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Bilevel programming is characterized by two optimization problems located at different levels, in
which the constraint region of the upper level problem is implicitly determined by the lower level
problem. This paper is focused on a class of bilevel programmingwith a linear lower level problem
and presents a new algorithm for solving this kind of problems by combining an evolutionary
algorithm with the duality principle. First, by using the prime-dual conditions of the lower level
problem, the original problem is transformed into a single-level nonlinear programming problem.
In addition, for the dual problem of the lower level, the feasible bases are taken as individuals in
population. For each individual, the values of dual variables can be obtained by taking the dual
problem into account, thus simplifying the single-level problem. Finally, the simplified problem is
solved, and the objective value is taken as the fitness of the individual. Besides, when nonconvex
functions are involved in the upper level, a coevolutionary scheme is incorporated to obtain global
optima. In the computational experiment, 10 problems, smaller or larger-scale, are solved, and the
results show that the proposed algorithm is efficient and robust.

1. Introduction

In a hierarchical system involving two levels of decision making with different objectives,
the decision makers are divided into two categories: the upper level (leader) and the lower
level (follower). The upper level controls a subset of decision variables, while the lower level
controls remaining decision variables. To each decision made by the upper level, the lower
level responds by a decision optimizing its objective function over a constraint set which
depends upon the decision of the upper level. Bilevel programming (BLPP), as a hierarchical
optimization problem, has been proposed for dealing with this kind of decision processes,
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which is characterized by the existence of two optimization problems, the upper level and the
lower level problems. The distinguished feature of this kind of problems is that the constraint
region of the upper level problem is implicitly determined by the lower level problem, and
any feasible solution must satisfy the optimality of the lower level problem as well as all
constraints. The general bilevel programming problem can be formulated as follows:

min
x∈X

F
(
x, y

)
,

s.t. G
(
x, y

) ≤ 0,

min
y∈Y

f
(
x, y

)
,

s.t. g
(
x, y

) ≤ 0,

(1.1)

where x ∈ Rn and y ∈ Rm are called the upper level and the lower level variables, respectively.
In a similar way, F(f) : Rn ×Rm → R is known as the upper (lower) level objective function,
whereas the vector-valued functions G : Rn × Rm → Rp and g : Rn × Rm → Rq are usually
referred to as the upper level and the lower level constraints, respectively. In addition, the
sets X and Y place additional constraints on the variables, such as upper and lower bounds
or integrality requirements. In problem (1.1),

min
x∈X

F
(
x, y

)
,

s.t. G
(
x, y

) ≤ 0,

min
y∈Y

f
(
x, y

)
,

s.t. g
(
x, y

) ≤ 0

(1.2)

are called the upper level and the lower level problems, respectively.
In fact, it is very difficult to solve BLPPs. At first, BLPPs are strongly NP-hard [1]. In

addition, the lower level variables (y1, . . . , ym) always are determined by the upper level vari-
ables x = (x1, . . . , xn). Under some relevant assumptions, the relationship between x and y
can be denoted by y = y(x). Generally speaking, the solution function y(x) is nonconvex and
even nondifferentiable, which makes BLPP harder to handle.

BLPP is applied extensively to a variety of real-world areas such as economy, engi-
neering, and management [1, 2], and some efficient algorithms and theoretical results are
developed for BLPPS, linear or nonlinear [3–13]. For the linear bilevel programming problem,
the optimal solutions can be achieved at some extreme point of the constraint region. Based on
the characteristics, some exact algorithmic approaches are given, such as kth best method and
branch-and-bound algorithm [1, 14–16]. For nonlinear bilevel programming, there exist few
literature [2, 8], and the most procedures can only guarantee the local optima are obtained.
In recent years, evolutionary algorithms (EAs) with global convergence are often adopted
to solve BLPPs. Kuo developed a particle swarm optimization (PSO) algorithm for linear
BLPPs [17], in which only the upper space is searched by the designed PSO algorithm. Wang
et al. discussed nonlinear BLPPs with nonconvex objective functions and proposed a new
evolutionary algorithm [18]. Deb presented a hybrid evolutionary-cum-local-search-based
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algorithm for general nonlinear BLPPs [19]. In Deb’s method, both the upper and the lower
level problems are solved by EAs. These proposed EAs share a common hierarchical struc-
ture, that is to say, EAs are used to explore the upper level spaces, whereas for each fixed
value of the upper level variable, one has to solve the lower level problem. It means that
these algorithms are time consuming when the upper level space become larger or the lower
level problem is larger scale. In order to overcome the shortcomings, some optimality results
are applied in the design of algorithmic approaches. Based on the extreme points of constraint
region, Calvete designed a genetic algorithm for linear BLPPs [20], but it is hard to extend
the methods to nonlinear cases except for some special cases involving concave functions.
Besides, the K-K-T conditions are also applied to convert BLPPs into single-level problems
[8, 21].

In this paper, we discuss a class of BLPPs with linear lower level problem, and based
on the optimality results of linear programming, develop an efficient evolutionary algorithm
which begins with the bases of the follower’s dual problem. First, the lower level problem is
replaced by the prime-dual conditions. After doing so, the original problem is transformed
into an equivalent single-level nonlinear programming. Then, in order to reduce the number
of variables and improve the performance of the algorithm, we encode individuals by taking
the bases of the duality problem. For each individual given, the dual variables can be solved,
and some constraints can also be removed from the original single-level problem. Finally, the
simplified nonlinear programming is solved, and the objective value is taken as the fitness of
the individual. The proposed algorithm keeps the search space finite and can be used to deal
with some nonlinear BLPPs.

This paper is organized as follows. Some notations and transformation are presented
in Section 2, an evolutionary algorithm is given based on the duality principle in Section 3,
and a revised algorithm is proposed for handling nonconvex cases in Section 4. Experimental
results and comparison are presented in Section 5. We finally conclude our paper in Section 6.

2. Preliminaries

In this paper, the following nonlinear bilevel programming is discussed:

min
x∈X

F
(
x, y

)
,

s.t. G
(
x, y

) ≤ 0,

min
y≥0

cx + dy,

s.t. Ax + By ≤ b,

(2.1)

where A ∈ Rq×n, B ∈ Rq×m, cT ∈ Rn, dT ∈ Rm, and X is a box set.
Now we introduce some related definitions [1].

(1) Constraint region: S = {(x, y) | G(x, y) ≤ 0, Ax + By ≤ b, x ∈ X, y ≥ 0}.
(2) For x fixed, the feasible region of lower level problem: S(x) = {y | Ax + By ≤ b, y ≥

0}.
(3) Projection of S onto the upper level decision space: S(X) = {x ∈ Rn | ∃y, (x, y) ∈ S}.
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(4) The lower level rational reaction set for each x ∈ S(X): M(x) = {y ∈ Rm | y ∈
argmin{cx + dv, v ∈ S(x)}}.

(5) Inducible region: IR = {(x, y) ∈ S | y ∈ M(x)}.
Hence, problem (2.1) can also be written as

min
{
F
(
x, y

) | (x, y) ∈ IR
}
. (2.2)

We always assume that S is nonempty and compact to ensure that problem (2.1) can
be well posed.

Note that for x fixed in the lower level problem, the term c2x is constant, it can be
removed when the lower level problem is solved. As a result, the lower level problem can be
replaced by

min
y≥0

dy,

s.t. Ax + By ≤ b.
(2.3)

Equation (2.3) is a linear programming parameterized by x, then its dual problem can
be written as

max
u≥0

(Ax − b)Tu,

s.t. − BTu ≤ dT .
(2.4)

According to the duality principle, For each fixed x, if there exists (y, u) satisfying

dy − (Ax − b)Tu = 0,

− BTu ≤ d,

Ax + By ≤ b,

u, y ≥ 0.

(2.5)

Then, y is an optimal solution to (2.3). It follows that (2.1) can be converted to the following
single-level problem:

min
x∈X

F
(
x, y

)
,

s.t. G
(
x, y

) ≤ 0,

dy − (Ax − b)Tu = 0,

− BTu ≤ dT ,

Ax + By ≤ b,

u, y ≥ 0.

(2.6)

Obviously, (2.6) is a nonlinear programming problem.
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It is computationally expensive for one to directly solve the problem (2.6). In fact, u is
taken from the dual problem (2.4), for each x, it should be a feasible solution of (2.4). Hence,
if u can be obtained in advance, then (2.6) can be simplified.

The algorithmic profile can be described as follows: We begin with (2.4), and encode
each potential basis as an individual. For each individual, we solve the constraints −BT

2 u+u =
dT
2 to obtain a basic feasible solution u. Also, the constraint −BTu ≤ d can be removed since

the inequality always holds. That is to say, if u = u0 is obtained, (2.6) can be written as

min
x∈X

F
(
x, y

)
,

s.t. G
(
x, y

) ≤ 0,

dy − (Ax − b)Tu0 = 0,

Ax + By ≤ b,

y ≥ 0,

(2.7)

which is a simplified version of (2.6).
For each u0 obtained from (2.4), we solve the nonlinear programming (2.7) and if any,

obtain an optimal solution. It indicates if one can search all bases of problem (2.4), then he can
obtain the optimal solutions of BLPP (2.1) by taking the minimum one among all objective
values of (2.7). In spite of the fact that when the dual variable vector u is obtained, y can
also be got according to the duality theorems, we do not intend to adopt the procedure to
obtain y. The main reason is that when the follower has more than one optimal solution, the
procedure cannot guarantee that the obtained y is the best one to F.

3. Solution Method

In spite of the fact that (2.6) has been simplified as (2.7), it is still hard to solve when the upper
level functions are nonconvex and even nondifferentiable. In this section, we first present an
EA for the case in which the upper level problem can be solved by deterministic methods,
such as convex programs. In the next section, the method will be extended to more general
cases.

3.1. Chromosome Encoding

The feasible bases of (2.4) are encoded as chromosomes. First, (2.4) is standardized as

max
u≥0

(Ax − b)Tu,

s.t. − BTu + u = dT .

(3.1)

LetW = (−BT , I)which is anm× (m+ q)matrix, andm columns inW , (i1, . . . , im), are chosen
at random. If the matrix B consisting of these columns is a feasible basis, then it is referred to
as an individual (chromosome) and denoted by (i1, . . . , im).
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3.2. Initial Population

The initial population consists of N individuals associated with the feasible bases of (3.1).
In order to obtain the N individuals, we first take an x, then solve problem (3.1) using the
simplex method. Since different feasible bases can be found at each iteration of vertices, these
bases can be put into the initial population. If the number of these feasible bases is less than
N, we take a substitutive x and repeat the procedure of solving (3.1) until N individuals are
found.

3.3. Fitness Evaluation

For each individual l = (i1, . . . , im), the fitness R(l) of l can be obtained by the following steps.

First, the basic components of u are taken as B
−1
dT
2 , whereas other components are 0. Then,

for the known u, we solve problem (2.7). If there exists an optimal solution, then the objective
value is taken as the fitness R(l) of l; otherwise, R(l) = M, where M is a positive number
large enough.

3.4. Crossover and Mutation Operators

Let l = (i1, . . . , im) and l′ = (i′1, . . . , i
′
m) be selected parents for crossover. We give the crossover

offspring of l and l′ as follows. Let L1 = l′ \ l and |L1| = s standing for the size of L1. If s > 0,
then s1 (s1 ≤ s) elements are chosen at random in L1. These selected elements are taken as
entering variables for the present basis associated with l and the leaving variables in l can be
determined by using the minimum ratio principle. As a result, an offspring lc is generated. If
s = 0, let l′ = (m + q + 1) − l′ and then execute the procedure mentioned above. Let L2 = l \ l′,
then the other offspring l′c can be obtained.

Let l = (i1, . . . , im) be a selected parent for mutation. We give the mutation offspring as
follows. First, one element li is randomly chosen from the set l = {1, 2, . . . , m + p} − l, then li
is taken as an entering variable, and the leaving variable from l can be determined according
to the minimum ratio principle. The new basis obtained by the pivot operation is referred as
the offspring of mutation.

3.5. An Evolutionary Algorithm Based on Duality Principle (EADP)

In this subsection, we present an evolutionary algorithm based on the encoding scheme,
fitness function, and evolutionary operators described above. In each generation, an archive
Ŝ of s0 (larger than the size of population) individuals is maintained to avoid evaluating
repeatedly the fitness of the same individuals generated in genetic operations.

Step 1 (initialization). Generate N initial points li, i = 1, 2, . . . ,N by taking different x. All of
the points li form an initial population pop(0) with population size N. Let v = 0.

Step 2 (fitness). Evaluate the fitness value R(l) of each point in pop(v). Set Ŝ = [pop(v), R(l)].

Step 3 (crossover). Let the crossover probability be pc. For crossover parents l, l′ ∈ pop(v), we
first take a r ∈ [0, 1] at random, if r ≤ pc, then execute the crossover on l, l′ to get its offspring
lo and l′o. Let O1 stand for the set of all these offspring.
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Step 4 (mutation). Let the mutation probability be pm. For each l ∈ pop(v), we take a r ∈ [0, 1]
at random, if r ≤ pm, then execute the mutation on l to get its offspring lo. Let O2 stand for
the set of all these offspring.

Step 5 (selection). LetO = O1∪O2. For any point inO, if the individual belongs to Ŝ, then the
fitness value is there, otherwise, one has to evaluate the fitness value of the point. Select the
bestN1 points from the set pop(v)∪O and randomly selectN−N1 points from the remaining
points of the set. These selected points form the next population pop(v + 1).

Step 6 (updating). Merge all points in O into Ŝ. If the number of elements in Ŝ is larger than
s0, then randomly delete some point such that S has only s0 individuals.

Step 7. If the termination condition is met, then stop; otherwise, let v = v + 1, go to Step 3.

EADP differs from other existing algorithms in three ways. First, since EADP only
searches the feasible bases of the lower level dual problem instead of taking all feasible
points into account, it makes the searching space smaller. In addition, there is a local search
procedure in EADP. Sine for u fixed, to solve (2.7) is a local search process for (x, y), which
can improve the performance of the proposed algorithm. Finally, it is necessary for the most
of the existing algorithmic procedures to assume that the lower level solution is unique,
since the assumption can make the problem become easier. In the proposed EADP, y is not
directly calculated and chosen for any fixed x, as a result, the uniqueness restriction can be
removed.

4. A Revised Version for Nonconvex Cases

The solutions of a BLPP must be feasible, that is, for any x fixed, y must be optimal to
the follower problem. The proposed algorithm can guarantee all points (x, y) are in IR
if (2.7) can be solved well. In fact, if (2.7) is a convex programming, there are dozens
of algorithms for this kind of problems. However, when the problem is nonconvex, it is
very hard for us to obtain a globally optimal solution since the most of existing classical
algorithms cannot guarantee to obtain globally optimal solutions. In order to overcome
the shortcomings, we use a coevolutionary algorithm to search globally optimal solutions.
Set U = {u1, u2, . . . , uk}, and for each ui ∈ U, (xi, yi) stands for the solution obtained
by solving (2.7), which may be locally optimal. We generate an initial population p(0) as
follows: first, (xi, yi), i = 1, 2, . . . , k, are put into p(0), and then for each (xi, yi), randomly
generate r − 1 points according to Gaussian distribution N((xi, yi), σ2), and these points
are also put into the set. As a result, the total of kr points are included in p(0). The fitness
is given with a multicriteria type; that is, there are k evaluation functions: fi = F(x, y) +
Mmax{0, G(x, y), Ax + By − b, | dy − (Ax − b)Tui |}, i = 1, . . . , k. To evaluate individual is to
compute fi, i = 1, . . . , k, at each point. Next, we present a co-evolutionary algorithmic profile
(Co-EA) as follows.

(S1) Generate an initial population p(0). Let g = 0.

(S2) Evaluate all points in p(g).
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(S3) Execute the arithmetical crossover and Gaussian mutation to generate off-
spring set O.

(S4) Evaluate all offspring inO, and according to each fi, i = 1, . . . , k, select the best
r points in p(g)

⋃
O, total kr points are taken as the next generation of population

p(g + 1).

(S5) If the termination criterion is satisfied, then output the best individual asso-
ciated with each fi, otherwise, g = g + 1, turn to (S3).

The purpose of Co-EA is to obtain globally optimal solutions to (2.7). Next, we present
the revised version of EADP by imbedding Co-EA.

Step 1 (initialization). Generate N initial points li, i = 1, 2, . . . ,N by taking different x.
All of the points li form the initial population pop(0) with population size N. Let v = 0,
Ŝ = φ.

Step 2 (fitness). Evaluate the fitness value R(l) of each point in pop(v). Let Ŝ = [pop(v),
R].

Step 3 (crossover). Let the crossover probability be pc. For crossover parents l, l′ ∈ pop(v), we
first take a r ∈ [0, 1] at random, if r ≤ pc, then execute the crossover on l, l′ to get its offspring
lo, l

′
o. Let O1 stand for the set of all these offspring.

Step 4 (mutation). Let the mutation probability be pm. For each l ∈ pop(v), we first take a
r ∈ [0, 1] at random, if r ≤ pm, then execute the mutation on l to get its offspring lo. Let O2
stand for the set of all these offspring.

Step 5 (offspring evaluating). Let O = O1 ∪ O2. For any point in O, if the individual is in S,
the fitness value is there, otherwise, one has to evaluate the fitness value of the point.

Step 6 (selection). Select the best N1 points from the set pop(v) ∪ O and randomly select
N − N1 points from the remaining points of the set. These selected points form the next
population pop(v + 1).

Step 7 (coevolution). If v > 0 and v mod t = 0, then select the best one and other k − 1 indivi-
duals from pop(v + 1), execute Co-EA, and update the fitness values of these individuals.

Step 8 (updating). If element number in Ŝ is less than s0, then some points in O, especially,
modified points by Co-EA, are put into Ŝ until there are s0 elements.

Step 9. If the termination condition is met, then stop; otherwise, let v = v + 1, go to Step 3.

5. Simulation Results

In this section, we first select 7 test problems from the literature as follows, which are
denoted by Example 1–Example 7 (Group I). These smaller-scale problems, as examples, are
frequently solved to illustrate the performance of the algorithms in the literature.
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Example 1 (see [8]). Consider

min
x≥0

− 8x1 − 4x2 + 4y1 − 40y2 − 4y3,

min
y≥0

x1 + 2x2 + y1 + y2 + 2y3,

s.t. − y1 + y2 + y3 ≤ 1, 2x1 − y1 + 2y2 − 0.5y3 ≤ 1,

2x2 + 2y1 − y2 − 0.5y3 ≤ 1.

(5.1)

Example 2 (see [11]). Consider

min
x≥0

− 2x1 + 4x2 + 3y,

x1 − x2 ≤ −1,
min
y≥0

− y,

s.t. x1 + x2 + y ≤ 4, 2x1 + 2x2 + y ≤ 6.

(5.2)

Example 3 (see [21]). Consider

min
x≥0

− 4x − y1 − y2,

min
y≥0

− x − 3y1,

s.t. x + y1 + y2 ≤ 25
9
, x + y1 ≤ 2, y1 + y2 ≤ 8

9
.

(5.3)

Example 4 (see [7]). Consider

min
x≥0

2x − 11y,

min
y≥0

x + 3y,

s.t. x − 2y ≤ 4, 2x − y ≤ 24, 3x + 4y ≤ 96,

x + 7y ≤ 126, −4x + 5y ≤ 65, −x − 4y ≤ −8.

(5.4)

Example 5 (see [8]). Consider

max
1≥x≥0

100x + 1000y,

max
y

y1 + y2,

s.t. x + y1 − y2 ≤ 1, y1 + y2 ≤ 1.

(5.5)
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Example 6 (see [1]). Consider

min
50≥x≥0

(
y1 − x1 + 20

)2 +
(
y2 − x2 + 20

)2
,

min
20≥y≥−10

2x1 + 2x2 − 3y1 − 3y2 − 60,

s.t. x1 + x2 + y1 − 2y2 ≤ 40, 2y1 − x1 + 10 ≤ 0, 2y2 − x2 + 10 ≤ 0.

(5.6)

Example 7 (see [12]). Consider

min
x≥0

(
1 + x1 − x2 + 2y2

)(
8 − x1 − 2y1 + y2 + 5y3

)
,

min
y≥0

2y1 − y2 + y3,

s.t. − y1 + y2 + y3 ≤ 1, 2x1 − y1 + 2y2 − 0.5y3 ≤ 1, 2x2 + 2y1 − y2 − 0.5y3 ≤ 1.

(5.7)

In order to illustrate the performance of EADP, we construct 3 larger-scale linear BLPPs
(Group II, Example 8–Example 10) with the following type:

min
x≥0

c1x + d1y,

min
y≥0

c2x + d2y,

s.t. A2x + B2y ≤ b2.

(5.8)

All coefficients are taken as follows. The coefficients of the upper level objective are
randomly generated from the uniform distribution on (−10, 10), whereas those of the lower
level objective are randomly chosen in (0, 10).A2 and B2 are generated from a uniform distri-
bution on (−50, 50), and the right-hand side of each constraint is the sum of absolute values of
the left-hand side coefficients. In order to assure the constraint region of the generated BLPP
is bounded, we select a constraint randomly, and the left-hand side coefficients are taken as
the absolute values of the corresponding coefficients. The scales of the constructed problems
are given in Table 1.

The proposed algorithm is used to solve the problems in Group I and Group II. The
values of the parameters in EADP are given in Table 2, where Max-gen stands for the maxi-
mum number of generations that the algorithm runs. Notice that in the proposed algorithmic
approach, the total of feasible points in search space is not greater than C

q
m+q. Hence, the

value can be taken as a reference point when N, s0 and Max-gen need to be determined. For
a specific problem, if one wants to determine Max-gen in advance, then he can tentatively
take an experiment value of this parameter on other problems with same lower level scale.
For parameterM, one can first take a positive integer by considering themaximum value of F
on S and then examine the constraint violations of obtained points. If the constraint violations
can not be permitted, then the integer is multiplied by 10. This process is not stopped until
the constraint violations are permitted.

For Example 1–Example 10, the algorithm stops when the maximum number of
generations is achieved. In the executed algorithm, (2.7) is solved by different methods.
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Table 1: The scales of the constructed problems.

Factors Example 8 Example 9 Example 10
n 100 100 100
m 60 80 100
q 40 60 80

Table 2: The values of the parameters taken in EADP.

Parameters Group I Group II
N 5 50
pc 0.8 0.8
pm 0.1 0.1
N1 2 10
M 10000 —
s0 20 200
σ 1 1
Max-gen 20 5000

The simplex method is adopted in Example 1–Example 5 and Group II, the active-set method
is applied in Example 6 in which (2.7) is a convex quadratic programming. For Example 7,
the revised EADP is executed since the objective is nonconvex. k is taken as 5, r = 4, t = 5,
and the maximum generation number of Co-EA is 100.

For Group I, we execute EADP in 20 independent runs on each problem on a PC (Intel
Pentium IV-2.66GHz) and record the following data.

(1) Best solution (x∗, y∗).

(2) Upper level objective value F(x∗, y∗) at the best solution.

(3) Upper level objective value F(x, y) at the worst solution (x, y).

(4) Mean value (Fmean), median (Fmedian), and standard deviation (STD) of the upper
level objective values.

(5) Mean CPU time in 20 runs.

All results for Group I are presented in Table 3. Table 3 provides the comparison of the
results found by EADP in 20 runs and by the compared algorithms for these examples, and
the best solutions found by EADP in 20 runs are also presented in Table 3, where Ref. stands
for the related algorithms in references in Table 3.

It can be seen from Table 3 that for Example 3 and Example 7, all results found by
EADP in 20 runs are better than the results given by the compared algorithms in the refe-
rences, which indicates the algorithms in the related references can not find out the globally
optimal solutions of these two problems. Especially, for Example 7, the compared algorithm
found a local solution (0, 0.75, 0, 0.5, 0)with the objective value of 10.625. For other problems,
the best results found by EADP are as good as those by the compared algorithms. In all 20
runs, EADP found the best results of all problems, and the standard deviations are 0, which
means that EADP is stable.
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Table 3: Comparison of the results found by EADP and other algorithms in reference.

Prob. EADP Ref.-
F(x∗, y∗)F(x∗, y∗) Fmean Fmedian F(x, y) STD CPU(s) (x∗, y∗)

Example 1 −29.2 −29.2 −29.2 −29.2 0 0.6 (0, 0.9, 0, 0.6, 0.4) −29.2
Example 2 6 6 6 6 0 0.5 (1, 2, 0) 6
Example 3 −8.7778 −8.7778 −8.7778 −8.7778 0 0.6 (2, 0, 0.7778) −8.2230
Example 4 −85.0909 −85.0909 −85.0909 −85.0909 0 0.5 (17.4545, 10.9091) −85.0909
Example 5 1000 1000 1000 1000 0 0.4 (0, 1, 0) 1000
Example 6 0 0 0 0 0 0.4 (25, 30, 5, 10) 0
Example 7 7.5 7.5 7.5 7.5 0 6.2 (0.5, 0.5, 0, 0, 0) 10.625

Table 4: The computational results given by EADP on Group II.

Examples CPU TB STD F∗

Example 8 6.7e + 002 9 9.7 −4.6663e + 003
Example 9 1.4e + 003 9 7.5 −3.8536e + 003
Example 10 2.7e + 003 7 1.8e + 001 −4.5548e + 003

From the CPU time, one can see that the CPU time that EADP needs is short for
obtaining these results, it means that the algorithm is efficient.

For Group II, we execute EADP in 10 independent runs on each problem. Since there
is no computational result given in the literature, we give a criterion for measuring the simu-
lation results obtained by EADP. For the best one in 10 independent runs, we select the best
individual and randomly generate other N − 1 individuals to form a population. The algo-
rithm begins with the population and is executed successively 5000 generations again. The
obtained solutions are taken as the “best” results.

All obtained results in Group II are presented in Table 4. Where CPU stands for the
mean CPU time in 10 runs, TB represents the times that the best result appears in 10 runs; STD
denotes the standard deviation of the objectives in 10 runs, and F∗ is the best objective value.
From Group I to Group II, one can see that the increments of CPU are larger, which implies
that the computational complex of BLPP will sharply increase as the dimension become
larger. Despite the fact that STD is larger due to larger objective values, TB shows that EADP
is reliable in solving larger-scale BLPPs since the minimum rate of success is 70%.

In order to present the convergence of EADP on the larger-scale problems, we select
one in 10 runs for each problem and plot the curves of objective values, and the generations,
refer to Figure 1(a) for Example 8, (b) for Example 9, and (c) for Example 10. From Figure 1,
we can see the proposed algorithm converges in 3000 generations.

6. Conclusion

For a class of nonlinear bilevel programming problems, the paper develops an evolutionary
algorithm based on the duality principle. In the proposed algorithm, the bases of the dual
problem of the lower level are used to encode individuals, which leads to that the searching
space becomes finite. For nonconvex cases, we design a Co-EA technique to obtain globally
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Figure 1: The convergency of EADP on the larger-scale linear BLPPs.

optimal solutions. The experiment results show the proposed algorithm is efficient and effec-
tive. In the future work, based on optimality results, we intend to research nonlinear BLPPs
with more general lower level problems.
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