-TG for system (4.1)with p = 0.1, for several
values of time steps and mesh sizes.

Δx

QSC-CN0 QSC-TG
Δt = 8Δx2 Δt = 20Δx2 Δt = 2.5Δx

Error Time (s) Error Time (s) Error Time (s)
1/64 1.02e − 008 1.55 1.27e − 007 0.27 4.54e − 009 0.075
1/128 7.17e − 010 45.92 7.83e − 009 7.54 2.83e − 010 0.26
1/256 4.75e − 011 1494.55 4.88e − 010 236.46 1.81e − 011 1.26
1/512 — — — — 2.91e − 012 6.02

Case 1 (when p = 1). We first investigate the contributions of the optimal quadratic spline
collocation and the two-stage Gauss method, respectively. If we choose the time step Δt =
1/1024, which is small enough to ensure the errors are introduced by QSC, the observed
errors with different values of J and the corresponding orders of accuracy are shown in
Table 1. Similarly, if we choose J = 1024, which is big enough to ensure the errors are
introduced by the time integration, the observed errors with different values of Δt and the
corresponding orders of accuracy are shown in Table 2. The results in Tables 1 and 2 confirm
the discretization errors of O(Δt4 + Δx4) for the QSC-TG algorithm.

To show the advantages of the QSC-TG algorithm, we employ the QSC-CN0 algorithm
presented in [13, 14] for comparison, which has been proved to be much efficient and
unconditionally stable. In Table 3, we present the errors and the time cost (measured in
seconds) by the QSC-CN0 algorithm and the QSC-TG algorithm for system (4.1). We can
see that the QSC-TG algorithm needs much less running time when achieving a desired high
accuracy.

Furthermore, we notice that the QSC-CN0 algorithm with Δt/Δx2 = 100 behaves
worse than that with Δt/Δx2 = 98. In fact, the approximate solutions by QSC-CN0 contain
spurious oscillations if the value of Δt/Δx2 is large [17]. The QSC-TG algorithm has no such
restriction and immunes to oscillations.

Case 2 (when p = 0.1). To show the advantages of QSC-TG more clearly, we implement the
QSC-TG and QSC-CN0 again for system (4.1) with p = 0.1. The observed errors and the
running time are compared in Table 4. We can see that the QSC-TG algorithm costs much less
running time than QSC-CN0, while it reaches much better accuracy.
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5. Conclusions

We have proposed a QSC-TG algorithm for solving linear one-dimensional parabolic PDEs.
The space discretization is dealt with by the optimal quadratic spline collocation, and the
time discretization is treated by the two-stage Gauss method. High order of accuracy both in
space and time discretizations can be achieved. The QSC-TG algorithm has been confirmed
numerically to be unconditional stable. The results of the numerical experiments show
that the QSC-TG algorithm costs much less running time than the very efficient QSC-CN0
algorithm, which is presented in [13, 14], when solving the same system and achieving the
same high accuracy.
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