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This paper presents an inverse problem and its solution procedure, which are aimed at identifying
a sudden underwater movement of the sea bottom. The identification is mathematically shown
to work with a known snapshot data of generated water wave configurations. It is also proved
that the problem has a unique solution. However, the inverse problem is involved in an integral
equation of the first kind, resulting in an ill-posed problem in the sense of stability. That is, the
problem lacks solution stability properties. To overcome the difficulty of solution instability, in
this paper, a stabilization technique, called regularization, is incorporated in the present solution
procedure for the identification of the sea bottommovement. A numerical experiment is presented
to demonstrate that the proposed (numerical) solution procedure operates.

1. Introduction

In the field of natural science and ocean engineering, it is not only of interest but important to
examine how waves are generated in the ocean surface by the underwater abrupt movement
of the sea bottom. If we knew the information of the underwater abrupt movement in
advance, it would enable us to determine how the waves propagate in space and time. In
practice, this can be extremely crucial, for example, for a Tsunami Warning System (TWS),
which is used to detect tsunamis and issue warnings to prevent loss of life and property.

The problem of finding the resulting wave flow field has been usually solved based
on the potential wave model. For example, excellent research has been made on the subject
of wave generation and propagation [1–4]. Even if much progress has been achieved in
determining the resulting wave flow (or forward problem), only few attempts have been
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made so far on analysis of an inverse problem to the resulting wave flow. The present study
concentrates on the cause of the resulting wave flow (or inverse problem).

Recently, Jang et al. [5] have considered a problem that involves the indirect
measurement of the movement of the sea bottom when the time history of the resulting wave
motion is observed. They proposed a procedure for finding the wave source based on time-
history data acquisition. Although the procedure by Jang et al. [5] is robust for measuring
the wave source, it requires a relatively long time to acquire the time-history data at a fixed
measurement position. However, in some cases, it may be convenient to obtain a snapshot
data of the resulting wave configuration, for example, using a high-speed Remote Control
airplane camera, rather than the acquiring of the full-time history data.

Motivated by this, we propose, in this paper, a new systematic procedure for the
indirect measurement of abrupt underwater movement of the sea bottom by analyzing
“snapshot” data of a local wave configuration. That is to say, the only needed data for
identifying the underwater wave source is a snapshot involving a local wave configuration
such as wave photos [2] taken from a remote control airplane at a fixed time. It is interesting
to note that the new procedure proposed is also suitable to recover whole (or global) wave
configurations only by using a local data of wave configuration. This work is classified as an
inverse problem which occurs in many branches of science and engineering [5–15].

As a first step, we begin with a simplified mathematical wave model. That is, the
two-dimensional irrotational wave flow is modeled with a constant water depth within the
framework of linear dispersive wave theory. Based on thewavemodel, we propose an inverse
problem characterized by an integral equation. The problem proposed is shown to have a
unique solution of wave source. However, the problem lacks solution stability properties.
This means that a small amount of noise from the snapshot data may be amplified, eventually
leading to unreliable solutions due to the lack of stability. This is an unwelcome instability
phenomenon which contrasts to the usual well-posed problem arising in natural sciences. A
stabilization technique is applied to overcome this difficulty [16].

We investigate the workability of our approach through a numerical experiment.
Although this work is a fundamental first step toward the indirect measurement of
underwater movement, it may be related to a problem concerning the nature of tsunami
generation using photographic (or snapshot) wave configuration. This, in turn, provides the
basis for a photographic identifying problem for wave sources such as submarine-landslide,
earthquakes, and underwater explosions or the testing of nuclear weapons [17–21].

2. Transient Waves by Abrupt Movement of Sea Bottom

We consider an inviscid incompressible water of finite depth and a system of coordinates in
which the y-axis is vertical and the x-axis horizontal in mutually perpendicular directions,
as shown in Figure 1. The water is assumed to have a constant density and negligible surface
tension. The surface water waves are induced in the body of the water (initially at rest for
time t < 0) by an abrupt movement of the sea bottom.

2.1. Boundary Conditions

We assume that the flow is irrotational in a simply connected fluid domain such that there
exists a single-valued velocity potential function Φ(x, y, t). Then, by the continuity equation,
in the system of Cartesian coordinates (x, y), the free-surface wave motion is governed by the
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Figure 1: Impulsive movement of the sea-bottom and the resulting wave flow.

elliptic type of Laplace equation with regard to the velocity potential Φ(x, y, t)

∂2Φ
∂x2

+
∂2Φ
∂y2

= 0, (2.1)

because water is assumed to be incompressible. The kinematic and dynamic free-surface
boundary conditions are imposed on the mean free surface, y = 0, respectively as

∂η

∂t
=

∂Φ
∂y

,

∂Φ
∂t

+ gη = 0,

(2.2)

where η(x, t) denotes the free-surface elevation, and g is the gravity acceleration [1].
Denoting the sea bottom displacement by

y = −h + F(x, t), (2.3)

the boundary condition of the sea bottom is written as [1]

∂Φ
∂y

=
∂F

∂t
on y = −h. (2.4)

2.2. Wave Spectrum

We suppose that the sea bottom changes suddenly at t = 0 such that its movement can be
mathematically expressed as

F
(
x, 0−

)
= 0, F(x, 0+) = F0(x). (2.5)
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Applying Fourier-Laplace transform to the velocity potential in the governing equation (2.1)
and the boundary conditions of (2.2) and (2.4), we can derive the wave elevation of the free-
surface [1]

η(x, t) =
∫∞

−∞
A(k)

{
ei(kx+ωt) + ei(kx−ωt)

}
dk (2.6)

by using the method of inverse Fourier-Laplace transforms. The resulting wave system of
(2.6) is of dispersive waves, whose dispersion relation (between the wave-number k and the
frequency ω) and the spectrum A(k) are

ω(k) =
√
gk tanh kh, A(k) =

1
4π

· F̃0(k)
cosh kh

, (2.7)

respectively [1–3]. Here, the notation F̃0(k) stands for the Fourier transform F of F0(x) and is
expressed as follows:

F̃0(k) = F{F0(x)} =
∫∞

−∞
e−ikxF0(x)dx. (2.8)

3. Integral Equation

As mentioned before, the abrupt bottom motion is assumed to arise at t = 0. The resulting
wave system propagates in space with time, according to the dispersion relation equation
(2.7). In this study, we will measure the spatial wave distribution of the resulting wave at an
instant of time t = T > 0, which is symbolized as (3.1)

ηT = η(x, T), −� < x < l (3.1)

for some real positive constant � > vg · T : vg is the group velocity, vg = (gh)1/2 [1]. We then
are able to find a relationship between the spectrum F̃0(k) in (2.8) and the ηT from (2.6) and
(2.7)

ηT = η(x, T) =
∫∞

−∞
K(x, T, k)F̃0(k)dk, −� < x < l. (3.2)
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Equation (3.2) can be regarded as an integral equation of the first kind, in which the kernel
function K is expressed as

K(x, T, k) = eikx
cos

(
T
√
gk tanh kh

)

2π cosh kh
. (3.3)

The integral equation (3.2) is rewritten with a symbolic notation as

ηT = L
(
F̃0

)
. (3.4)

The meaning of the integral equation (3.2) is as follows. If we can measure snapshot data of
the surface-wave elevation ηT at t = T > 0, it then enables us to identify the spectrum F̃0(k) in
(2.6). Physically, this implies that we are able to know completely the whole information
of the dispersive wave system in (2.7) if we know a partial information about the wave
system, for example, the snapshot data of the surface-wave elevation ηT . We finally discover
the abrupt displacement F0(x) in (2.5) by employing the inverse Fourier transform F

−1

F0(x) = F
−1
{
F̃0(k)

}
=

1
2π

∫∞

−∞
eikxF̃0(k)dk. (3.5)

4. Uniqueness

Before the detailed discussion of solving the integral equation of (3.2), we need to examine
whether the integral equation has a unique solution.

Physically, this is crucial and essential to recover the real movement of the sea bottom.
We note that it suffices to prove that the null space of (3.2) is trivial because (3.2) is linear;
that is, we want to show that ηT (x) ≡ 0 identically for −� < x < � means F̃0(k) ≡ 0 identically.

We first rewrite (3.2) as

ηT (x) =
∫∞

−∞
eikx

cos
(
T
√
gk tanh kh

)

2π cosh kh
F̃0(k)dk

=
1
2π

∫∞

−∞
Φ(k)eikxdk,

(4.1)

where

Φ(k) ≡
cos

(
T
√
gk tanh kh

)

cosh kh
F̃0(k). (4.2)
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Thus, the following holds for −∞ < x < ∞

ηT (x) = F
−1{Φ(k)}. (4.3)

Alternatively,

Φ(k) = F
{
ηT (x)

}
. (4.4)

From the injectivity of the Fourier transform, we have from (4.3) or (4.4) that the quantity
Φ(k) ≡ 0 if ηT (x) ≡ 0 for −∞ < x < ∞. Because the function cos(T

√
gk tanh(kh))/ cosh(kh)

in (4.2) has isolated zeros, it follows that F̃0(k) is zero almost everywhere from (4.2). That is,
we show that ηT (x) ≡ 0 identically for −∞ < x < ∞ means F̃0(k) ≡ 0. Therefore, if ηT (x) ≡ 0
identically for −� < x < �, F̃0(k) ≡ 0. This completes the proof.

5. Construction of the Wave Spectrum

Although the uniqueness of the solution of the wave spectrum has been established, we have
still a question of its stability, that is, the solution F̃0(k) depends continuously on the snapshot
data of the wave configuration ηT in (3.2).

5.1. The Discontinuous Operator Lc

Because the computer memory is limited in practice, in this study, we replace the integration
limit of ∞ in (3.3)with a large but finite real number κ [5] as follows:

ηT =
∫κ

−κ
K(x, T, k)F̃0(k)dk, (5.1)

or, in operator notation,

ηT = Lc

(
F̃0

)
. (5.2)

Equation (5.1) is classified as an integral equation of the first kind rather than the second kind.
It is thus necessary to check the stability of the solution, that is, whether it depends on the
snapshot wave data in a continuous manner. According to the theory of integral equations,
the solution lacks stability properties [5, 16], as the kernelK in (5.1) is regular. Thismeans that
a small amount of noisy data in a snapshot wave configurationmay be amplified and cause an
unreliable solution. In other words, mathematically, the operator Lc in (5.2) is discontinuous
with respect the usual topology.
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5.2. Tikhonov’s Regularization

To overcome the difficulty encountered in Section 5.1, we suppress the lack of stability
through a stabilization technique. To this end, we suggest the use of the following regulariza-
tion:

qα = (αI + L∗
cLc)

−1L∗ηT (5.3)

for a real positive constant α, known as the regularization parameter, where the symbol I is
the identity operator and L∗

c the adjoint operator of L [16, 22–29],

(
L∗
cg
)
(k) =

∫�

−�
K(x, T, k)g(x)dx (5.4)

for a square integrable function g(x). According to the regularization theory, it is proven that
the inverse operator (αI + L∗

cLc)
−1 in (5.3) is bounded and always exists. Moreover, the qα

converges to the solution to (5.1) as α → 0+. The stabilization process characterized as in
(5.3) is called Tikhonov’s regularization [16, 22, 23].

6. Numerical Examples

We will examine a numerical example, where we follow the procedure proposed in this
paper to measure an impulsive movement of the sea bottom. For that, we first start with
the following specification for the underwater displacement F0(x) in (2.5):

F0(x) = 0.1e−c(x+4)
2
+ 0.2e−cx

2
+ 0.1e−c(x−4)

2
(c > 0). (6.1)

Note that the Fourier transform [30] of (6.1) is known as follows:

F̃0(k) = F{F0(x)} = 0.2
√

π

c
e−k

2/4c + 0.2
√

π

c
cos(4k). (6.2)

We normalize the water depth h and the constant c as the unit. The water waves
that result from this movement are briefly sketched in Figure 1. Graphical illustrations of
F0(x) and its Fourier transform are depicted in Figures 2 and 3. In this paper, for numerical
calculation, the interval for the physical variable x is taken as −50 < x < 50, and the interval
for the frequency k as −12 < k < 12.

The impulsive movement of the sea bottom equation (6.1) leads to the generation of a
wave system, the spatial distribution of which is

ηT (x, T) =
∫∞

−∞

cos
{
T
√
gk tanh kh

}

2π cosh kh
eikxF̃0(k)dk (6.3)

from (3.2) at an elapsed (fixed) time T .
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Figure 2: Graphical illustration of the impulsive movement F0(x) of the sea bottom in (6.1).
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Figure 3: Fourier transform of F0(x) in (6.2).

6.1. Noise Level

Our aim is to inversely recover F0(x) in (6.1) by using the data ηT in (6.3). However, in
practice, the measured (or calculated) data are always deteriorated somewhat due to noise.
Thus, we assume that we know measured data, denoted by ηT,δ. Thereby, we define a noise
level δ > 0, which satisfies the following norm inequality:

∥∥∥∥
ηT,δ − ηT

ηT

∥∥∥∥
2
≤ δ. (6.4)

That is, the noise level is a quantity measuring an error intensity concerning the data ηT,δ.
Here, the notation ‖ · ‖2 refers to the L2 norm [23]. We have, in this study, the data ηT,δ
randomly generated but with the two different noise levels δ of 10−4 and 10−6, respectively.
The noise is assumed to have the normal distribution with zero mean.

The numerical values for (6.3) are plotted in Figure 4(a) (noise-free condition), which
shows the spatial wave distribution when T = 10. The results in Figures 4(b) and 4(c)
correspond to the noise levels 10−4 and 10−6.

6.2. Optimal Regularization Parameter

To achieve an accurate solution during the regularization, it is important to decide optimal
regularization parameter in the Tikhonov regularization [16, 22, 23]. Based on the L-curve
criterion [31], we depict the curves of log-log plot as shown in Figures 5 and 8:

(
log

∥∥Lcqα − ηT,δ
∥∥
2, log

∥∥qα
∥∥
2

)
, (6.5)
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Figure 4: The spatial distribution of the generated waves when T = 10 for a unit water depth at −50 < x <
50.
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Figure 5: Illustration of the L-curve (noise level 10−4). Note: the optimal regularization parameter (α =
10−8) occurs at the corner of the L-curve.

where qα denotes the regularized solution, calculated by (5.3), depending on the regular-
ization parameter α. Here, we discretize (5.3) directly; the Simpson’s numerical integration
rule is applied to the direct discretization. The number of intervals used for the Simpson’s
rule is chosen as 400. We obtain the optimal regularization parameter of α = 10−8 when the
noise level is 10−4. This is because the optimal regularization parameter corresponds to the
corner of the L-curve in Figure 5 [31]. A brief explanation for this reason is as follows. When
the regularization parameter α decreases, the size of error, ‖Lcqα − ηT,δ‖2, reduces, because
qα approaches the true solution. However, subsequently qα potentially deviates far away;
that is, the function norm, ‖qα‖2, begins to increase, when 1/α exceeds a certain threshold.
This means that there exists an appropriate regularization parameter α such that the qα is an
optimal solution for the present problem. This optimal solution is shown to correspond to the
corner of the L-curve by Hansen [31].
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Figure 6: Comparison of the regularized wave spectrum with the exact one for four cases of regularization
parameters α ((a)–(d): noise level 10−4). Legend: the dotted and solid lines stand for the exact wave
spectrum F̃0(k) in (6.2) and the (Tikhonov) regularized solution qα in (5.3), respectively.

In a similar way, we can obtain the optimal regularization parameter α = 10−9 corres-
ponding to the noise level 10−6, as depicted in Figure 8.

6.3. Determining the Wave Spectrum

The graphs shown in Figures 6(a)–6(d), concerning the noise level 10−4, compare the
exact wave spectrum in (6.2) with the regularized wave spectrum qα in (5.3). In addition,
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Figure 7:Comparison of the recovered sudden displacement of the sea bottomwith the exact displacement
for four cases of regularization parameters α ((a)–(d): noise level 10−4). Legend: the dotted and solid lines
stand for the exact F0(x) in (6.1) and the recovered sudden displacement of the sea bottom, respectively.
The lines show good agreement with each other when the regularization parameter α = 10−8.

Figure 6(e) shows a residual, which is the L2 norm of difference between the exact and
regularized spectra divided by the L2 norm of the exact. In fact, we did calculate many
of various regularized wave spectra qα with various values for α. Among them, only four
selected regularization parameters α(= 10−2, 10−4, 10−8, and 10−11) are depicted in Figures
6(a)–6(d). This immediately shows that the best approximation for the wave spectrum is
found, when the regularization parameter α equals 10−8; as mentioned above, this value of α
is an optimal regularization parameter corresponding to the corner of the L-curve.
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Figure 8: Illustration of the L-curve (noise level 10−6). Note: The optimal regularization parameter (α =
10−9) occurs at the corner of the L-curve.

Similarly, when the noise level is equal to 10−6, we did carry out a lot of calculations of
regularized wave spectra qα for various regularization parameters α. We also select only four
α(= 10−2, 10−4, 10−9, and 10−15) among them, as shown in Figures 9(a)–9(d), and the residual
is seen in Figure 9(e). Here, the exact wave spectra are compared with the regularized ones
qα. It is clear from Figure 9 that the best approximation to the exact one occurs when α = 10−9,
which was anticipated from the L-curve in Figure 8.

6.4. Recovering F0(x)

Following (3.5), we can recover the sudden movement of the sea bottom F0(x), which are
depicted in Figures 7(a)–7(d) and in Figures 10(a)–10(d). Here, the residual is also calculated
and depicted in Figures 7(e) and 10(e), respectively. There are fairly good agreements
between the exact and recovered results. The most accurate results are found when the
regularization parameters are optimal.

7. Discussions

We proposed a new method to find sudden movements of the sea bottom using just a local
snapshot data of wave configurations, −� < x < l. However, it is interesting to observe also
how the method proposed is suitable to retrieve whole wave configurations, that is, we can
identify ηT = η(x, T), −∞ < x < ∞, just using a local data η(x, T), −� < x < l. This is realized
by simply estimating the integration

ηT =
∫κ

−κ
K(x, T, k)qα(k)dk, (7.1)

where qα(k) is a Tikhonov’s regularized solution in (5.3).
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Figure 9: Comparison of the regularized wave spectrum with the exact wave spectrum for four cases of
regularization parameters α ((a)–(d): noise level 10−6). Legend: the dotted and solid lines stand for the
exact wave spectrum F̃0(k) in (6.2) and the (Tikhonov) regularized solution qα in (5.3), respectively.

In the present inverse study, we assumed that the sea bottom movement is instanta-
neous. In fact, this may be a usual assumption in these kinds of wave generation problems,
especially studying tsunamigenic earthquakes. However, sometimes the sea bottom move-
ment can be relatively slow, for example in case of a tsunami earthquake [32]. In this case, the
sea bottom movement is not considered to be instantaneous, which means that the inverse
method proposed in this study does not work.
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Figure 10: Comparison of the recovered, sudden displacement of the sea bottom with the exact
displacement for four cases of regularization parameters α ((a)–(d): noise level 10−6). Legend: the dotted
and solid lines stand for the exact F0(x) in (6.1) and the recovered sudden displacement of the sea bottom,
respectively. The lines show good agreement with each other when the regularization parameter α = 10−9.

8. Conclusion

Sudden underwater movements of the sea bottom result in the free-surface flow of ocean
waves. The problem of finding the resulting wave flow is well studied, and is known as the
forward problem. We examine whether an inverse problem can be defined as an alternative
approach. We explore whether it is possible to indirectly measure sudden underwater
movements using a local snapshot data of the resulting wave motion. We propose an indirect
measurement procedure that successfully confirms the viability of the inverse problem
approach. A numerical example is presented that verifies the proposed procedure and
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confirms its workability. As application, it is interesting and important to know that if we
have a local snapshot data of wave configurations by remote control airplane, we can recover
a wider range of wave configuration, of course, including the local data, by using the method
proposed in this study.
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