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Prony type methods are used in many engineering applications to determine the exponential fit
corresponding to a dataset. In this paper we study a variant of Prony’s method that was used by
Martin-Landrove et al., in a process of segmentation of T,-weighted MRI brain images. We show
the equivalence between that method and the classical Prony method and study the stability of the
computed solutions with respect to noise in the data set. In particular, we show that the relative
error in the calculation of the exponential fit parameters is linear with respect to noise in the data.
Our analysis is based on classical results from linear algebra, matrix computation theory, and the
theory of stability for roots of polynomials.

1. Introduction

In this paper we consider the problem of recovering the parameters b, A;,and C; j = 1,...,k,
from a set of measurements y;, i = 1,...,n with n > 2k + 1 and a given exponential model

k
p(t) =b+ > Cie ', (1.1)
j=1

The measurement y; corresponds to the value of expression (1.1) for t = iAt, At > 0. Hence
we get the set of equations

k
vi=b+ > Cie™  i=1,...,n (1.2)
j=1

This kind of exponential fit appears in the case of T>-weighted magnetic resonance images of
the brain. T, is the transverse relaxation time in the process of magnetic resonance; it measures
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for how long the transverse magnetization lasts in a uniform external magnetic field. Two
parameters, TR (repetition time) and TE (echo time) characterize the acquisition of the signal;
T, weighted refers to a signal produced with long TR and TE.

The exponents \; are the nonlinear parameters and correspond to the relaxation rates
associated with the different tissues present in the images. The coefficients b, Cy, ..., Cy are
the linear parameters and are related to the noise, and the proportions of those tissues in the
given images. In previous works Martin-Landrove et al. [1, 2], it is considered a variant of the
Prony method to recover the relaxation rates, the noise and the proportions. Paluszny et al.
[3] compared that variant of the Prony method with the Variable Projection Method of Golub
and Pereyra, [4-6]. The method proved to be reliable for low noise levels and k = 1,2, 3. The
Variable Projection Method proved to be more robust in the presence of larger noise levels but
required ten times more computational time to get results comparable to those of the variant
of the Prony method. In this paper we first show that the method proposed by Martin-
Landrove is equivalent to the Prony method described by Kahn et al. in [7], and then we study
the behavior of the linear systems and the conditioning of the polynomial roots that have to
be computed to obtain the model parameters using the method.

2. Prony Method

In the model formulation (1.1) set b = Cy and Ay = 0, and write
k
pu(t) = D Cie ™", (2.1)
7=0

The Prony type methods, also known as polynomial methods, use the fact that p(t) satisfies
a difference equation of the form

OBl + -+ 6,E+ 61 ) u(t) =0, (2.2)
u

where E is the forward shift operator

(Eu)(t) = p(t + Ab), (23)

—4At

and the values f; = e are the roots of the polynomial

P(z) = 6502 + -+ 6,2+ 6, =0, (2.4)

which is called the characteristic polynomial of the associated difference equation (2.2).
Evaluating (2.2) for t; = iAt, i =1,...,n, we get the following set of linear equations:

O fi(tin) + -+ O1pu(t1) =0
2.5)

Oksopt(tn) +--- + 61pu(tp-k-1) = 0.
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Let§ = [61,...6r2]", v =[v1,...,0,]" = [pu(t1),..., u(ty)]" and

6y -
Xg = 5o b1 (2.6)
| Ok+2]
Then the above system of linear equations can be rewritten in matrix form as
Xjv=0. (2.7)
Alternatively, if W, is the (n — k — 1) x (k + 2) Hankel matrix
VI Uy v Uk
W, = L (2.8)
s - e v
then
W,6 = X} v. (2.9)

If there is no noise in the observation data, then y; = p(t;) and the coefficients 6; can be deter-
mined from the equivalent system of equations

Xiy =0, (2.10)

where y = [y1,...y,]". Then the p;j are computed as the roots of P(z) and finally

“log(Bi)

In the presence of noisy data instead of solving the system (2.10), we consider the nonlinear
optimization problem

min v XXl y. (2.12)
In order to obtain a nontrivial solution, it is necessary to impose restrictions over the para-
meters 6;; each choice of restrictions characterizes a particular version of the Prony method.

For example the modified Prony method described in Osborne and Smyth [8, 9], uses

m:sin yTX(ngy subject to 1615 =1, (2.13)
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where X is the Moore Penrose generalized inverse of X5. Osborne et al. considered X to be
full rank, hence X; = (Xng)leg.

We consider a different optimization problem, which appears in the literature, to com-
pare with the Martin-Landrove method:

mﬁin y XXty subject to S = 1. (2.14)

The above methods and others, such as classical Prony method, Pisarenko’s method, and the
linear predictor method, are described in [7-11]. Once the nonlinear parameters have been
found, the linear ones are computed as the least squares solution of the linear system obtained
by replacing the nonlinear parameters in (1.2), a separation of variables approach.

3. An Alternative Formulation of the Prony Method

To simplify the explanation let us consider the case k = 3 and n > 7. Then, the system of equa-
tions (1.2) can be written as

Y1 = b+ Clﬂl + Czﬂz + C3ﬂ3
Y2 = b+ Clﬂ% + Czﬁ% + C3ﬁ§

(3.1)
Yn =b+Ci1f] + Coffy + C3p5.
From (3.1) and defining g; = y; — yi+1 we get
g1 =Ci(1=p1)p1+ Co(1-f2) P2+ Cs(1 - f3) P
(3.2)

Gn1=C1(1= PP + Co(1 =) By + G (1= ) 5
The dimension of the system can be reduced by using the transformation g;,1 — g1, to get
@2 = qpr = Co(1 = F2) B2 (2 = Pr) + C3 (1= B3) s (Bs — )
(3.3)
1 = Guafpr = Co(1= B2) 372 (B2 = Pr) + Ca(1 = B3) B3 (s - 1)

Then

g2 = qip1 + Co(1 = B2) 2 (B2 = Pr) + C3(1 = 3) B3 (Bs — )
(3.4)

Gn-1 = GnaPr + Ca(1 = B2) B3> (P2 = Pr) + C3 (1 = B3) By > (B3 = )
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We now apply the transformation g;.1 — g;jf2, and the new set can be written as

33 = @22 = @P1 = qip1 2 + C3(1 = f3) B3 (Bs = Br) (Bs = P)

(3.5)
Gn-1 = Gn-2P2 = Gu-aP1 = Guaf1Ba + Cs (1= B3) B (B3 = B1) (Bs — B2)-
The equations above are equivalent to
3% = @1+ P2) = q1p1f2 + C3(1 = B3) s (B = B1) (B3 = P2)
41 = @3 (P1 + P2) — @1 P2 + Cs (1= 3)B5(B3 = 1) (B — f2)
(3.6)

Gn1 = Gn2(Pr + P2) = Gu-sPrfpa + Cs(1 = B3) B3> (B3 = P1) (B3 — P)-

Finally we use the transformation g;,1 — g;fs. At this final step we get the following system:

gs = g3 (B1 + P2 + B3) — q2(B1P2 + P13 + P2s) + 1123

3.7)
Gn-1= Gn-2(P1 + P2 + B3) — Gn-3(B1P2 + P1B3 + P23) + Gun-4f1 P23
In matrix notations we have

Muw=Q, (3.8)

where [w1, wy, w3] = [P1 + Po + 3, —P1f2 — P1B3 — P23, P23,

4 92 qi qa
Ve B o (3.9)
dn-2 qn-3 qn-4 qn-1

If the data values y; are noiseless, the values w1, w,, and w3 may be obtained from the previ-
ous system of equations and the f; are the roots of the polynomial

a(z) = 2° — w1 2% — wyz — ws. (3.10)

Once the roots have been computed the nonlinear parameters can be calculated using (2.11),
and likewise the linear parameters, as stated before.
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In general, for an arbitrary k, let M® be the (n — k — 1) x k matrix

g = Q1 gk+1 w®
.o 1
M = qk‘+l - qz Q(k) _ qk‘+2 w® = . ) (3.11)
Lo . w.(k)
n-2 * * {qn-1-k qn-1 k

In this case the coefficients of the polynomial a(z) are the symmetric functions of fi, ..., f«
defined as

w =i+ + By,

w0 =-3'pip,,
I#r
k
w= 3 ppp
1#7,l#s,s#71
(3.12)
® _ s T
wk 1~ (_1) Z Hﬁl ’
=1\ 1#j
(k) — ( 1)k+1Hﬂ]
These coefficients are determinated by the solution of the system
MBp® = QW) (3.13)
Finally, the f3; are the roots of the polynomial
(k) _ (k) k=i
a®(z) = 2k Zw (3.14)

Next we will study the relationship between the solution obtained by the procedure described
above and the Prony method described in Section 2.

Theorem 3.1. Let R be the k x k matrix defined as follows: for k =1 set R =1 and for k > 1
1, ifi=j,

R(,j)=4-1, ifj=i+1, (3.15)

0, otherwise.
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In addition, let P(z) and a®)(z) be the polynomials defined in (2.4) and (3.14), respectively. If 6 =
[61,...,6k:1,1] is the solution of the optimization problem (2.14), then w® = R7[6,...,56]"
satisfies

M®e® —Q® = XTy. (3.16)

Moreover,

P(z) = (z-1)a®(z). (3.17)

Proof. The solution 6 = [61, ..., 0k+1, Ok+2] of (2.14) satisfies 6x.2 = 1. In the case we are con-
sidering fo = 1is a root of P(z), which implies that

->6i=1 (3.18)

Then we have

M®® _ k) = MR Rgp® — )

[0k [Yk+1 — Yr+2
- MOR| : ] - :
-614 L Yn-1—VYn
[ k+1 b
o | 26j | Yk+1 — Yks2
Ok j=1
= MR | - -
_61_1 k+1
[ X6j|yn-1-Yn
8 j=1 §
6k [vksr - - Y] [6k (3.19)
— M(k) R—l . + . .o . .
|61 Lyna - - vl LS
Yi+2 Yi+1
+ o0 Oka2 + Ok+1
Yn Yn-1
1 Yo ot Yk o1
Y2 Y3 ot Yke3 62
=| Y3 Ys - Yku C =Wyo.
: . St

Yn-k-1 Yn-k **° Yn 6k+2

Then, using (2.9), it follows that

M®g® —Q® = XTy, (3.20)
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Now, for the polynomial P(z) we have

P(2) = 6z + -+ 602+ 61

k —
=(z-1) <zk - (Za,) zk 1 - < 16]~>zk2 — = (614 62)z — 61>
j=1 j=1

(3.21)
=(z-1) <zk - wik)zk‘1 - wék)zk‘2 s — wl(ck_)lz - w,((k)>
k .
=(z-1)( zF- Zw;k)zk_7
=1
= (z-1)a®(z).
O

Theorem 3.2. Let us suppose that there exists a unique solution to the optimization problem (2.14).
A vector 6 € R¥*2 is the solution of the optimization problem (2.14) if and only if R\ [6x, ..., 611" is
the least squares solution of the linear equation (3.13).

Proof. Let 6 € R**2 be the solution of the optimization problem (2.14), { = R™'[&, ... 6117,
and let ¢s be the least squares solution of the linear system (3.13). From Theorem 3.1 it follows
that

[ X5l = -]

> min |M(k)z oLl ” (3.22)
Joo-c
Let us consider ¢ € R given by
[k, ..., é&1]" = Ry (3.23)
and y € R**2 defined as
) T
Y= [él/-“/gk/ -1 _Zél‘, 1] . (324)
=
By Theorem 3.1 we have
[m9 -] = [[x7v], (325)

and therefore ||X6Ty|| > ||XYT y|l. By hypothesis 6 is the only solution of the optimization
problem, thus 6 = y, which implies that [6k, ..., 61] = [¢k, ..., é1]- Now we have R = Ry and
thus ¢ = ¢.
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In a similar way we can prove that y in (3.24) is the solution of the optimization
problem (2.14), whenever ¢ is the least squares solution of the linear equation (3.13). O

4. Stability of the Alternative Prony Method
In (3.13), arrays M® and Q™ depend on the vector of measurements y. In the presence of
noisy data the equation that really holds is

<M<’<> + €1>w<k> =0QW t+ e, (4.1)

where €; and e, depend on the level of noise. Then it is necessary to determine the condition
number of the matrix in order to see the accuracy in the coefficients given by w®. Let us
consider (1.2) for n = 2k+1. In this situation M® is a nonsingular square matrix of dimension
k x k. In the following lemma we establish a factorization of the matrix M*) that will be used
in the stability analysis of the system (3.13). Our analysis is similar to the one described in
[12].

Lemma 4.1. Let us consider n = 2k + 1. Let G and H be the k x k matrices defined by
R ] 42
8ij = Pj i =P (4.2)
and let D be the k x k diagonal matrix given by d;; = Ci(1 — B;)Bi. Then

M® = GDH. (4.3)

Proof. By definition g; = y; — yix1,i=1,...,2k. Then

k
g = >.Cifi(1-p))- (4.4)
=1
Thus
[ qk qn
) = .
| 2k-1 *° qk

- écfﬂf(l‘ﬂf) écjﬂj(l_ﬂf)-

chfﬁik-l(l—ﬁ» gcjﬁ;‘a—ﬂj)
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N [T ] L
_ .1 'k o ’2<*1 By 1
ic_l i_l L e dk,k ,l:—l ﬂk 1
=GDH
(4.5)
O

Lemma 4.2. Let us consider n = 2k +1. Let 5y, 1 and 1p be the condition numbers in the infinite
norm of the matrices M®, G, and D, respectively. Then

Nm < szléﬂD- (4.6)

Proof. Let 11 be the condition number in the infinite norm of the matrix H. Using Lemma 4.1
it follows that

Nym® < NGHDYHH- (4.7)

To get (4.6) it is enough to observe that
s = W [ = 7] e
- e o, =tenfe, w9
<KGIL |67 = K*ne.

O

The following theorem establishes an estimate for the variation Aw® in the vector
components w® in (3.13), as it depends on the noise level in the vector of the measurements

Y= [yl,...,yn]T.
Theorem 4.3. Let n =2k + 1,y = [y, ... ,yn]T, Ay =[Aw,..., Ayn]T, and

Ao = ming [ MO [l ) 9)

Let 6 > 0 such that

2K nEND6 < A (4.10)
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If||Ay || < 6, then the variation Aw'®) in the solution of the perturbed system

( M® 4 A M<’<>> <w<’<> + Aw(k)> =q®) + Ag® (4.11)
satisfies
A ®,, _, 6 2

Proof. Let € = 26k /Ay. If || Ay ||, < 6, then |[AM®||, < 2k6 and [|Ag®) ||, < 2k6. Therefore

Jaq® | <2kl e — o) @.13)
In a similar way we get
||AM<’<> ”w < e”M(k)“w. (4.14)
By using (4.6) we see that
enmw < ek*ninp < 1. (4.15)

From (4.13), (4.14), and (4.15), and using Theorem 2.7.2 in [13], it follows that

|Aw®]| MM
o, < T e

< 2enpm + O<€27ﬁ\4<k>> (4.16)

< 4k311é11131% + O<62>.

Once we have estimated the vector @w® = w® + Aw® it remains to consider the correspond-
ing impact in the calculation of the roots of the polynomial

a®(z) = ZF Zw(k) k=j (4.17)

Let f3; be one of the roots of the polynomial a*(z) and suppose that ﬁj = p;+Ap; is the root of
the polynomial a®)(z) closest to f;. The following is an estimate for Ap; which follows from
the theory of stability for simple roots of polynomials, see [14]. O

Lemma 4.4. Let 0 < 0 < 1 such that

law®], _, i
o, <% (19
[o'e)
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Then there exits Ay > 0 such that

[aw®]],,

oo 419
o], 12

|AB] < A

From (4.12) we see that there is a constant As such that

AP, /4K
[ < A b )o (4.20)

Thus, if 6 in Theorem 4.3 is sufficiently small such that

4k3 2
5<% + A36> —0<1, (4.21)
1

then the conditions of Lemma 4.4 are satisfied and therefore

[aw®]],,

_— 4.22
Tw®]. (422

141l., < A2

With the computed ﬁ]-, 1 < j < k, we should analyze the least squares solution of the perturb-
ed system

b
Gl y+ Ay, (4.23)

(@I
g

1 ﬁ%kﬂ ﬁikﬂ

which will be written as BC = 7. The following theorem provides an estimate of || AC||», being
C = C+AC the solution of the perturbed system. Note that the following result is the first one
in this paper where we require the nonlinear parameters in the model (1.1) to be positive.

Theorem 4.5. Let n, y, Ay, and 6 be as in the statement of Theorem 4.3, with || Ay||, < 6. Let 7] be
the condition number of matrix B in the Euclidean norm and consider

A4 = min{||B]|,,

yll,}- (4.24)

Let us suppose that 6 satisfies (4.10) and (4.21) and let

4k3 2
ps = 6V/2k + 1max{k(2k +1) <ﬂ + A36>A2,1} < min{l, @} (4.25)

M 1p
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Then
IACl, _ps [ s . . 2
IClI : Ay Coso+nﬂtano- +O<6 >/ (4.26)
where
sino - =¥l o
vl

and y* is the orthogonal projection of the vector y on the subspace spanned by the columns of B.

Proof. Let € = ps/A4. Using the mean value theorem we see that
|6+ ap) - ]| <i(B)) ™ 8B, (4.28)
with ] between f; and f; + Af; and 0 < f; < 1. Then

k
_ i_g
||AB||oo—1g;%z<+1<§'(ﬁl+Aﬁl> ﬂz|>

<kQk+1)|[AB]|_-

(4.29)

From (4.20) and (4.22) it follows that

[ABl; < V2k +1[|AB||,,

< k(2k +1)*2||AB]|.,

4532 430
< k(2k + 1)3/2A26<# + A36> (4:30)
1
ps
< — .
< 2y,

On the other hand

layll, < V2k+ 1] ay].,
<Vak+1 6< By,
4

(4.31)

By definition

ps

1
<=, 4.32
Ay 1p (4.32)

and (4.26) follows from (4.30), (4.31), and (4.32), by Theorem 5.3.1 in [13]. O
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If the value of ps in (4.25) is given by

4k3 2
ps = k(2k + 1)“(# + A36> AsS (4.33)
1

and sino = 0, then

IAC|,  4k*(2k +1)%?A _
G S da, Mot +0(8). (4:34)

This estimate is similar to the is studied one obtained in reference [12], in which it is studied
the stability of a confluent Prony system. Let us suppose, without loss of generality, that
p1 < P2+ < Pr. From [15] we see that

G = max{k,g}{ggg;, (4.35)
where
k k 1+ ﬁl
k-1
g=2p0" &= : (4.36)
,Z:; ! 1+ 1B = Pl
D is a diagonal matrix, therefore. We have
1C:B: (1 = B
_ max]| ]ﬂ]( ﬂ])l (4.37)

 min |C;B;(1- ;)|

We do not know a reasonable upper bound for the condition number 7j3.

It follows that the method is well conditioned if each one of the following statements is
satisfied: there is ¢ > 0 such that ; > o for 1 < j < k, the powers f3; are widely separated, and
the number of nonlinear parameters remains small. The proximity between two f; values
leads to a large value of the condition number of G, #g, and hence to the ill-conditioning
of the algorithm. This characteristic is consistent with the observations of Varah, [16], who
remarked the ill conditioning behaviour for any exponential fitting algorithm, provided that
there are two parameters f; very close.

5. Numerical Results

In this section we present some numerical experiments to see the actual behavior of our im-
plementation of the alternative Prony method described above. We have results for models
with two and three exponentials.

Since the application which motivated our work is related to T, magnetic resonance
brain images, we will take the linear parameters C; to be positive and such that Z;‘zl C; =255,
and the nonlinear ones to lie in the interval [0.65,26], see [17].
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Given a particular model y(t), the data values y; are generated evaluating y(t;) with
At = 0.04, t; = iAt and adding noise. We have used two different kinds of noise: Gaussian and
Rician.

In MRI, data are intrinsically complex valued and corrupted with zero mean Gaussian
distributed noise with equal variance [18]. MR magnitude images are formed by simply
taking the square root of the two independent Gaussian random variables (real and imagin-
ary parts) pixel by pixel. For an MR magnitude image, the Rician probability density function
of the measure pixel intensity x is given by

X (2412 2 X
p(xly) = e v Io<3{0.—2>, (5.1)

where I is the modified zeroth-order Bessel function of the first kind, y is the underlying
noise-free signal amplitude, and 6 denotes the standard deviation of the Gaussian noise in the
real and imaginary parts.

The figures are log-log graphs, the horizontal axis corresponds to the noise, and the
vertical axis corresponds to the relative errors in the computations of the linear and nonlinear
parameters
AX;

]

Ab
db=|=>
E

AC;
Cj

,  dCj= ' (5.2)

For each example, we first show the results for one run corresponding to a particular value
of the noise and then we show the average value of the relative errors for one hundred runs.
The Gaussian noise has zero mean, and the variance, §, varies between 1070 and 1. For the
Rice noise we use (y;,6), with 6 varying between 1071% and 1 as the parameters for each sim-
ulation.

For Figures 1, 2, 3 and 4 we used the model

y(t) =10 + 80e M + 165e . (5.3)

Note the linear dependence of the errors with respect to level of noise. We also noticed that, in
general, the errors in the nonlinear parameters are slightly smaller than the errors in the linear
parameters. In Figures 1 and 2 we have the results using Gaussian noise. Figures 3 and 4 show
the results for the same model and Rice noise; as the behaviour is similar for Gaussian and
Rice noises, we will only consider Rice noise for the rest of the experiments.

Next we present the results for the model

y(t) =5+ 100e M + 150e%. (5.4)

In Figures 5 and 6 the graphs show a deterioration, as the theory suggests, because the non-
linear parameters are closer than in the previous example. In this case the errors in the linear
parameters are greater, for more than one order of magnitude, than the errors on the nonlinear
parameters.

Finally, we use the model

y(t) =5+70e +85¢7% + 95¢718", (5.5)
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10°

10710
10710 108 1076 1074 1072 100
—%— db -—— 5
—— dC; --- 01
— dC,
10°

10—10
10°10 108 10-¢ 104 1072 10°

—— dl -—— 6
— diy --- 01

10°

10710
107" 108 1076 1074 1072 100
—%— db R
—— dC; --- 0.1
— dGC,
10°

1075

10710 1078 107 107 1072 10°

Figure 2: Relative error average, after 100 runs, for the first model corresponding to Gaussian noise.
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100

10°

10-°

E

10-10
10710 1078 107 107 1072 10°

—— d)u] --—- 6
— dly --- 01

10°

107

10-10 |
10-10 108 10-¢ 104 1072 10°
—x— db - 6
—— dC; --- 01
— dGC,

100

105
E
1071
10-10 108 10-® 104 102 10°
—— AN -5
— dn --- 01

Figure 4: Relative error average, after 100 runs, for the first model corresponding to Rice noise.
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10°

105
10710
10710 1078 107° 1074 1072 10°
—«— db --- 6
—— dCy --- 01
— dGC,
10°

10-°

10—10
10710 108 1076 107* 1072 100

— d)q --- 8
— di --- 0.1

Figure 5: Relative errors for the second model corresponding to Rice noise.

10°

10710 1078 107° 107 1072 10°
—+— db --= 0
—— dCy --- 01
— dGC,
100

10-°

10-10 108 10-® 104 1072 10°

Figure 6: Relative error average, after 100 runs, for the second model corresponding to Rice noise.
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100 -_______; ________ ‘__ TP AN I 4
107 ¢ .
E
10—10 N N L L
10710 108 106 1074 1072 100
—7— db — dGC;
—— dCy — 6
— dC, -—- 01
100 : ‘
1075 1
k.
10-10 ; ; ; ;
10710 1078 1076 10 102 10°
— d)u] JR— 5
— d) --- 01
— di;

10° -_______; ________ ‘___ 7 R RHN 4
1075 1
N
E
10—10 N N L L
10710 1078 107° 1074 1072 100
—v— db — dG;
—— dCy — 6
— dG, --- 01
100 ‘ ‘ f
1075 1
E
1010 : : : :
10710 1078 1076 10 102 10°
— d)u] — 6
— dA --- 01
— dis

Figure 8: Relative error average, after 100 runs, for the third model corresponding to Rice noise.

19
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Table 1: Condition numbers.

e 1D 18
Example 1 16.88724660783 2.22604845378 53.04339947209
Example 2 130.20508573840 1.54342570227 397.12140292138
Example 3 184.8409648621 4.7771637988 269.0372904019

The results are shown in Figures 7 and 8. Again, there is a deterioration, with respect to the
first example, which is caused by the addition of one term to the exponential model.

Now we present Table 1 with the computed condition numbers for the different
relevant matrices for each one of the three examples.

6. Conclusions

In this work we have developed a stability analysis for the alternative formulation of the
Prony method presented by Martin-Landrove et al. [1, 2]. The analysis shows the linear
dependence between the perturbation of the data and the relative errors in the computed
values for the model linear and nonlinear parameters. It is also shown that the errors in the
linear parameters depend upon both the number and the closeness of the nonlinear para-
meters.
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