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A heuristic algorithm based on VNS is proposed to solve the Max 3-cut and Max 3-section
problems. By establishing a neighborhood structure of the Max 3-cut problem, we propose a
local search algorithm and a variable neighborhood global search algorithm with two stochastic
search steps to obtain the global solution. We give some numerical results and comparisons
with the well-known 0.836-approximate algorithm. Numerical results show that the proposed
heuristic algorithm can obtain efficiently the high-quality solutions and has the better numerical
performance than the 0.836-approximate algorithm for the NP-Hard Max 3-cut and Max 3-section
problems.

1. Introduction

Given a graph G(V ;E), with nodes set V and edges set E, the Max 3-cut problem is to
find a partition S0 ⊂ V , S1 ⊂ V and S2 ⊂ V , of the set V , such that S0

⋃
S1
⋃
S2 = V ,

Si
⋂
Sj = ∅(i /= j) and the sum of the weights on the edges connecting the different parts is

maximized. Similar to the Max cut problem, the Max 3-cut problem has long been known
to be NP complete [1], even for any un-weighted graphs [2], and has also applications in
circuit layout design, statistical physics, and so on [3]. However, due to the complexity of this
problem, its research progresses is much lower than that of the Max cut problem. Based on
the semidefinite programming relaxation proposed by Goemans and Williamson [4], Frieze
and Jerrum [5] obtained a 0.800217-approximation algorithm for the Max 3-Cut problem.
Recently, Goemans and Williamson [6] and Zhang and Huang [7] improved Frieze and
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Jerrum’s 0.800217-approximation ratio to 0.836 using a complex semidefinite programming
relaxation of the Max 3-cut problem.

For the purpose of our analysis, we first introduce some notations. We denote the
complex conjugate of y = a + ib by y = a − ib, where i =

√−1 is the pure image number
and the real part and image part of a complex number by Re(·) and Im(·), respectively. For
an n dimensional complex vector y ∈ C

n written as bold letter and n dimensional complex
matrix Y ∈ C

n×n, we write y∗ and Y ∗ to denote their conjugate and transpose. That is, y∗ = yT

and Y ∗ = Y
T
. The set of n dimensional real symmetric (semidefinite positive) matrices and

the set of n dimensional complex Hermitian (semidefinite positive) matrices are denoted by
Sn(S+

n) andHn(H+
n), respectively. We sometimes use A � 0 to show A ∈ S+

n(or A ∈ H+
n). For

any two complex vector u,v ∈ C
n, we write 〈u,v〉 = u · v = u∗v as their inner product. For

any two complex matrices A,B ∈ Hn, we write 〈A,B〉 = A · B as their inner product; that is,
〈A,B〉 = A ·B = Tr(B∗A) =

∑
i,j bijaij , whereA = (aij) and B = (bij). ‖ · ‖means the module of

a complex number or the 2-norm of a complex vector or the F-norm of a complex matrix.
Let the third root of unity be denoted by ω0 = 1, ω = ω1 = ei(2π/3), ω2 = ei(4π/3).

Introduce a complex variable yi ∈ {1, ω,ω2}, i = 1, . . . , n, then it is not hard to know that

2
3
− 1
3
yi · yj − 1

3
yj · yi =

2
3
(
1 − Re

(
yi · yj

))
. (1.1)

Denote Sk = {i : yi = ωk, k = 0, 1, 2} and y = (y1, . . . , yn)
T . Then the Max 3-cut problem can be

expressed as

M3C : max f(y) =
2
3

∑

i<j

wij

(
1 − Re

(
yi · yj

))

s.t. y ∈ {1, ω,ω2}n,
(1.2)

here y ∈ {1, ω,ω2}n means that yi ∈ {1, ω,ω2}, i = 1, . . . , n, W = (wij) is the weight-valued
matrix of a given graph.

By relaxing the complex variable yi into an n dimensional complex vector yi, we get a
complex semidefinite programming (CSDP) relaxation of (M3C) as follows:

CSDP : max
2
3

∑

i<j

wij

(
1 − Re

(
yi · yj

))

s.t. ‖yi‖ = 1, i = 1, 2, . . . , n,

Ak
ij · Y ≥ −1, i, j = 1, 2, . . . , n, k = 0, 1, 2

Y � 0,

(1.3)
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where Yij = yi · yj , Ak
ij = ωkeieTj + ω−kejeTi and ei denotes the vector with zeros everywhere

except for an unit in the ith component. It is easily to verify that constraints Ak
ij · Y ≥ −1 can

be expressed as

Re
(
ωkYij

) ≥ −1
2
, k = 0, 1, 2. (1.4)

To get an approximate solution of M3C, Goemans and Williamson [6] do not directly solve
the CSDP, but solve an equivalent real SDP with following form (Although some softwares,
such as SeDuMi [8] and the earlier version of SDPT3-4.0 [9], can deal with SDPswith complex
data, this does not reduce the dimensions of problems):

RSDP : max
1
2

[
Q O
O Q

]

·X

s.t.
[
eieTi O
O eieTi

]

·X = 2, i = 1, 2, . . . , n,

⎡

⎣
Re
(
Ak

ij

)
− Im
(
Ak

ij

)

Im
(
Ak

ij

)
Re
(
Ak

ij

)

⎤

⎦ ·X ≥ −2, 1 ≤ i < j ≤ n, k = 0, 1, 2

[
A0

ij O

O −A0
ij

]

·X = 0, 1 ≤ i < j ≤ n,

[
O A0

ij

A0
ij O

]

·X = 0, 1 ≤ i < j ≤ n,

[
O eieTi
eieTi O

]

·X = 0, i = 1, 2, . . . , n,

X ∈ S2n
+ ,

(1.5)

where Q = (1/3)diag(We) −W is the Laplace matrix of given graph, O is an n-dimensional
full zeros matrix.

In RSDP, the first, third, and forth classes of equality constraints ensure that Xii = 1,
i = 1, 2, . . . , n and with the form

X =
[
R −S
S R

]

. (1.6)

The final two classes of equality constraints ensure that Sii = 0 (i = 1, . . . , n) and S is a skew-
symmetric matrix.
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If X is an optimal solution of RSDP, then the complex matrix Ŷ = R + iS is an optimal
solution of CSDP. Then one can randomly generate a complex vector ξ, such that ξ ∼ N(0, Ŷ ),
and set

ŷi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if Arg(ξi) ∈
[

0,
2π
3

)

,

ω, if Arg(ξi) ∈
[
2π
3
,
4π
3

)

,

ω2, if Arg(ξi) ∈
[
4π
3
, 2π
)

,

(1.7)

where Arg(·) ∈ [0, 2π] means the complex angle principal value of a complex number.
Goemans and Williamson [6] had verified that, see also Zhang and Huang [7],

f(ŷ) ≥ 0.836 ·
(
Q · Ŷ

)
. (1.8)

The algorithm proposed by Goemans and Williamson [6] can obtain a very good
approximate ratio, and RSDP can be solved by interior point algorithm, but the 0.836-
approximate algorithm will be not practical in numerical study for the Max 3-cut problem.
From RSDP, one can see that for a graph with n nodes, RSDP has 2n+ 5n(n− 1)/2 constraints
and 3n(n − 1)/2 slack variables via the inequality constraints. That is to say, RSDP has a 2n
dimensional unknown symmetrical semidefinite positive matrix variable and a 3n(n − 1)/2
dimensional unknown vector variable, and 2n + 5n(n − 1)/2 constraints, and has also many
matrices without an explicit block diagonal structure although they are sparse. For instance,
when n = 100, RSDP becomes a very-high-dimensional semidefinite programming problem
with 14850 slack variables and 24950 constraints. Further, as we known, it is only a class of
universal and medium-scale instances for Max 3-cut problems with 50 to 100 nodes. Hence,
it will be very time consuming to solve such a RSDP relaxation of M3C using the current
existing any SDP softwares. This leads that 0.836-approximate algorithm is not suitable for
computational study of the Max 3-cut problem. This limitation for solving M3C based on
CSDP (or RSDP) relaxation motivates us to find a new efficient and fast algorithm for the
practical purpose for the Max 3-cut problem.

In the current paper, we first establish a definition of K-neighborhood structure of the
Max 3-cut problem and design a local search algorithm to find the local minimizer. And then,
we propose a variable neighborhood search (VNS)metaheuristic with stochastic steps which
is originally considered by Mladenović and Hansen [10], by which we can find efficiently
a high-quality global approximate solution of the Max 3-cut problem. Further, combining a
greed algorithm, we extend the proposed algorithm to the Max 3-section problem. To the
best of our knowledge, it is first time to consider the computational study of the Max 3-
cut problem. In order to test the performance of the proposed algorithm, we compare the
numerical results with Goemans and Williamson’s 0.836-approximate algorithm.

This paper is organized as follows. In Section 2, we give some definitions and lemmas.
In Section 3, we present the VNS metaheuristic for solving the Max 3-cut problem. The VNS
is extended to the Max 3-section problem in Section 4. In Section 5, we give some numerical
results and comparisons.
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2. Preliminaries

In this section, we will establish some definitions and give some facts for our sequel purpose.
For the third roots of unity, 1, ω, ω2, we can get the following fact:

‖1 −ω‖2 =
∥
∥
∥ω −ω2

∥
∥
∥
2
=
∥
∥
∥1 −ω2

∥
∥
∥
2
= 3. (2.1)

Denote S = {1, ω,ω2}n. Then based on (2.1), for any y ∈ S, wemay definite aK-neighborhood
of y as follows.

Definition 2.1. For any y ∈ S and any positive integer number K (1 ≤ K ≤ n), one defines the
K-neighborhood, denoted byNK(y), of y as the set

NK(y) =
{

z ∈ S : ‖z − y‖2 =
n∑

i=1

∥
∥zi − yi

∥
∥2 ≤ 3K

}

. (2.2)

In particular, if K = 1, we write the 1-neighborhood N1(y) of y asN(y).

The boundary of the K-neighborhood NK(y) is defined by ∂NK(y) = {z ∈ S :
‖y − z‖2 = 3K}. Clearly, N(y) = ∂N(y). If z ∈ ∂NK(y), we call z a K-neighbor of y. From
Definition 2.1, the difference of between points y and its K-neighbor z is that they have only
K different components. By computing straightforwardly, we get the number of elements of
∂NK(y), that is |∂NK(y)| = 2KCK

n . Particularly, |∂N(y)| = 2n when K = 1.

Example 2.2. Let y = (ω,ω,ω2)T ∈ {1, ω,ω2}3. Then (1, ω,ω2)T ∈ N(y), (1, ω2, ω2)T ∈
∂N2(y) ⊂ N2(y), and (1, ω2, ω)T ∈ ∂N3(y) ⊂ N3(y).

Definition 2.3. For any u ∈ {0, 1, 2}, define two maps from {1, ω,ω2} to itself as follows:
τi(ωu) = ωu+i ∈ {1, ω,ω2}, i = 1, 2.

Clearly, for any u ∈ {0, 1, 2}, τi(ωu)/=ωu, i = 1, 2 and τ1(ωu)/= τ2(ωu). Applying
Definition 2.3, for any z ∈ N(y) there exists an unique component, zk say, of z, such that
zk /=yk and either zk = τ1(yk) or zk = τ2(yk), and other components of z and y are the same.
For simplicity, for any z ∈ N(y) with zk /=yk and zi = yi (i = 1, . . . , n, i /= k), we denote by
z = τk1 (y) or z = τk2 (y) corresponding to zk = τ1(yk) or zk = τ2(yk). By Definitions 2.1
and 2.3, for any y ∈ S, we can structure its 1-neighborhood points using maps defined by
Definition 2.3; that is, we have the following result.

Lemma 2.4. Let τi(·) (i = 1, 2) be defined by Definition 2.3. Then, for any y ∈ S and any fixed positive
integer number k (1 ≤ k ≤ n), one has

τki (y) ∈ N(y), i = 1, 2, (2.3)

that is, τk1 (y) and τk2 (y) are two 1-neighborhood points of y.

Definition 2.5. A point ŷ ∈ S is called a K-local maximizer of the function f over S, if f(ŷ) ≥
f(y), for all y ∈ NK(ŷ). Furthermore, if f(ŷ) ≥ f(y) for all y ∈ S, then ŷ is called a global
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maximizer of f over S. A 1-local maximizer of the function f is also called a local maximizer
of the function f over S.

3. VNS for Max 3-Cut

3.1. Local Search Algorithm

Let y0 = (y0
1 , . . . , y

0
n)

T ∈ S be a feasible solution of problemM3C. If y0 is not a local maximizer
of f , then for all y ∈ N(y0), wemay find a ỹ ∈ N(y0), such that f(ỹ) = max{f(y) : y ∈ N(y0)}.
It is clear that f(ỹ) ≥ f(y0). If ỹ is not still a local maximizer of f , then replacing y0 with ỹ
and repeating the process until a point ŷ satisfying f(ŷ) = max{f(y) : y ∈ N(ŷ)} is found,
which indicates that ŷ is a local maximizer of f .

For any positive integer number k (1 ≤ k ≤ n), let yk = (yk
1 , . . . , y

k
n)

T = τki (y
0) ∈

N(y0) (i = 1, 2); that is,

yk
i = y0

i , i = 1, 2, . . . , k − 1, k + 1, . . . , n;

yk
k /=y0

k.
(3.1)

Denote

δ(k) = f
(
y0
)
− f
(
yk
)
. (3.2)

Then, we have the following result whose proof is clear.

Lemma 3.1. Consider

δ(k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2
3

k−1∑

i=1

wik Re
[
y0
i ·
(
yk
k − y0

k

)]
+
2
3

n∑

j=k+1

wkj Re
[(

yk
k − y0

k

)
· y0

j

]
, k > 1;

2
3

n∑

j=k+1

wkj Re
[(

yk
k − y0

k

)
· y0

j

]
, k = 1.

(3.3)

Based on Lemma 3.1, if we know the value of f(y0), then we can obtain the value
function f(yk) at next iterative point yk by calculating δ(k) by (3.3), instead of calculating
directly the values f(yk), which reduces sharply the computational cost. By Definition 2.1,
there exist two points satisfying (3.1) for fixed k; that is, when yk ∈ N(y0) and (3.1) is
satisfied, then either yk

k = τ1(y0
k) or yk

k = τ2(y0
k). For our convenience, we denote δ(k) by

δ1(k)when yk
k
= τ1(y0

k
) and by δ2(k)when yk

k
= τ2(y0

k
). In what follows, we describe the local

search algorithm for the Max 3-cut problem denoted by LSM3C; by this algorithm, we can
get a local maximizer of functionf(y) over S.

For LSM3C, one has the following.

(1) Input any initial feasible solution y0 of problem (M3C).

(2) For k from 1 to n, set zk1 = τk1 (y
0), calculate δ1(k), and set again zk2 = τk2 (y

0),
calculate δ2(k).
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(3) Find δi∗(k∗) by the following way:

δi∗(k∗) = min{δ1(1), δ2(1), . . . , δ1(k), δ2(k), . . . , δ1(n), δ2(n)}. (3.4)

(4) If δi∗(k∗) ≥ 0, then set ŷ = y0, return ŷ, and stop. Otherwise, go to next.

(5) Set y0 = τk
∗

i∗ (y
0); go to Step 2.

3.2. Variable Neighborhood Stochastic Search

Let ŷ be a local maximizer obtained by LSM3C and Kmax (1 < Kmax ≤ n) a fixed positive
integer number. we now describe the variable neighborhood search (VNS) with stochastic
steps, by which we can find an approximate global maximizer of problem (M3C). The
proposed VNS algorithm actually has three phases: First, for any given positive integer
number K < Kmax, a K-neighborhood point, y say, is randomly selected; that is, y ∈ NK(ŷ).
Next, a solution, ̂̂y say, is obtained by applying algorithm LSM3C to y. Finally, the current
solution jumps from ŷ to ̂̂y if it improves the former one. Otherwise, the order K of the
neighborhood is increased by one when K < Kmax and the above steps are repeated until
some stopping condition is met. The VNS that is also called k-max [11] can be illustrated as
follows.

For VNS-k, one has the following.

(1) Arbitrary choose a point y0 ∈ S, implement LSM3C starting from y0 ∈ S and denote
the obtained local maximizer by ŷ. Set K = 1.

(2) Randomly take a point y ∈ ∂NI(K)(ŷ) and implement again LSM3C from y, and
denote the obtained new local maximizer by ̂̂y.

(3) If f(̂̂y) > f(ŷ), then set ŷ = ̂̂y and K = 1; go to Step 2.

(4) IfK < Kmax(≤ n), setK = K+1; go to Step 2. Otherwise, return ŷ as an approximate
global solution of problem M3C and stop.

The subscript I(K) in Step 2 is a function of K and is also a positive integer number
not greater than n. I(K) reflects the main skill of converting the current neighborhood of
local maximizer ŷ into another neighborhood of ŷ. For a given Kmax, let m = 
n/Kmax� and
K0 = n −mKmax, where 
a�means the integral part of a. We divide the n neighborhoods of ŷ,
N(ŷ),N2(ŷ), . . . ,NK(ŷ), . . . ,Nn(ŷ) into Kmax neighborhood blocks NI(1)(ŷ), . . . ,NI(Kmax)(ŷ),
such that, for K = 1, 2, . . . , Kmax −K0,

N(K−1)m+1(ŷ) ⊆ NI(K)(ŷ) ⊆ NKm+1(ŷ), (3.5)

and, for K = Kmax −K0 + 1, . . . , Kmax −K0 + j, . . . , Kmax,

N(K−1)(m+1)+1(ŷ) ⊆ NI(K)(ŷ) ⊆ NK(m+1) (ŷ). (3.6)

In order to obtain the Kmax neighborhood blocks of ŷ, NI(K)(ŷ), K = 1, . . . , Kmax, we divide
the set {1, 2, . . . , n} intoKmax disjoint subsets, where each subset of the firstKmax −K0 subsets
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has m integers and each subset of the last K0 subsets has m + 1 integers. For any integer
K(≤ Kmax), let

I(K) = (K − 1) ·m + [c ·m] + 1, K = 1, 2, . . . , Kmax −K0, (3.7)

or

I(K) = (Kmax −K0)m + [(m + 1) · c] + 1 + (m + 1)(K − (Kmax −K0) − 1)

= [(m + 1) · c] + 1 + (m + 1)(K − 1) − (Kmax −K0),

K = Kmax −K0 + 1, . . . , Kmax −K0 + j, . . . , Kmax.

(3.8)

Then we can randomly choose a point y in ∂NI(K)(ŷ), where c ∈ (0, 1) is a random number
from uniformly distribution U(0, 1), such that NI(K)(ŷ) satisfies (3.5) or (3.6).

VNS-k stops when the maximum K neighborhood is reached. Additionally, we also
consider another termination criterion of VNS based on themaximumCPU-time and denoted
by VNS-t. VNS-t can obtain a better solution than VNS-k since VNS-t actually runs several
times VNS-k in the maximum allowing time tmax, but it generally has to spend more
computational time. The VNS-t can be stated as follows.

For VNS-t, one has the following.

(1) Set tCPU = 0, running VNS-k for an arbitrary initial point y0 ∈ S, and let a local
optimal solution ŷ be obtained.

(2) If K = Kmax(≤ n), go to Step 3.

(3) If tCPU < tmax, then set K = 1; go to Step 2 in VNS-k. Otherwise, return ŷ as an
approximate global solution of problem M3C and stop.

We mention that it differs from the classical variable neighborhood search meta-
heuristic that is originally proposed by Mladenović and Hansen [10]. In order to obtain a
global optimal solution or a high-quality approximate solution of problem M3C, we use
two stochastic steps in VNS. First, for a fixed K, a K-neighbor of ŷ is chosen randomly.
Second, by the definition of I(K), when we change the neighborhood of ŷ from NI(K−1) to
NI(K), NI(K) may take any a neighborhood among N(K−1)m+j , j = 1, 2, . . . , m of ŷ, which is
decided by random number c. In VNS, positive integer Kmax decides the maximum search
neighborhood block of ŷ, which also decides directly the CPU-time of VNS. Based on the
second stochastic step, we may choose a relative small Kmax comparing with n. This can
decrease our computational time.

4. A Greedy Algorithm for Max 3-Section

When the number of nodes n is a multiple of three and the condition |S0| = |S1| = |S2| = n/3 is
required, the Max 3-cut problem becomes the Max 3-section problem. Notice that 1+ω+ω2 =
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0, then the Max 3-section problem can be formulated as the following programming problem
M3S:

M3S : max
2
3

∑

i<j

wij

(
1 − Re

(
yi · yj

))

s.t.
n∑

i=1

yi = 0,

y ∈ S,

(4.1)

and its CSDP relaxation is

CSDP1 : max
2
3

∑

i<j

wij

(
1 − Re

(
yi · yj

))

s.t. eeT · Y = 0,

‖yi‖ = 1, i = 1, 2, . . . , n,

Ak
ij · Y ≥ −1, i, j = 1, 2, . . . , n, k = 0, 1, 2

Y � 0,

(4.2)

where e is the column vector of all ones. Andersson [12] extended Frieze and Jerrum’s
random rounding method to M3S and obtained a (2/3) + O(1/n3)-approximate algorithm,
which is the current best approximate ratio for M3S; also see the recent research of Gaur et
al. [13]. The author of the current paper considers a special the Max 3-Section problem and
obtains a 0.6733-approximate algorithm; see Ling (2009) [14].

Clearly, the feasible region of problem M3S is a subset of S, and the optimal value of
problem M3S is not greater than that of problem M3C. Assume that we have get a global
optimal solution or a high-quality approximate solution ŷ of problem M3C. It is clear that ŷ
may not satisfy the condition

∑n
i=1 ŷi = 0. But we may adjust ŷ to get a new feasible solution

ys using a greedy algorithm, such that ys satisfies
∑n

i=1 y
s
i = 0. This is the motivation that we

propose the greedy algorithm for the Max 3-section problem.
For the sake of our analysis, without loss of generality, we assume that the local

maximizer ŷ satisfies |S0| = max{|S0|, |S1|, |S2|}. This means that S0 = {i : ŷi = 1} is the
subset of V with maximum cardinal number. If |Sk| = max{|S0|, |S1|, |S2|}(k /= 0, k = 1, 2),
then we may set yN

i = wkŷi, i = 1, . . . , n. The resulted new solution yN = (yN
1 , . . . , yN

i )
will not change the objective value since f(ŷ) = f(wkŷ) (k /= 0, k = 1, 2); moreover, the new
partition {SN

0 , SN
1 , SN

2 } based on yN satisfies |SN
0 | = max{|SN

0 |, |SN
1 |, |SN

2 |}. By our assumption,
the partition S = {S0, S1, S2} still exist four possible cases.

Case 1. |S0| ≥ |S1| ≥ n/3 ≥ |S2|.

Case 2. |S0| ≥ n/3 ≥ |S1| ≥ |S2|.

Case 3. |S0| ≥ |S2| ≥ n/3 ≥ |S1|.

Case 4. |S0| ≥ n/3 ≥ |S2| ≥ |S1|.
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The sizes adjusting greedy algorithm of Cases 3 and 4 are similar to Cases 1 and 2.
Hence, we mainly consider Cases 1 and 2 for adjusting the partition of V from S = {S0, S1, S2}
to S̃ = {S̃0, S̃1, S̃2} such that |S̃k| = n/3, k = 0, 1, 2. Denote

δ0(i) =
∑

j∈S1∪S2

wij , i ∈ S0,

δ01(i) =
∑

j∈S1

wij , i ∈ S0, δ10(i) =
∑

j∈S0

wij , i ∈ S1,

δ02(i) =
∑

j∈S2

wij , i ∈ S0, δ20(i) =
∑

j∈S0

wij , i ∈ S2,

δ12(i) =
∑

j∈S2

wij , i ∈ S1, δ21(i) =
∑

j∈S1

wij , i ∈ S2.

(4.3)

Then, it follows from simple computation that

δ0(i) = δ01(i) + δ02(i), for each i ∈ S0,
∑

i∈Sk

δkl(i) =
∑

i∈Sl

δlk(i), k, l = 0, 1, 2, k /= l,

f(ŷ) =
∑

i∈S0

δ0(i) +
∑

i∈S1

δ12(i)

=
∑

i∈S0

δ01(i) +
∑

i∈S0

δ02(i) +
∑

i∈S1

δ12(i)

= d01 + d02 + d12,

(4.4)

where d01 =
∑

i∈S0
δ01(i), d02 =

∑
i∈S0

δ02(i), d12 =
∑

i∈S1
δ12(i).

In what follows, we describe the size adjusting greedy algorithms (SAGAs) for Cases
1 and 2, and denote the greedy algorithms for the two cases by SAGA1 and SAGA2,
respectively.

For SAGA1, one has the following.

(1) Calculate

m02 =

∑
i∈S0

δ02(i)
|S0| , m12 =

∑
i∈S1

δ12(i)
|S1| . (4.5)

(2) If m02 ≥ m12, let S1 = {j1, j2, . . . , j|S1|}, where δ12(jl) ≥ δ12(jl+1), l = 1, 2, . . . , |S1|. Set
S̃1 = {j1, j2, . . . , jn/3}, S̃2 = S2

⋃
(S1 \ S̃1) and renew to calculate

δ′
02(i) =

∑

j∈Ŝ2

wij , (4.6)

for each i ∈ S0. Let S0 = {i1, i2, . . . , i|S0|}, where δ′
02(ik) ≥ δ′

02(ik+1). Set S̃0 =
{i1, i2, . . . , in/3} and S̃2 = S̃2

⋃
(S0 \ S̃0).
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(3) If m02 < m12, let S0 = {i1, i2, . . . , i|S0|}, where δ02(ik) ≥ δ02(ik+1), k = 1, 2, . . . , |S0|, set
S̃0 = {i1, i2, . . . , in/3}, Ŝ2 = S2

⋃
(S0 \ S̃0), and then renew to calculate

δ′
12(i) =

∑

j∈Ŝ2

wij , (4.7)

for each i ∈ S1. Set S̃1 = {j1, j2, . . . , jn/3} and S̃2 = Ŝ2
⋃
(S1 \ S̃1), where δ′

12(jk) ≥
δ′
12(jk+1) here.

(4) Return the current partition S̃ = {S̃0, S̃1, S̃2}; stop.
For SAGA2, one has the following.

(1) Calculate d01 =
∑

i∈S0
δ01(i), d02 =

∑
i∈S0

δ02(i), and

m01 =
d01

|S0| , m02 =
d02

|S0| . (4.8)

(2) Ifm01 ≤ m02, let

S0 =
{
i1, i2, . . . , i|S0|

}
, (4.9)

where δ01(ik) ≥ δ01(ik+1), k = 1, 2, . . . , |S0|. Set

Ŝ0 =
{
i1, i2, . . . , i|S0|−q1

}
, S̃1 = S1

⋃(
S0 \ Ŝ0

)
, (4.10)

where q1 = (n/3) − |S1|. Renew to calculate

δ′
02(i) =

∑

j∈S2

wij , i ∈ Ŝ0. (4.11)

and let

Ŝ0 =
{

i′1, i
′
2, . . . , i

′
|Ŝ0|
}

, (4.12)

where δ′
02(i

′
k
) ≥ δ′

02(i
′
k+1), k = 1, 2, . . . , |Ŝ0|. Set

S̃0 =
{
i′1, i

′
2, . . . , i

′
n/3

}
, S̃2 = S2

⋃(
Ŝ0 \ S̃0

)
. (4.13)

(3) Ifm01 > m02, let

S0 =
{
i1, i2, . . . , i|S0|

}
, (4.14)
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where δ02(ik) ≥ δ02(ik+1), k = 1, 2, . . . , |S0|. Set

Ŝ0 =
{
i1, i2, . . . , i|S0|−q2

}
, S̃2 = S2

⋃(
S0 \ Ŝ0

)
, (4.15)

where q2 = (n/3) − |S2|. Renew to calculate

δ′
01(i) =

∑

j∈S1

wij , i ∈ Ŝ0. (4.16)

and let

Ŝ0 =
{

i′1, i
′
2, . . . , i

′
|Ŝ0|
}

, (4.17)

where δ′
01(i

′
k) ≥ δ′

01(i
′
k+1), k = 1, 2, . . . , |Ŝ0|. Set

S̃0 =
{
i′1, i

′
2, . . . , i

′
n/3

}
, S̃1 = S1

⋃(
Ŝ0 \ S̃0

)
. (4.18)

(4) Return the current partition S̃ = {S̃0, S̃1, S̃2}; stop.

5. Numerical Results

This section describes the obtained experimental results for some instances of Max 3-
cut and Max 3-Section problems using the proposed VNS metaheuristic. We also show a
quantitative comparison with 0.836-approximate algorithm. The computational experiments
are performed in an Intel Pentium 4 processor at 2.0GHz, with 512MB of RAM, and all
algorithms are coded in Matlab. Because RSDP relaxation of M3C includes many slack
variables, many constraints, and matrices variables without a block diagonal structures, in
our numerical comparisons, we choose SDPT3-4.0 [9], one of the best andwell-known solvers
of semidefinite programming, to solve RSDP relaxation of M3C.

All our test problems are generated randomly by the following way. Let p ∈ (0, 1) be
a constant and r ∈ (0, 1) a random number. If r ≤ p, then there is an edge between nodes i
and j with weight wij , that is, a random integer between 1 and 10. Otherwise, wij = 0; that
is, there is no edge between nodes i and j. Because of the limits of memory of SDPT3, when
n > 200, RSDP becomes a huge semidefinite programming problem with not less than 59700
slack variables and 99900 constraints and is out of memory of SDPT3. Hence, in the numerical
experiments, we consider 30 instances with p = 0.1, 0.3, 0.6, and n varying from 20 to 200.

Firstly, we check the influence of Kmax on the quality of solution obtained by VNS-k.
For a given graph, we takeKmax = 3, 5, 10, 15, 30; Table 1 presents the results, where Wnp in the
first column of this table and the following tables means that a graph is randomly generated
with nodes n and density p; for instance, W30.6 presents a graph generated randomly with
n = 30 and p = 0.6. We find from Table 1 that the influence of Kmax to objective value
denoted by Obj in Table 1 is slight when Kmax > 5, but the CPU time increases sharply as
Kmax increases. This result is actually not surprising. Indeed, because I(K) > K, we choose
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Table 1: The objective value obtained by VNS for M3C with different Kmax.

Wnp
Kmax = 3 Kmax = 5 Kmax = 10 Kmax = 15 Kmax = 30

Obj t Obj t Obj t Obj t Obj t

W60.1 960 1.38 965 2.14 967 4.63 967 6.29 969 12.50
W100.3 6001 7.55 6010 12.66 6013 23.37 6013 29.28 6015 69.52
W120.1 3323 13.76 3335 34.07 3337 38.78 3339 50.48 3343 101.85

randomly a point y in ∂NI(K)(ŷ), instead of ∂NK(ŷ). This avoids to choose too large Kmax

which leads to more CPU-time cost. Hence, in sequel numerical comparisons, we fixKmax = 5
for all test problems.

Secondly, we compare VNS (VNS-k, VNS-t) metaheuristic with 0.836-approximate
algorithm for all test problems. To avoid the effect of initial points, for each test problem,
after RSDP is solved, we run the round procedure of 0.836-approximate algorithm and VNS
metaheuristic ten times, respectively.

Table 2 gives the result of numerical comparisons. In the numerical presentations of
Table 2, Objrsdp is the optimal value of problem RSDP; that is, it is an upper bound of M3C.
ObjGM is the largest value obtained by 0.836-approximate algorithm in the ten tests. Objvns
stands for the largest value obtained by VNS forM3C in the ten tests, respectively.m and s.v.
are the number of constraints and slack variables (s.v.), respectively. tGM and tvns−k are the
average time (second) associated with the two algorithms in the ten tests. For the maximum
CPU time of VNS-t, we take tmax = 2tvns−k, but the real CPU time of VNS-twill be greater than
tmax. Additionally, for measuring the performance of solutions, we take

ρ =
Objvns − Objrsdp

Objrsdp
=

Objvns
Objrsdp

− 1 (5.1)

for M3C and

ρ =
Objvns+saga − Objrsdp

Objrsdp
=
Objvns+saga

Objrsdp
− 1 (5.2)

for M3S. Clearly, ρ can reflect how close to the solution obtained by VNS from the optimal
solution of RSDP. One can see from Table 2 that (1) the VNS metaheuristic not only can
obtain a better solution than 0.836-approximate algorithm for all test problems, but also
that the elapsed CPU-time of VNS metaheuristic is much less than that of 0.836-approximate
algorithm for all test problems, (2) the performance of solution can be improved by VNS-t for
most of test problems when the termination criterion of VNS is based on the maximum CPU-
time, but VNS-t spends more computational time than VNS-k. The improved performance
can be reflected by ∇ρ = ρt − ρk in the final column of Table 2. Average speaking, VNS-t
improves 0.91 percentage point.

Finally, we consider the solution of M3S by combining VNS-k and greedy sizes-
adjusted algorithm SAGA stated in Section 4. Let ŷ be an approximate solution of M3C
obtained by VNS; we can obtain an approximate solution of M3S from SAGA. The numerical
results are reported by Table 3 in which Objvns+saga stands for the largest value obtained
by VNS-k plus SAGA for M3S. Although our sizes-adjusted algorithm may decrease the
objective value obtained by VNS, the changes of objective values are very slight from
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Table 2: The numerical comparisons of 0.836-approximate algorithm with VNS metaheuristic.

Wnp
m

Objrsdp
0.836-algorithm VNS

s.v. ObjGM tGM Objvns-k tvns-k ρk% Objvns−t ρt% ∇ρ%
W20.1 990 121 117 22.93 119 0.28 −1.65 119 −1.65 0
W20.3 570 232 225 25.58 228 0.29 −1.72 228 −1.72 0
W20.6 492 464 14.27 479 0.40 −2.65 479 −2.24 0.41
W30.1 2235 147 139 161.56 144 0.81 −2.04 144 −2.04 0
W30.3 1305 566 521 140.12 550 0.97 −2.83 550 −2.30 0.53
W30.6 1181 1101 94.93 1151 0.92 −2.54 1151 −2.03 0.51
W45.1 5040 675 594 202.48 605 0.92 −10.38 612 −9.33 1.05
W45.3 2970 1300 1147 211.72 1192 1.02 −8.31 1300 −7.15 1.16
W45.6 2441 2272 217.57 2313 1.02 −5.25 2350 −3.73 1.52
W60.1 8970 1069 918 256.35 965 2.14 −9.73 981 −8.23 1.50
W60.3 5310 2494 2228 256.57 2301 3.13 −7.74 2332 −6.50 1.24
W60.6 4403 4054 266.68 4213 2.48 −4.32 4307 −2.18 2.14
W80.1 15960 1567 1357 537.58 1415 5.82 −9.71 1438 −8.23 1.48
W80.3 9480 4094 3666 546.23 3801 7.35 −7.16 3912 −4.45 2.71
W80.6 7746 7328 495.34 7423 6.31 −4.17 7481 −3.42 0.75
W100.1 24950 2526 2149 893.52 2262 12.73 −10.46 2302 −8.87 1.60
W100.3 14850 6418 5814 882.73 6010 12.66 −6.36 6113 −4.75 1.61
W100.6 11956 11212 865.28 11391 11.99 −4.73 11422 −4.47 0.26
W120.1 33990 3746 3222 1476.54 3335 34.07 −10.98 3392 −9.45 1.53
W120.3 21420 9173 8266 1498.18 8575 35.41 −6.52 8623 −6.00 0.52
W120.6 16748 15596 1567.43 16056 43.80 −4.14 16114 −3.79 0.35
W150.1 56175 5821 5020 2618.11 5208 69.20 −10.54 5257 −9.69 0.85
W150.3 33525 14432 13209 3021.87 13543 70.60 −6.15 13607 −5.72 0.43
W150.6 26310 25076 3172.22 25405 74.46 −3.44 25517 −3.01 0.43
W180.05 80910 4303 3578 9043.25 3726 133.10 −13.41 3812 −11.41 1.20
W180.1 48330 7236 6328 10225.54 6481 130.07 −10.44 6547 −9.52 0.92
W180.3 20147 18436 9887.36 19031 132.14 −5.54 19213 −4.64 0.90
W180.6 37292 35386 10004.11 35949 102.77 −3.61 36124 −3.13 0.48
W200.05 99900 5174 4306 25872.33 4484 71.90 −13.40 4509 −12.85 0.55
W200.1 59700 9271 8092 29003.28 8799 149.50 −5.10 8853 −4.51 0.59
W200.5 38831 36481 28774.17 37477 200.16 −3.49 37552 −3.29 0.20

Table 3. Particular, objective values of some problems do not decrease, instead increase,
such as W150.3. We do not compare the obtained results with Andersson’s 2/3-approximate
algorithm. Because we find that all approximate solutions of M3S obtained by VNS plus
SAGA still are better than that of 0.836-approximate algorithm with the exception of only
W30.1 and W30.3.

6. Conclusions

A variable neighborhood stochastic metaheuristic was proposed to solve the Max 3-cut and
Max 3-section problems in this paper. Our algorithms can solve Max 3-cut and Max 3-
section problems with different sizes and densities. Although 0.836-approximate algorithm
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Table 3: The numerical results of combining VNS-k metaheuristic with SAGA for M3S.

Wnp Objrsdp ObjGM Objvns+saga ρk (%)
W30.1 147 139 138 −6.12
W30.3 566 521 518 −8.49
W30.6 1181 1101 1151 −2.55
W45.1 675 594 605 −10.38
W45.3 1300 1147 1191 −8.39
W45.6 2441 2272 2313 −5.25
W60.1 1069 918 952 −10.95
W60.3 2494 2228 2301 −7.74
W60.6 4403 4054 4213 −4.32
W120.1 3746 3222 3290 −12.18
W120.3 9173 8266 8449 −7.90
W120.6 16748 15596 16056 −4.14
W150.1 5821 5020 5203 −10.62
W150.3 14432 13209 13551 −6.11
W150.6 26310 25076 25096 −4.62
W180.05 4303 3578 3726 −13.41
W180.1 7236 6328 6396 −11.61
W180.3 20147 18436 18823 −6.58
W180.6 37292 35386 35947 −3.61

has the very good theoretic results, in numerical aspects, our comparisons indicate that the
proposed VNS metaheuristic is superior to the well-known 0.836-approximate algorithm
and can efficiently obtain very high-quality solutions of the Max 3-cut and Max 3-section
problems.

Wemention that the proposed algorithm in fact can deal with higher dimensionalG-set
graphs problems created by Pro. Rinaldi using a graph generator, rudy. But, we cannot give
numerical comparisons with 0.836-approximate algorithm since RSDP relaxations of these
problems are out of memory of the current all SDP software. In additionally, if we increase
Kmax or tmax in numerical implementing, then the quality of solution of M3C will further be
improved by VNS.
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