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Magnetohydrodynamic (MHD) boundary layer flow of a nanofluid over an exponentially
stretching sheet was studied. The governing boundary layer equations are reduced into ordinary
differential equations by a similarity transformation. The transformed equations are solved
numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-
order iteration schemes. The effects of the governing parameters on the flow field and heat
transfer characteristics were obtained and discussed. The numerical solutions for the wall skin
friction coefficient, the heat and mass transfer coefficient, and the velocity, temperature, and
concentration profiles are computed, analyzed, and discussed graphically. Comparison with
previously published work is performed and excellent agreement is observed.

1. Introduction

The study of Magnetohydrodynamics (MHD) boundary layer flow on a continuous
stretching sheet has attracted considerable attention during the last few decades due to
its numerous applications in industrial manufacturing processes such as the aerodynamic
extrusion of plastic sheets, liquid film, hot rolling, wire drawing, glass fiber and paper
production, drawing of plastic films, metal, and polymer extrusion, and metal spinning.
Crane [1]was the first to consider the boundary layer flow caused by a stretching sheet which
moves with a velocity varying linearly with the distance from a fixed point. The heat transfer
aspect of this problem was investigated by Carragher and Crane [2] under the conditions
when the temperature difference between the surface and the ambient fluid is proportional
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to a power of the distance from a fixed point. After this pioneering work, the flow field over
an exponentially stretching surface has drawn considerable attention and a good amount of
literature has been generated on this problem. Magyari and Keller [3] analyzed the steady
boundary layers on an exponentially stretching continuous surface with an exponential
temperature distribution. Partha et al. [4] investigated the effect of viscous dissipation
on the mixed convection heat transfer from an exponentially stretching surface. Sajid and
Hayat [5] studied the influence of thermal radiation on the boundary layer flow due to an
exponentially stretching sheet by solving the problem analytically via homotopy analysis
method (HAM). The study of magnetohydrodynamic (MHD) has important applications,
and may be used to deal with problems such as cooling of nuclear reactors by liquid sodium
and induction flow meter, which depends on the potential difference in the fluid in the
direction perpendicular to the motion and to the magnetic field [6]. At high operating
temperature, radiation effect can be quite significant. Many processes in engineering areas
occur at high temperatures and knowledge of radiation heat transfer becomes very important
for the design of pertinent equipment [7]. Elbashbeshy [8] added new dimension to the study
on exponentially continuous stretching surface. Khan [9] and Sanjayanand and Khan [10]
studied the viscous-elastic boundary layer flow and heat transfer due to an exponentially
stretching sheet. The numerical simulation of boundary layer flow over an exponentially
stretching sheet with thermal radiation was given by Bidin and Nazar [11]. Wang [12]
studied the free convection on a vertical stretching surface, also Reddy Gorla and Sidawi [13]
investigated the free convection on a vertical stretching surface with suction and blowing.

Dissipation is the process of converting mechanical energy of downward-flowing
water into thermal and acoustical energy. Vajravelu and Hadjinicolaou [14] analyzed the heat
transfer characteristics over a stretching surface with viscous dissipation in the presence of
internal heat generation or absorption. Convective boundary layer flow haswide applications
in engineering as postaccidental heat removal in nuclear reactors, solar collectors, drying
processes, heat exchangers, geothermal and oil recovery, building construction, and so forth.
Cheng and Minkowycz [15] also studied free convection from a vertical flat plate with
applications to heat transfer from a dick. Gorla et al. [16, 17] solved the nonsimilar problem
of free convective heat transfer from a vertical plate embedded in a saturated porous medium
with an arbitrary varying surface temperature.

The term nanofluid refers to these kinds of fluids by suspending nanometer sized
metallic particles in common fluids and reported that their highly enhanced thermal
properties has been introduced by Choi [18]. Kang et al. [19] investigated the estimation of
thermal conductivity of nanofluid using experimental effective particle volume. Abu-Nada et
al. [20, 21] have showed application of nanofluids for heat transfer and also analyzed effects
of inclination angle on natural convection in enclosures filled with Cu-water nanofluid.
Wang and Mujumdar [22, 23] studied heat transfer characteristics of nanofluids including
theoretical and numerical investigations. Ghasemi and Aminossa dati [24] have showed the
periodic natural convection in a nanofluid filled enclosure with oscillating heat flux.

The study of convective instability and heat transfer characteristics of the nanofluids
was considered by Kim et al. [25]. Jang and Choi [26] obtained nanofluids thermal
conductivity and various parameters effect this study. The natural convective boundary layer
flows of a nanofluid past a vertical plate have been described by Neild and Kuznestov
[27] and Kuznestov and Neild [28]. In this model, Brownian motion and Thermophoresis
are accounted with the simplest possible boundary conditions. They also studied Cheng–
Minkowycz problem for natural convective boundary-layer flow in a porous medium
saturated by a nanofluid. Owing to applications in science and engineering, Brownianmotion
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Figure 1: Physical model and coordinate system.

was reported by [29–36]. Bachok et al. [37] have showed the steady boundary layer flow of a
nanofluid past a moving semiinfinite flat plate in a uniform free stream. It was assumed that
the plate is moving in the same or opposite directions to the free stream to define resulting
system of nonlinear ordinary differential equations.

Khan and Pop [38, 39] formulated the problem of laminar boundary layer flow of
a nanofluid past a stretching sheet. They also expressed free convection boundary layer
nanofluid flow past a horizontal flat plate. Hamad and Pop [40] discussed the boundary
layer flow near the stagnation-point flow on a permeable stretching sheet in a porousmedium
saturated with a nanofluid. Hamad et al. [41] investigates free convection flow of a nanofluid
past a semiinfinite vertical flat plate with the influence of magnetic field. Very recently
Shakhaoath et al. [42, 43] investigate the effects of thermal radiation and magnetic field on
the boundary layer flow of a nanofluid over a stretching surface.

The present paper studies the problem of MHD mixed convective boundary layer
of a nanofluid flow over an exponentially stretching sheet. The governing equations are
transformed into nonlinear coupled ordinary differential equations which depends on
the combined porous and magnetic parameter (R), thermal convective parameter (λT ),
Mass convective parameter (λM), viscosity ratio parameter (∧), dimensionless inertia
parameter (∇), Prandtl number (Pr), Eckert number (Ec), Lewis number (Le), Brownian
motion parameter (Nb), and Thermophoresis parameter (Nt). The obtained nonlinear
coupled ordinary differential equations are solved numerically using Nactsheim-Swigert
[44] shooting iteration technique together with Runge-Kutta six-order iteration schemes.
The velocity, temperature, and concentration distributions are discussed and presented
graphically, and also the skin-friction coefficient, the surface heat, and mass transfer rate at
the sheet are investigated.

2. Mathematical Formulation
Consider a steady two-dimensional flow of an incompressible viscous and electrically
conducting nanofluid caused by a stretching sheet, which is placed in a quiescent ambient
fluid of uniform temperature of the plate and species concentration are raised to Tw (> T∞)
and Cw (> C∞), respectively, which are thereafter maintained constant, where Tw, Cw are
temperature and species concentration at the wall and T∞, C∞ are temperature and species
concentration far away from the plate, respectively. The x-axis is taken along the stretching
sheet in the direction of the motion and y-axis is perpendicular to it. Consider that a variable
magnetic field B(x) is applied normal to the sheet and that the induced magnetic field is
neglected, which is justified for MHD flow at small magnetic Reynolds number. The sketch
of the physical configuration and coordinate system are shown in Figure 1.
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Under the above assumptions and usual boundary layer approximation, the MHD free
convective nanofluid flow and heat and mass transfer are governed by the following (see
Nield and Kuznetsov [27] and Kuznetsov and Nield [28]):
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(2.1)

where u and v are the velocities in the x- and y-directions, respectively, ρ is the fluid
density, υ the kinematic viscosity, υ̃ the reference kinematic viscosity, K the variable thermal
conductivity, cp the specific heat at constant pressure, T and C the fluid temperature and
concentration in the boundary layer, c∗ε2 is the inertia parameter, α is the thermal diffusivity,
DB is the Brownian diffusion coefficient, and DT is the thermophoresis diffusion coefficient.

The boundary condition for the model is

u = uw = u◦ex/L, v = 0, T = Tw = T∞ + T◦ex/2L,

C = Cw = C∞ + C◦ex/2L, at y = 0

u = 0, T −→ T∞, C −→ C∞, as y −→ ∞,

(2.2)

where u◦ is the reference velocity, T◦, C◦ the reference temperature and concentration,
respectively, and L is the reference length. To obtain similarity solutions, it is assumed that
the magnetic field B(x) is of the form

B = B◦ex/2L, (2.3)

where B◦ is the constant magnetic field. Also the variable thermal conductivity can be taken
as the form

K = k◦ex/2L. (2.4)



Mathematical Problems in Engineering 5

In order to attains a similarity solution to (2) with the boundary conditions (2.2), the
following dimensionless variables are used:
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(2.5)

From the above transformations, the nondimensional, nonlinear, and coupled ordinary
differential equations are obtained as

∧f ′′′ + ff ′′ − 2(∇ + 1)f ′2 − 2Rf ′ + 2λTθ + 2λMϕ = 0
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(2.6)

where the notation primes denote differentiation with respect to η and the parameters are
defined as
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(2.7)

The transformed boundary conditions

f = 0, f ′ = 1, θ = 1, ϕ = 1, at η = 0

f ′ = 0, θ = 0, ϕ = 0, as η −→ ∞.
(2.8)

The physical quantities of the skin-friction coefficient, the reduced Nusselt number, and
reduced Sherwood number are calculated, respectively, by the following:

Cf(Rex)
−1/2 = −f ′′(0), Nu(Rex)

−1/2 = −θ′(0), Sh(Rex)
−1/2 = −ϕ′(0), (2.9)

where R (e x) = (xu◦ex/L)/ν is the local Reynolds number.

3. Numerical Technique

The system of nondimensional, nonlinear, and coupled ordinary differential equations (2.6)
with boundary condition (2.8) are solved numerically using standard initially value solver
the shooting method. For the purpose of this method, the Nactsheim-Swigert shooting
iteration technique [44] together with Runge-Kutta six order iteration scheme is taken and
determines the temperature and concentration as a function of the coordinate η. Extension
of the iteration shell to above equation system of differential (2.8) is straightforward; there
are three asymptotic boundary condition and hence three unknown surface conditions
f ′′(0), θ′(0) and ϕ′(0).

4. Results and Discussions

The system of governing equation (2.6) are coupled both in heat and mass transfer; it
is clear that analytical solution is not possible. Thus, computations have been carried
out based on numerical technique. The values of the governing parameters are chosen
arbitrary. However, the numerical results are presented for some representative values of
these governing parameters. In order to see the physical insight, the numerical values
of velocity (f ′), temperature (θ), and concentration (ϕ) with the boundary layer have
been computed for different parameters as the combined porous and magnetic parameter
(R), Thermal convective parameter (λT ), Mass convective parameter (λM), viscosity ratio
parameter (∧), dimensionless inertia parameter (∇), Prandtl number (Pr), Eckert number
(Ec), Lewis number (Le), Brownian motion parameter (Nb), and Thermophoresis parameter
(Nt). In order to assess the accuracy of the numerical results as the results for the reduced
Nusselt number −θ′(0) for different values of Prandtl number (Pr) and Eckert number (Ec),
the present results comparedwith Bidin andNazar [11]. Comparisonwith the existing results
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Table 1: Comparison for the reduced Nusselt number −θ′(0) for the values of λT = λM = R = ∇ = Le =
Nb =Nt = 0.0.

Pr

Ec = 0.0 Ec = 0.0 Ec = 0.0
Bidin and
Nazar [11]
(K = 0.0)

Present
results

Bidin and
Nazar [11]
(K = 0.0)

Present
results

Bidin and
Nazar [11]
(K = 0.0)

Present
results

1 0.9547 0.9550 0.8622 0.8629 0.5385 0.5392
2 1.4714 1.4719 1.3055 1.3062 0.7248 0.7250
3 1.8691 1.8701 1.6882 1.6890 0.8301 0.8309
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Figure 2: Effect of ∧ on velocity profiles.

shows a favorable agreement, as presented in Table 1.Therefore, the present results are very
accurate. The physical representation of the present study is shown in Figures 2–21.

Figure 2 displays the dimensionless velocity distribution f ′(η) for different values of
∧ where λT = 5.0, λM = 2.0, R = 4.0, ∇ = 1.0, Ec = 0.2, Pr = 1.0, Le = 5.0, Nt = 0.1, and Nb =
0.1 Then for above case it is observed that velocity profiles increase as ∧ increases.

Figure 3 exhibits the dimensionless velocity distribution f ′(η) for different values of R
where λT = 5.0, λM = 2.0,∧ = 1.5, ∇ = 1.0, Ec = 0.2, Pr = 1.0, Le = 5.0, Nt = 0.1, and Nb =
0.1. It shows that the velocity reduces steeply near the exponential stretching sheet as R is
increased.

Figure 4 represents the dimensionless velocity distribution f ′(η) for different values of
λT where ∧ = 1.5, λM = 2.0, R = 4.0, ∇ = 1.0, Ec = 0.2, Pr = 1.0, Le = 5.0, Nt = 0.1, andNb =
0.1 It shows that the velocity rises as λT is increased.

Figure 5 depicts the dimensionless velocity distribution f ′(η) for different values of λM
where λT = 5.0,∧ = 1.5, R = 4.0,∇ = 1.0, Ec = 0.2, Pr = 1.0, Le = 5.0, Nt = 0.1, andNb = 0.1. It
shows that the velocity reduces as λM is increased.
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Figure 6 depicts the dimensionless velocity distribution f ′(η) for different values of Ec
where λT = 5.0, λM = 2.0, R = 4.0, ∇ = 1.0,∧ = 1.5, Pr = 1.0, Le = 5.0, Nt = 0.1, andNb = 0.1.
It shows that the velocity rises as Ec is increased.

Figure 7 represents the dimensionless temperature distribution θ(η) for different
values of ∧ where λT = 5.0, λM = 2.0, R = 4.0, ∇ = 1.0, Ec = 0.2, Pr = 1.0, Le = 5.0, Nt =
0.1, andNb = 0.1. It shows that the thermal boundary layer rises as ∧ is increased causing the
fluid temperature to reduce at every point other than the wall.

Figure 8 shows the dimensionless temperature distribution θ(η) for different values of
R where λT = 5.0, λM = 2.0,∧ = 1.5, ∇ = 1.0, Ec = 0.2, Pr = 1.0, Le = 5.0, Nt = 0.1 and Nb =
0.1 It shows that the thermal boundary layer increases as R is increased.

Figure 9 exhibits the dimensionless temperature distribution θ(η) for different values
of λT where ∧ = 1.5, λM = 2.0,R = 4.0, ∇ = 1.0, Ec = 0.2, Pr = 1.0, Le = 5.0, Nt =
0.1, andNb = 0.1. It shows that the thermal boundary layer reduces as λT is increased.

Figure 10 portrays the dimensionless temperature distribution θ(η) for different values
of λM where λT = 5.0,∧ = 1.5,R = 4.0, ∇ = 1.0, Ec = 0.2, Pr = 1.0, Le = 5.0, Nt = 0.1, andNb =
0.1. It shows that the thermal boundary layer rises as λM is increased.

Figure 11 shows the dimensionless temperature distribution θ(η) for different values
of Ec where λT = 5.0, λM = 2.0,R = 4.0, ∇ = 1.0,∧ = 1.5, Pr = 1.0, Le = 5.0, Nt = 0.1, andNb =
0.1. It shows that the thermal boundary layer increases gradually as Ec is increased.

Figure 12 shows the dimensionless concentration distribution ϕ(η) for different values
of ∧ where λT = 5.0, λM = 2.0,R = 4.0, ∇ = 1.0, Ec = 0.2, Pr = 1.0, Le = 5.0, Nt =
0.1, andNb = 0.1. It shows that the concentration boundary layer rises as ∧ is increases.

Figure 13 exhibits the dimensionless concentration distribution ϕ(η) for different
values of R where λT = 5.0, λM = 2.0, ∧ = 1.5, ∇ = 1.0, Ec = 0.2, Pr = 1.0, Le = 5.0, Nt =
0.1, andNb = 0.1. It shows that the concentration boundary layer rises as R is increased.



10 Mathematical Problems in Engineering

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
1 2 3 4

f
′ (
η
)

η

R = 4, λT = 5, ∧ = 1.5, ∇ = 1,
λM = 2,

= 0
= 0.5
= 0.9

= 1, = 5,Nt = Nb = 0.1

Ec

Ec

Ec

Pr Le

Figure 6: Effect of Ec on velocity profiles.
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Figure 12: Effect of ∧ on concentration profiles.
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Figure 14 depicts the dimensionless concentration distribution ϕ(η) for different
values of λT where , ∧ = 1.5, λM = 2.0,R = 4.0, ∇ = 1.0, Ec = 0.2, Pr = 1.0, Le = 5.0, Nt =
0.1, andNb = 0.1. It is observed that the increasing effect of λT is to reduce concentration
distribution as concentration species is dispersed away.

Figure 15 exhibits the dimensionless concentration distribution ϕ(η) for different
values of λM where λT = 5.0, ∧ = 1.5,R = 4.0, ∇ = 1.0, Ec = 0.2, Pr = 1.0, Le = 5.0, Nt =
0.1, andNb = 0.1. It shows that the concentration boundary layer reduces as λM is increased.

Figure 16 shows the dimensionless concentration distribution ϕ(η) for different values
of Ec where λT = 5.0, λM = 2.0,R = 4.0, ∇ = 1.0, ∧ = 1.5, Pr = 1.0, Le = 5.0, Nt =
0.1, andNb = 0.1. It shows that the concentration boundary layer decreases gradually as
Ec is increased.

Since the physical interest of the problem, the skin-friction coefficient (−f ′′), the
Nusselt number (−θ′) at the sheet and the Sherwood number (−ϕ′) at the sheet are plotted
against Brownian motion parameter (Nb) and illustrated in Figures 17–21.

Figure 17 illustrates the skin-friction coefficient (−f ′′) plotted for the different values
of ∧ where λT = 5.0, λM = 2.0,R = 4.0, ∇ = 1.0, Ec = 0.2, Pr = 1.0, Le = 5.0, andNb = 0.1. It is
verified that there is a decrease in skin-friction coefficient as ∧ increases.

Figure 18 displays the skin-friction coefficient (−f ′′) plotted for the different values of
R where λT = 5.0, λM = 2.0, ∧ = 1.5, ∇ = 1.0, Ec = 0.2, Pr = 1.0, Le = 5.0, andNb = 0.1. It is
verified that there is a decrease in skin-friction coefficient as R increases.

Figure 19 depicts the Nusselt number (−θ′) plotted for the different values of ∧ where
λT = 5.0, λM = 2.0,R = 4.0, ∇ = 1.0, Ec = 0.2, Pr = 1.0, Le = 5.0, andNb = 0.1. It is verified
that there is decrease in Nusselt number as ∧ increases.

Figure 20 displays the Nusselt number (−θ′) plotted for the different values of Rwhere
λT = 5.0, λM = 2.0, ∧ = 1.5, ∇ = 1.0, Ec = 0.2, Pr = 1.0, Le = 5.0, andNb = 0.1. It is verified
that there is a decrease in Nusselt number as R increases.
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Figure 15: Effect of λM on concentration profiles.
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Figure 16: Effect of Ec on concentration profiles.
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Figure 17: Effect of ∧ on Skin-friction coefficient.
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Figure 18: Effect of R on skin-friction coefficient.
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Figure 19: Effect of ∧ on heat transfer rate.
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Figure 20: Effect of R on heat transfer rate.
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Figure 21: Effect of ∧ on mass transfer rate.

Figure 21 shows the Sherwood number (−ϕ′) plotted for the different values of ∧where
λ1 = 4.0, α = 1.0, Fw = 2.0, Q = 1.0, Nt = 0.5, M = 1.0, Pr = 0.71, andLe = 5.0. It is verified
that there is a decrease in Sherwood number as ∧ increases.

5. Conclusions

The effect of radiation on steady MHDmixed convection boundary layer flow of a nanofluid
over an exponentially stretching sheet was investigated. The results are presented for
the effect of various parameters. The velocity, temperature, and concentration effects as
well as the skin-friction coefficient, Nusselt number, and Sherwood number effects along
the exponential sheet are studied and shown graphically. However, the comparison with
previously published work [11] is performed and excellent agreement is observed. From the
present study the important findings are listed below.

(1) Momentum, thermal, and concentration boundary layer thickness increase as the
viscous ratio parameter increases. Whereas skin-friction coefficient, surface heat,
and mass transfer rate decreases.

(2) Momentum boundary layer thickness reduces; on the other hand, thermal and
concentration boundary layer increases steeply near the exponential stretching
sheet as the combined porous and Magnetic parameter is increased. Whereas skin-
friction coefficient and surface heat transfer rate decreases.

(3) Momentum and thermal boundary layer increase whereas the concentration
boundary layer decreases gradually as the Eckert number is increased.
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Nomenclature

B0: Magnetic induction
C: Nanoparticle concentration
C◦: Reference concentration
Cw: Nanoparticle concentration at stretching surface
C∞: Ambient nanoparticle concentration as y tends to infinity
Cf : Skin-friction coefficient
cp: Specific heat capacity
DB: Brownian diffusion coefficient
DT : Thermophoresis diffusion coefficient
g: Acceleration due to gravity
Gr : Grashof number
Gm: Modified Grashof number
Le: Lewis number
L: Reference length
Nu: Nusselt number
Nb: Brownian motion parameter
Nt: Thermophoresis parameter
P : Fluid pressure
Pr : Prandtl number
R: Combined porous and magnetic parameter
Re: Local Reynolds number
Sh: Sherwood number
T : Fluid temperature
T◦: Reference temperature
Tw: Temperature at the stretching surface
T∞: Ambient temperature as y tends to infinity
u,v: Velocity components along x-and y-axes, respectively
u◦: Reference velocity
x,y: Cartesian coordinates measured along stretching surface.

Greek Symbols

ν: Kinematic viscosities
ν̃: Reference kinematic viscosity
(ρc)p: Effective heat capacity of the nanofluid
(ρc)f : Heat capacity of the fluid
α: Thermal diffusivity
β: Coefficient of thermal expansion
λT : Thermal convective parameter
λM: Mass convective parameter
η: Similarity variable
ψ: Stream function
f ′(η): Dimensionless velocity
θ(η): Dimensionless temperature
ϕ(η): Dimensionless concentration.
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