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Spatial variation of earthquake ground motion is an important phenomenon that cannot be
ignored in the design and safety of strategic structures. However, almost all the procedures for the
evaluation of variation assumed that the random field is homogeneous in space. It is obvious that
reality does not fully conform to the assumption. How to investigate the inhomogeneous feature of
groundmotion in space is a challenge for researcher. A body-fitted grid-coordinates-basedmethod
is proposed to estimate and describe the local spatial variations for the earthquake ground motion;
it need not to make the assumption that the random field of earthquake is homogeneous in space.
An analysis of spatial variability of seismic motion in smart-1 array monitored in Lotung, Taiwan
demonstrates this methodology.

1. Introduction

Spatial variation of earthquake ground motion is an important phenomenon that cannot be
ignored in the design and safety of strategic structures [1–5]. The seismicmotion, which could
be considered as the result of the complex wave propagation through a heterogeneous soil, is
affected by many factors such as propagation path, source mechanism, and the amplification
effect of the subsurface layers Thus, the record from the seismograph array is not the
simple duplication of the traveling wave with the shift of time, but the difference will be
amplified when the distance between stations becomes larger. How to make the description
and estimation of correlation structure of spatial ground motion in efficient and robust way
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is a fundamental prerequisite for problems of simulation of earthquake ground motion and
design of structures with spatially extended foundations and lifeline systems.

The development of procedure for evaluating the spatial instationarity has lagged
well behind the development of procedure for evaluating the spatial stationary (or isotropy/
homogeneous in space). The classical way to describe the spatial variation of earthquake
ground motion problem is performed by using the correlation or coherence function [6–9],
however, we have the following.

(1) It is assumed that the random field is homogeneous in space; it is obvious that
reality does not fully conform to that assumption (e.g., one bridge on rock and the
other on alluvium).

(2) The amplitude variability of seismic ground motion ought to be incorporated into
the description of spatial variation of seismic motion. However, the correlation or
coherence function only can reflect the phase variation [9].

In the analysis of most spatial-temporal processes studies, there are few reasons to
expect spatial covariance structures to be stationary over the spatial scales of interest.

Earthquake is a spatial-temporal field; the focus of the researchers are usually on the
temporal nonstationary [10, 11]. The lessons learned during the devastating earthquakes
of the last decade tell us the following: just as the character of temporal nonstationary has
big influence on seismic response of the structure, the influence of spatial nonstationary on
some spatially extended structure also cannot be ignored. In the design of structures, the
reasonable input should take the feature of spatial nonstationary of earthquake into account.
It is well known that nearly every significant discovery of feature of earthquake will bring
huge breakthrough of seismic design of structure [12]; the research of spatial nonstationary
is of great significance.

In this study, a newmethod is proposed to describe the spatial variation of earthquake
ground motion. This methodology was motivated by problems of how to investigate and
visualize the variations of earthquake ground motion in space if the field is inhomogene-
ous.

The fruit of our research can be applied at least in two aspects: (1) to help design
“optimal” networks of sampling stations for observing these distribution; (2) to investigate
the feature of earthquake and as a fundamental prerequisite for the problems of producing
properly correlated motions in inhomogeneous space to help the design of the long-span
structure.

This paper explains our method, with descriptions of the application of the three
principal tools: dynamic time warping distance, multidimensional scaling, and thin-plate
spline interpolation, and we also present an application of the method to characterize the
local spatial correlation of the ground motions which have been recorded and obtained from
closely spaced arrays (SMART-1 arrays Event-40).

2. Outline of the Method

Our approach requires two tools: the Multidimensional Scaling (MDS) and the technique of
spatial interpolation. The former generates a low-dimensional space (two or three) represen-
tation visualizing proximities of the sampling stations; the latter provides smooth mappings
of the geographic representation of the sampling stations into their MDS representation.
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2.1. Multidimensional Scaling Technique

2.1.1. The Dynamic Time Warping Distance

For the accelerogram record aij in n station (sample point), each has N independent realiza-
tions. The accelerogram record can be given in a (n ×N) data matrix,

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1N

a21 a22 · · · a2N

...
...

. . .
...

an1 an2 · · · anN

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.1)

The coherency/correlation function or coherency coefficient is often used as similarity mea-
sure of earthquake ground motion [13–16]; the (Pearson) coherency function is defined as:

ri,j =
Sij

(
SiiSjj

)1/2 , (2.2)

where

Sij =
1

N − 1

[
N∑
k=1

aikajk − 1
N

(
N∑
k=1

aik

)(
N∑
k=1

ajk

)]
, (2.3)

but some researchers [15, 16] have found that the simple and crude definitions of coherence
imply high degree of variability of strong motion even for short separation. It may be
from the limitations of coherency function or correlation coefficient itself. The correlation
coefficient required that two series have the same length, the values of two series have point-
to-point correspondence, and the weight of each pair of difference is equal. Due to such
a correspondence, it may not be suitable to be applied to the similarity measurement of
complex series with shift and stretching of amplitude.

The dynamic time warping distance (DTW) proposed by Berndt and Clioffrd [17]
is designated to depict the greatest similarity between series by calculating the minimum
distance between them, which is defined as follows.

Let A(a1, a2, . . . , an) and B(b1, b2, . . . , bm) be two series with the length of n and
m, respectively, and an n × m matrix M can be defined to represent the point-to-point
correspondence relationship between A and B, where the element Mij indicates the distance
d(ai, bj) between ai and bj . Then the point-to-point alignment and matching relationship
between X and Y can be represented by a time warping path: W = 〈w1, w2, . . . , wk〉,
max(m,n) ≤ K < m+n−1, where the elementwk = (i, j) indicates the alignment andmatching
relationship between ai and bj . If a path is the lowest cost path between two series, the
corresponding dynamic time warping distance is required to meet

DTW(A,B) = min
W

{
K∑
k=1

dk,W = 〈w1, w2, . . . , wK〉
}
, (2.4)
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dk = d(ai, bj) is the Minkowski distance of the k element of the path W and is denoted as
follows:

d(A,B) =

(
n∑
i=1

∣∣ai − bj
∣∣p
)1/p

, (2.5)

when p = 2 the distance between two series is called Euclidean distance.
Then the formal definition of dynamic time warping distance between two series is

described as

DTW(〈 〉, 〈 〉) = 0,

DTW(A, 〈 〉) = DTW(〈 〉, B) = ∞,

DTW(A,B) = d
(
ai, bj
)
+min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

DTW(A,B[2 : −] ,
DTW(A[2 : −], B),
DTW(A[2 : −], B[2 : −]),

(2.6)

where 〈 〉 indicates empty series, [2 : −] indicates a subarray whose elements include the
second element to the final element in an one-dimensional array, and d(ai, bj) indicates the
distance between points ai and bj . The DTW distance of two time series can be calculated
by the dynamic programming method based on accumulated distance matrix [17], whose
algorithm mainly is to construct an accumulated distance matrix:

r
(
i, j
)
= min

{
r
((
i − 1, j

)
, r
(
i, j − 1

)
, r
(
i − 1, j − 1

))}
+ d
(
ai, bj
)
. (2.7)

Any element r(i, j) in the accumulated matrix indicates the dynamic time warping distance
between series A1:i and B1:j . Series with high similar complexity can be effectively identified
because the best alignment and matching relationship between two series is defined by the
dynamic time distance.

The different between DTW (a) and correlation coefficient can be observed in Figure 1.
To demonstrate the different performance of the DTW and the correlation coefficient

r, an example is given here. In this example we calculate the DTW and the correlation
coefficient r (see Figure 2 and the result can be seen in Table 1):

A: y = A sin(t) (0 ≤ t ≤ 2π),

B: y = 2A sin(t) (0 ≤ t ≤ 2π),

C: y = A sin(t − 0.5) (0 ≤ t − 0.5 ≤ 2π),

D: y = A sin(t) (0 ≤ t ≤ 11/6π).

Conditions A-B show that DTW can measure the variation of amplitude, However
the correlation cannot. Conditions A–C show that correlation requires that the signal be
synchronization or point-to-point correspondence, and the DTW has no such requirement.
Conditions A–C show that correlation cannot calculate two signals with different length;
however, the DTW can.
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(a) (b)

Figure 1: The difference between DTW (a) and correlation coefficient (b).
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Figure 2: The curve under four conditions.

Table 1: DTW and correlation coefficient under four condition.

Condition DTW r DTW r

A-A 0 1 A–C 0 0.87
A-B 2A 1 A–D 0 /

2.1.2. Optimal Scaling

Multidimensional Scaling (MDS) is applied as a statistical technique to visualize dissimilarity
data in this section.

Let Δ = �δij� and D = �dij� be two N × N matrices indexed by i and j, where the
proximity or data value connecting object i with object j is represented by Δ, dij refers to
the Euclidean space (composition map) between objects i and j. The main objective of MDS
is to represent these dissimilarities as distances between points in a low-dimensional space
(or called composition) such that the distances dij correspond as closely as possible to the
dissimilarities δij [18].
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Classical Metric Multidimensional Scaling is a basic form of MDS. Classical MDS is
called metric methods because the relationship between δij and dij depend on the numerical
or metric properties of the dissimilarities. It only works under the assumption that the
geometrical model fits the data perfectly [18, 19]. However, it is often not possible to construct
an explicit functional form D such that the mapped dissimilarities D of an empirical data
set match sufficiently well metric distances. Therefore, we would like to assign numerical
values to the optimal approximations of the transformed proximities to the distances in the
geometrical representation. These numerical values are usually called disparities, and they
are denoted by d̂ and dij ≈ d̂ij = f(δij); it should be restricted by the monotonic constraint:
pij ≤ plk ⇒ D(pij) ≤ D(plk).

The coordinates in the distance function (in composition map) and the function f
which allows transforming the proximities into distances are estimated by minimizing the
following badness of fit function (usually called stress or S-function in the context of MDS) or
called optimal scaling. The stress function is given by

S =

⎛
⎜⎝
∑∑(

d̂2
ij − d2

ij

)2
∑∑

d4
ij

⎞
⎟⎠

1/2

. (2.8)

Optimal scaling aims to find a transformation of the data that fits as well as possible
the distances in the MDS solution and find a matrix D̂ by some iterative algorithms to make
the S minimum. (x1i, x2i, . . . , xpi), where p is the dimensional of the final composition map
(p = 1, 2, . . . , n, etc.).

The method is summarized as follows.

(1) Select the initial matrix (x0
1i, x

0
2i, . . . , x

0
pi).

(2) Calculate the distance matrix Dk = [d0
ij] and elements of matrix Dk; d0

ij = ‖xi, xj‖ is
the Euclidean space.

(3) FromΔ = �δij� andDk = [d0
ij] use amonotonous regression Pool-Adjacent Violators

(PAVs) [20] to get D̂k = [d̂ij].

(4) For the arbitrary i, j, k, l if dk
ij < dk

lk ⇒ d̂k
ij < d̂k

lk then dk
ij = d̂k

ij , otherwise d̂k
ij = d̂k

lk =

(dk
ij + dk

lk)/2.

(5) Calculate the new coordinate of node: (xk+1
1i , xk+1

2i , . . . , xk+1
qi , . . . , xk+1

pi )

xk+1
qi = xk

qi +
θ

n − 1

∑
j /= i

⎛
⎝1 −

d̂k
ij

dk
ij

⎞
⎠(xk

j − xk
i

)
, (2.9)

where n, θ are respectively the number of the node the and iterative step.

(6) Use the coordinate of node in step 5 to calculate the Euclidean dij .

(7) Calculate the S according to formula (2.8).

(8) If S < ε, the calculation ends; otherwise return to step 3.
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Figure 3: The mapping from the C plane (a) to G plane (b).

Finally, the result (x1i, x2i, . . . , xpi)i (i = 1, 2) is the solution of MDS. If we chose p = 2,
the coordinate can be expressed as (x1i, x2i). We refer to the plane of geographical (y1i, y2i)
of the sampling stations as G plane, and we refer to the plane of composition coordinates
(x1i, x2i) as C plane (see Figure 3).

2.2. The Body-Fitted Grid-Based Depiction of Mapping

Classical research of investigating the variation of earthquake in space is based on the
assumption that the ground motion is homogeneous in space (or the function to describe
the variation of earthquake is the functions of the separation distance between stations, but
independent of absolute location). This simplifying assumptions may not always capture
reality. How to capture the inhomogeneous feature of earthquake in space is a challenge but
a foundation problem, to solve this problem; this paper introduces a body-fitted coordinates-
based method to represent the covariance structure of seismograph array. This method need
not to set a reference point and can be taken as an alternative way to reflect the variation of
seismic ground motion in inhomogeneous field.

Just as discussed above, the coordinate (x1i, x2i) in composition map (C plane) can
reflect the difference or correlation of seismic ground motion; here we establish the bivariate
mapping function of the C plane (x1, x2) into the G plane (y1, y2) by the sampling point of
station and set a rectangle grid in the C plane. By the map function we mapping the grid
in the C plane into the G plane the covariance structure of ground motion can be visualized
through the density of grid in the G plane.

The main outline of this method can be described ad follows.

(1) Calculate the DTW of the position (y1i, y2i) (G plane).

(2) Calculate the composition map by the MDS and we get the coordinates (x1i, x2i) in
the C plane (i = 1, 2, . . . ,N).

(3) Establish the relationship of mapping by a bivariate functionf :

(
y1i

y2i

)
= f

(
x1i

x2i

)
. (2.10)
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Figure 4: Outline of the method.

We define a roughness criterion

Ji
(
f
)
=
∫

R2

⎡
⎣
(

∂2fi

∂x2
1

)2

+ 2

(
∂2fi

∂x1∂x2

)2

+

(
∂2fi

∂x2
2

)2
⎤
⎦dx1 dx2 (2.11)

and compute the bivariate function f = (f1, f2) to minimize

L =
2∑

j=1

N∑
i=1

(
yij − fj

(
xij

))2 + λ
(
J1
(
f1
)
+ J2
(
f2
))

(2.12)

for specified smoothing parameter λwhere R2 is the domain of interest.

(4) Define the point on the boundary line of the rectangle grid in the composition map
and use the mapping function f to get the corresponding point in the G space: by
the interpolating spline we can generate curve line and establish the grid.

Figure 4 summarizes the algorithm.

3. Results and Discussions

In this section we will do a preliminary analysis of seismograph array date by using the
proposed nonparametric estimation method. This example manifests a somewhat extreme,
but easily explained, form of nonstationary in the spatial covariance structure of the
earthquake. The earthquake ground motion date is from the Event-40 recorded by SMART-
1 array which is located in Lotung, Taiwan. The stations selected are located in a two-
dimensional surface array consisting of a center C00 and three concentric circles (inner I,
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Table 2: The DTW of sampling station.

I6 I9 I11 M10 M07 M03 O05 O06 O10 O11 M06
I6 0 0.8036 0.8642 1.0437 1.0759 1.1891 1.1258 1.0009 1.2965 1.3018 1.1234
I9 0.8036 0 0.5779 0.939 1.197 0.9975 1.0781 1.0136 1.1992 1.333 0.9159
I11 0.8642 0.5779 0 0.7755 1.2855 1.1439 1.0705 1.0546 1.3785 1.3817 1.0058
M10 1.0437 0.939 0.7755 0 1.2088 1.2764 0.9947 1.0047 1.408 1.5089 1.1313
M07 1.0759 1.197 1.2855 1.2088 0 1.226 0.9112 1.0594 1.1046 1.5046 1.0792
M03 1.1891 0.9975 1.1439 1.2764 1.226 0 1.2636 1.3458 0.8758 1.3413 1.1292
O05 1.1258 1.0781 1.0705 0.9947 0.9112 1.2636 0 1.4143 1.4136 1.4847 1.414
O06 1.0009 1.0136 1.0546 1.0047 1.0594 1.3458 1.4143 0 1.2622 1.4257 1.0249
O10 1.2965 1.1992 1.3785 1.408 1.1046 0.8758 1.4136 1.2622 0 1.191 1.2415
O11 1.3018 1.333 1.3817 1.5089 1.5046 1.3413 1.4847 1.4257 1.191 0 1.3824
M06 1.1234 0.9159 1.0058 1.1313 1.0792 1.1292 1.414 1.0249 1.2415 1.3824 0

middle M, and outer O)with radii of 200, 1000, and 2000m, respectively, each with 12 strong-
motion seismographs having common time base, (see Figure 5). The station applied in this
paper is I6, I9, I11, M10, M07, M03, O05, O06, O10, M06. The epicentral direction is 15◦ to
the north. The magnitude (ML) of the earthquake is 6.5, the location of earthquake source
relative to the center station C00 is 22 km, and the depth of the source is 10 km. The recorded
motion has a sampling rate of 100Hz and a total of 1201 values. The computation uses an
Ormsby filter to eliminate long periods from the acceleration recordings. The cut-off and roll-
off frequencies are fC = 0167Hz and fT = fT + 0.03 = 0.197Hz.

By the aforementioned method in Section 2.1.1 we compute the observed proximity
matrix [δij] = DTW(i, j) of sampling in Table 2.

By the aforementioned method in Section 2.1.2 and the proximity matrix [δij] in
Table 2, we can get the coordinates of the sampling station in the C plane in Figure 6. For
example, stations records that are located close to each other in C plane are perceived as
being similar such as I06 and I11. In contrast, stations positioned far away from each other
indicate a large difference in perception, such as I06 and M10.

Figure 7 is the distance-disparities scares map. Figure 7(a) uses by the classic metric
methods and Figure 7(b) is the result of optimal metric method; from Figure 7(b) it can be
observed that the scatter plot of distances dij in the C plane versus the observed spatial
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Figure 7: Disparities versus MDS interstation distances for the seismograph array date.

dispersions is nearly a straight line. It shows that this two-dimensional MDS solution
accurately reflects the date in the matrix Δ = �δij�, and the optimal metric has better linear
relation than the classic metric method.

Estimated contours plots of the correlation coefficient are presented based on the
strong motion recorded by SMART-1 array in Figure 8. What information conveys in Figure 8
is that, even in the alluvium alloy where seismic array located, the covariance structure of the
earthquake is inhomogeneous in space choice or varies from location to location. The different
choose of reference point may get different result, so the contours plot of the correlation
coefficient is not a suitable way of representing the spatial variation of seismic groundmotion.

Figure 8 is the figure of the method in this paper; it depicts the thin-plate spline
mapping between the G plane and C plane representations of monitoring stations using the
image of a rectangular of points located on C plane. Different from contour plot in Figure 9,
it needs not to choose the reference point. The clearest feature in Figure 9 is that there is
a relatively denser spacing of curves in the northeast; it is the epicentral direction. The area
where the grid (spacing of curves) concentrated is the place where the correlative structure of
earthquake changes significantly; the denser the grid the greater the variation and vice versa.
It should be emphasized that this paper concentrates to illustrate how to apply our method to
despite the corrective structure of earthquake ground motion, a more exact conclusion need
more sufficiently dense spatial sampling.
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Figure 8: Contour plot of correlation coefficient of sample record for Event 40: (a) take the I09 as the
reference point and (b) take M05 as the reference point (the unit of the coordinates is m).
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4. Conclusions and Remarks

This study addresses the following topic: the description and estimation of spatial variation of
seismic ground motions. A nonparametric method to the estimation and graphical depiction
of the local spatial correlation for the earthquake ground motion is presented. The method
paves a way how to use the multidimension scaling and body-fitted grid to represent the
variation of ground motion. It can be a promising tool in detecting the correlation structure
of spatial ground motion; further research includes the investigation of the influence, on
the spatial correlation structure, of the seismologic parameters such as the epicenter the
magnitude and location.

Such covariance structure estimate by this method can be used to reveal the inhomo-
geneous feature of earthquake and help design large-span structure for example a suggested
way to do so is to modify the traditional correlation model. By observing the density of
the grid in the geography space we can introduce different weight coefficients at different
locations. In this way we can produce more properly correlated motions in space for the
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design of engineering structure with character of spatial extension. The problem of how
to establish the relationship between the grid by our method and weight coefficients of
correlation model should be addressed in future work before the application of our methods
to problems of artificial earthquake simulation.

The covariance estimates can also be used for some monitoring network design prob-
lems. For example, grid concentrated is the place more monitoring points (stations) should
be placed and vice versa.
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