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Prony type methods are used in many engineering applications to determine the exponential fit
corresponding to a dataset. In this paper we study a variant of Prony’s method that was used by
Martı́n-Landrove et al., in a process of segmentation of T2-weighted MRI brain images. We show
the equivalence between that method and the classical Prony method and study the stability of the
computed solutions with respect to noise in the data set. In particular, we show that the relative
error in the calculation of the exponential fit parameters is linear with respect to noise in the data.
Our analysis is based on classical results from linear algebra, matrix computation theory, and the
theory of stability for roots of polynomials.

1. Introduction

In this paper we consider the problem of recovering the parameters b, λj , and Cj j = 1, . . . , k,
from a set of measurements yi, i = 1, . . . , nwith n ≥ 2k + 1 and a given exponential model

μ(t) = b +
k∑

j=1

Cje
−λj t. (1.1)

The measurement yi corresponds to the value of expression (1.1) for t = iΔt, Δt > 0. Hence
we get the set of equations

yi = b +
k∑

j=1

Cje
−iλjΔt i = 1, . . . , n. (1.2)

This kind of exponential fit appears in the case of T2-weighted magnetic resonance images of
the brain. T2 is the transverse relaxation time in the process ofmagnetic resonance; it measures
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for how long the transverse magnetization lasts in a uniform external magnetic field. Two
parameters, TR (repetition time) and TE (echo time) characterize the acquisition of the signal;
T2 weighted refers to a signal produced with long TR and TE.

The exponents λj are the nonlinear parameters and correspond to the relaxation rates
associated with the different tissues present in the images. The coefficients b, C1, . . . , Ck are
the linear parameters and are related to the noise, and the proportions of those tissues in the
given images. In previous works Martı́n-Landrove et al. [1, 2], it is considered a variant of the
Prony method to recover the relaxation rates, the noise and the proportions. Paluszny et al.
[3] compared that variant of the Prony method with the Variable Projection Method of Golub
and Pereyra, [4–6]. The method proved to be reliable for low noise levels and k = 1, 2, 3. The
Variable ProjectionMethod proved to bemore robust in the presence of larger noise levels but
required ten times more computational time to get results comparable to those of the variant
of the Prony method. In this paper we first show that the method proposed by Martı́n-
Landrove is equivalent to the Pronymethod described byKahn et al. in [7], and thenwe study
the behavior of the linear systems and the conditioning of the polynomial roots that have to
be computed to obtain the model parameters using the method.

2. Prony Method

In the model formulation (1.1) set b = C0 and λ0 = 0, and write

μ(t) =
k∑

j=0

Cje
−λj t. (2.1)

The Prony type methods, also known as polynomial methods, use the fact that μ(t) satisfies
a difference equation of the form

(
δk+2E

k+1 + · · · + δ2E + δ1
)
μ(t) = 0, (2.2)

where E is the forward shift operator

(
Eμ

)
(t) = μ(t + Δt), (2.3)

and the values βj = e−λjΔt are the roots of the polynomial

P(z) = δk+2zk+1 + · · · + δ2z + δ1 = 0, (2.4)

which is called the characteristic polynomial of the associated difference equation (2.2).
Evaluating (2.2) for ti = iΔt, i = 1, . . . , n, we get the following set of linear equations:

δk+2μ(tk+2) + · · · + δ1μ(t1) = 0

...
...

δk+2μ(tn) + · · · + δ1μ(tn−k−1) = 0.

(2.5)
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Let δ = [δ1, . . . δk+2]
T , v = [v1, . . . , vn]

T = [μ(t1), . . . , μ(tn)]
T and

Xδ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1
...

. . .
δ1

δk+2
. . .

...
δk+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.6)

Then the above system of linear equations can be rewritten in matrix form as

XT
δ v = 0. (2.7)

Alternatively, ifWv is the (n − k − 1) × (k + 2) Hankel matrix

Wv =

⎡
⎢⎢⎢⎢⎢⎣

v1 v2 · · · vk+2
· · · · · ·
· · · · · ·
· · · · · ·

vn−k−1 · · · · vn

⎤
⎥⎥⎥⎥⎥⎦

(2.8)

then

Wvδ = XT
δ v. (2.9)

If there is no noise in the observation data, then yi = μ(ti) and the coefficients δi can be deter-
mined from the equivalent system of equations

XT
δy = 0, (2.10)

where y = [y1, . . . yn]
T . Then the βj are computed as the roots of P(z) and finally

λj =
− log

(
βj
)

Δt
j = 0, . . . , k. (2.11)

In the presence of noisy data instead of solving the system (2.10), we consider the nonlinear
optimization problem

min
δ

yTXδX
T
δ y. (2.12)

In order to obtain a nontrivial solution, it is necessary to impose restrictions over the para-
meters δj ; each choice of restrictions characterizes a particular version of the Prony method.
For example the modified Prony method described in Osborne and Smyth [8, 9], uses

min
δ

yTXδX
+
δy subject to ‖δ‖22 = 1, (2.13)
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where X+
δ is the Moore Penrose generalized inverse of Xδ. Osborne et al. considered Xδ to be

full rank, hence X+
δ
= (XT

δ
Xδ)

−1XT
δ
.

We consider a different optimization problem, which appears in the literature, to com-
pare with the Martı́n-Landrove method:

min
δ

yTXδX
T
δ y subject to δk+2 = 1. (2.14)

The above methods and others, such as classical Prony method, Pisarenko’s method, and the
linear predictor method, are described in [7–11]. Once the nonlinear parameters have been
found, the linear ones are computed as the least squares solution of the linear system obtained
by replacing the nonlinear parameters in (1.2), a separation of variables approach.

3. An Alternative Formulation of the Prony Method

To simplify the explanation let us consider the case k = 3 and n ≥ 7. Then, the system of equa-
tions (1.2) can be written as

y1 = b + C1β1 + C2β2 + C3β3

y2 = b + C1β
2
1 + C2β

2
2 + C3β

2
3

...

yn = b + C1β
n
1 + C2β

n
2 + C3β

n
3 .

(3.1)

From (3.1) and defining qi = yi − yi+1 we get

q1 = C1
(
1 − β1

)
β1 + C2

(
1 − β2

)
β2 + C3

(
1 − β3

)
β3

...

qn−1 = C1
(
1 − β1

)
βn−11 + C2

(
1 − β2

)
βn−12 + C3

(
1 − β3

)
βn−13 .

(3.2)

The dimension of the system can be reduced by using the transformation qj+1 − qjβ1, to get

q2 − q1β1 = C2
(
1 − β2

)
β2
(
β2 − β1

)
+ C3

(
1 − β3

)
β3
(
β3 − β1

)

...

qn−1 − qn−2β1 = C2
(
1 − β2

)
βn−22

(
β2 − β1

)
+ C3

(
1 − β3

)
βn−23

(
β3 − β1

)
.

(3.3)

Then

q2 = q1β1 + C2
(
1 − β2

)
β2
(
β2 − β1

)
+ C3

(
1 − β3

)
β3
(
β3 − β1

)

...

qn−1 = qn−2β1 + C2
(
1 − β2

)
βn−22

(
β2 − β1

)
+ C3

(
1 − β3

)
βn−23

(
β3 − β1

)
.

(3.4)
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We now apply the transformation qj+1 − qjβ2, and the new set can be written as

q3 − q2β2 = q2β1 − q1β1β2 + C3
(
1 − β3

)
β3
(
β3 − β1

)(
β3 − β2

)

...

qn−1 − qn−2β2 = qn−2β1 − qn−3β1β2 + C3
(
1 − β3

)
βn−33

(
β3 − β1

)(
β3 − β2

)
.

(3.5)

The equations above are equivalent to

q3 = q2
(
β1 + β2

) − q1β1β2 + C3
(
1 − β3

)
β3
(
β3 − β1

)(
β3 − β2

)

q4 = q3
(
β1 + β2

) − q2β1β2 + C3
(
1 − β3

)
β23

(
β3 − β1

)(
β3 − β2

)

...

qn−1 = qn−2
(
β1 + β2

) − qn−3β1β2 + C3
(
1 − β3

)
βn−33

(
β3 − β1

)(
β3 − β2

)
.

(3.6)

Finally we use the transformation qj+1 − qjβ3. At this final step we get the following system:

q4 = q3
(
β1 + β2 + β3

) − q2
(
β1β2 + β1β3 + β2β3

)
+ q1β1β2β3

...

qn−1 = qn−2
(
β1 + β2 + β3

) − qn−3
(
β1β2 + β1β3 + β2β3

)
+ qn−4β1β2β3.

(3.7)

In matrix notations we have

Mw = Q, (3.8)

where [w1, w2, w3] = [β1 + β2 + β3,−β1β2 − β1β3 − β2β3, β1β2β3],

M =

⎡
⎢⎢⎢⎣

q3 q2 q1
q4 q3 q2
...

...
...

qn−2 qn−3 qn−4

⎤
⎥⎥⎥⎦
, Q =

⎡
⎢⎢⎢⎣

q4
q5
...

qn−1

⎤
⎥⎥⎥⎦
. (3.9)

If the data values yi are noiseless, the valuesw1, w2, andw3 may be obtained from the previ-
ous system of equations and the βj are the roots of the polynomial

α(z) = z3 −w1z
2 −w2z −w3. (3.10)

Once the roots have been computed the nonlinear parameters can be calculated using (2.11),
and likewise the linear parameters, as stated before.
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In general, for an arbitrary k, letM(k) be the (n − k − 1) × k matrix

M(k) =

⎡
⎢⎢⎢⎣

qk · · q1
qk+1 · · q2
...

...
...

qn−2 · · qn−1−k

⎤
⎥⎥⎥⎦
, Q(k) =

⎡
⎢⎢⎢⎣

qk+1
qk+2
...

qn−1

⎤
⎥⎥⎥⎦
, w(k) =

⎡
⎢⎢⎣

w
(k)
1
...

w
(k)
k

⎤
⎥⎥⎦. (3.11)

In this case the coefficients of the polynomial α(z) are the symmetric functions of β1, . . . , βk
defined as

w
(k)
1 = β1 + · · · + βk,

w
(k)
2 = −

∑

l /= r

βlβr ,

w
(k)
3 =

∑

l /= r, l /= s, s /= r

βlβrβs,

...

w
(k)
k−1 = (−1)k

k∑

j=1

⎛

⎝
k∏

l /= j

βl

⎞

⎠,

w
(k)
k

= (−1)k+1
k∏

j=1

βj .

(3.12)

These coefficients are determinated by the solution of the system

M(k)w(k) = Q(k). (3.13)

Finally, the βj are the roots of the polynomial

α(k)(z) = zk −
k∑

j=1

w
(k)
j zk−j . (3.14)

Next wewill study the relationship between the solution obtained by the procedure described
above and the Prony method described in Section 2.

Theorem 3.1. Let R be the k × k matrix defined as follows: for k = 1 set R = 1 and for k > 1

R
(
i, j

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if i = j,

−1, if j = i + 1,

0, otherwise.

(3.15)
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In addition, let P(z) and α(k)(z) be the polynomials defined in (2.4) and (3.14), respectively. If δ =
[δ1, . . . , δk+1, 1] is the solution of the optimization problem (2.14), then w(k) = R−1[δk, . . . , δ1]

T

satisfies

M(k)w(k) −Q(k) = XT
δy. (3.16)

Moreover,

P(z) = (z − 1)α(k)(z). (3.17)

Proof. The solution δ = [δ1, . . . , δk+1, δk+2] of (2.14) satisfies δk+2 = 1. In the case we are con-
sidering β0 = 1 is a root of P(z), which implies that

−
k+1∑

j=1

δj = 1. (3.18)

Then we have

M(k)w(k) −Q(k) =M(k)R−1Rw(k) −Q(k)

=M(k)R−1

⎡
⎢⎣

δk
...
δ1

⎤
⎥⎦ −

⎡
⎢⎣

yk+1 − yk+2
...

yn−1 − yn

⎤
⎥⎦

=M(k)R−1

⎡
⎢⎣

δk
...
δ1

⎤
⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−
[
k+1∑
j=1
δj

]
yk+1 − yk+2
...

−
[
k+1∑
j=1
δj

]
yn−1 − yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=M(k)R−1

⎡
⎢⎣

δk
...
δ1

⎤
⎥⎦ +

⎡
⎢⎣

yk+1 · · yk+1
...

...
...

...
yn−1 · · yn−1

⎤
⎥⎦

⎡
⎢⎣

δk
...
δ1

⎤
⎥⎦

+ · · · δk+2

⎡
⎢⎣

yk+2
...
yn

⎤
⎥⎦ + δk+1

⎡
⎢⎣

yk+1
...

yn−1

⎤
⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

y1 y2 · · · yk+2
y2 y3 · · · yk+3
y3 y4 · · · yk+4
· · · · · .

yn−k−1 yn−k · · · yn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

δ1
δ2
...

δk+1
δk+2

⎤
⎥⎥⎥⎥⎥⎥⎦

=Wyδ.

(3.19)

Then, using (2.9), it follows that

M(k)w(k) −Q(k) = XT
δy. (3.20)
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Now, for the polynomial P(z)we have

P(z) = δk+2zk+1 + · · · + δ2z + δ1

= (z − 1)

⎛

⎝zk −
⎛

⎝
k∑

j=1

δj

⎞

⎠zk−1 −
⎛

⎝
k−1∑

j=1

δj

⎞

⎠zk−2 − · · · − (δ1 + δ2)z − δ1
⎞

⎠

= (z − 1)
(
zk −w(k)

1 zk−1 −w(k)
2 zk−2 · · · −w(k)

k−1z −w
(k)
k

)

= (z − 1)

⎛

⎝zk −
k∑

j=1

w
(k)
j zk−j

⎞

⎠

= (z − 1)α(k)(z).

(3.21)

Theorem 3.2. Let us suppose that there exists a unique solution to the optimization problem (2.14).
A vector δ ∈ R

k+2 is the solution of the optimization problem (2.14) if and only if R−1[δk, . . . , δ1]
T is

the least squares solution of the linear equation (3.13).

Proof. Let δ ∈ R
k+2 be the solution of the optimization problem (2.14), ζ = R−1[δk, . . . , δ1]

T ,
and let ψ be the least squares solution of the linear system (3.13). From Theorem 3.1 it follows
that

∥∥∥XT
δy

∥∥∥ =
∥∥∥M(k)ζ −Q(k)

∥∥∥

≥ min
z

∥∥∥M(k)z −Q(k)
∥∥∥

=
∥∥∥M(k)ψ −Q(k)

∥∥∥.

(3.22)

Let us consider ξ ∈ R
k given by

[ξk, . . . , ξ1]
T = Rψ (3.23)

and γ ∈ R
k+2 defined as

γ =

⎡

⎣ξ1, . . . , ξk,−1 −
k∑

j=1

ξj , 1

⎤

⎦
T

. (3.24)

By Theorem 3.1 we have
∥∥∥M(k)ψ −Q(k)

∥∥∥ =
∥∥∥XT

γ y
∥∥∥, (3.25)

and therefore ‖XT
δy‖ ≥ ‖XT

γ y‖. By hypothesis δ is the only solution of the optimization
problem, thus δ = γ , which implies that [δk, . . . , δ1] = [ξk, . . . , ξ1]. Now we have Rζ = Rψ and
thus ζ = ψ.



Mathematical Problems in Engineering 9

In a similar way we can prove that γ in (3.24) is the solution of the optimization
problem (2.14), whenever ψ is the least squares solution of the linear equation (3.13).

4. Stability of the Alternative Prony Method

In (3.13), arrays M(k) and Q(k) depend on the vector of measurements y. In the presence of
noisy data the equation that really holds is

(
M(k) + ε1

)
w(k) = Q(k) + ε2, (4.1)

where ε1 and ε2 depend on the level of noise. Then it is necessary to determine the condition
number of the matrix in order to see the accuracy in the coefficients given by w(k). Let us
consider (1.2) for n = 2k+1. In this situationM(k) is a nonsingular square matrix of dimension
k×k. In the following lemma we establish a factorization of the matrixM(k) that will be used
in the stability analysis of the system (3.13). Our analysis is similar to the one described in
[12].

Lemma 4.1. Let us consider n = 2k + 1. Let G andH be the k × k matrices defined by

gi,j = βi−1j , hi,j = β
k−j
i , (4.2)

and let D be the k × k diagonal matrix given by di,i = Ci(1 − βi)βi. Then

M(k) = GDH. (4.3)

Proof. By definition qi = yi − yi+1, i = 1, . . . , 2k. Then

qi =
k∑

j=1

Cjβ
i
j

(
1 − βj

)
. (4.4)

Thus

M(k) =

⎡
⎢⎢⎣

qk · · · q1
· · · · ·
· · · · ·

q2k−1 · · · qk

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k∑
j=1
Cjβ

k
j

(
1 − βj

) · · ·
k∑
j=1
Cjβj

(
1 − βj

)

· · · · ·
· · · · ·

k∑
j=1
Cjβ

2k−1
j

(
1 − βj

) · · ·
k∑
j=1
Cjβ

k
j

(
1 − βj

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎣

1 · · · 1
β1 · · · βk
· · · · ·
· · · · ·

βk−11 · · · βk−1k

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

d1,1 · · · ·
. · · · ·
. · · · ·
. · · · dk,k

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

βk−11 · · · β1 1

βk−12 · · · β2 1

· · · · · ·
βk−1
k

· · · βk 1

⎤
⎥⎥⎥⎥⎦

= GDH.
(4.5)

Lemma 4.2. Let us consider n = 2k+1. Let ηM(k) , ηG and ηD be the condition numbers in the infinite
norm of the matricesM(k), G, and D, respectively. Then

ηM(k) ≤ k2η2GηD. (4.6)

Proof. Let ηH be the condition number in the infinite norm of the matrixH. Using Lemma 4.1
it follows that

ηM(k) ≤ ηGηDηH. (4.7)

To get (4.6) it is enough to observe that

ηH = ‖H‖∞
∥∥∥H−1

∥∥∥
∞
=
∥∥∥HT

∥∥∥
1

∥∥∥(H−1)T
∥∥∥
1

=
∥∥∥HT

∥∥∥
1

∥∥∥(HT )−1
∥∥∥
1
= ‖G‖1

∥∥∥G−1
∥∥∥
1

≤ k2‖G‖∞
∥∥∥G−1

∥∥∥
∞
= k2ηG.

(4.8)

The following theorem establishes an estimate for the variation Δw(k) in the vector
componentsw(k) in (3.13), as it depends on the noise level in the vector of the measurements
y = [y1, . . . , yn]

T .

Theorem 4.3. Let n = 2k + 1, y = [y1, . . . , yn]
T , Δy = [Δy1, . . . ,Δyn]

T , and

Λ1 = min
{∥∥∥M(k)

∥∥∥
∞
,
∥∥∥q(k)

∥∥∥
∞

}
. (4.9)

Let δ > 0 such that

2k3η2GηDδ < Λ1. (4.10)
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If ‖Δy‖∞ < δ, then the variation Δw(k) in the solution of the perturbed system
(
M(k) + ΔM(k)

)(
w(k) + Δw(k)

)
= q(k) + Δq(k) (4.11)

satisfies
∥∥Δw(k)

∥∥
∞∥∥w(k)

∥∥
∞

≤ 4k3η2GηD
δ

Λ1
+O

(
δ2

)
. (4.12)

Proof. Let ε = 2δk/Λ1. If ‖Δy‖∞ < δ, then ‖ΔM(k)‖∞ ≤ 2kδ and ‖Δq(k)‖∞ ≤ 2kδ. Therefore

∥∥∥Δq(k)
∥∥∥
∞
≤ 2kδ

∥∥q(k)
∥∥
∞

Λ1
= ε

∥∥∥q(k)
∥∥∥
∞
. (4.13)

In a similar way we get
∥∥∥ΔM(k)

∥∥∥
∞
≤ ε

∥∥∥M(k)
∥∥∥
∞
. (4.14)

By using (4.6) we see that

εηM(k) ≤ εk2η2GηD < 1. (4.15)

From (4.13), (4.14), and (4.15), and using Theorem 2.7.2 in [13], it follows that

∥∥Δw(k)
∥∥
∞∥∥w(k)

∥∥
∞

≤ 2
εηM(k)

1 − εηM(k)

≤ 2εηM(k) +O
(
ε2η2

M(k)

)

≤ 4k3η2GηD
δ

Λ1
+O

(
δ2

)
.

(4.16)

Once we have estimated the vector w̃(k) = w(k)+Δw(k), it remains to consider the correspond-
ing impact in the calculation of the roots of the polynomial

α̃(k)(z) = zk −
k∑

j=1

w̃
(k)
j zk−j . (4.17)

Let βj be one of the roots of the polynomial α(k)(z) and suppose that β̃j = βj +Δβj is the root of
the polynomial α̃(k)(z) closest to βj . The following is an estimate for Δβj which follows from
the theory of stability for simple roots of polynomials, see [14].

Lemma 4.4. Let 0 < θ � 1 such that

∥∥Δw(k)
∥∥
∞∥∥w(k)

∥∥
∞

< θ. (4.18)
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Then there exits Λ2 > 0 such that

∣∣Δβj
∣∣ ≤ Λ2

∥∥Δw(k)
∥∥
∞∥∥w(k)

∥∥
∞
. (4.19)

From (4.12)we see that there is a constant Λ3 such that

∥∥Δw(k)
∥∥
∞∥∥w(k)

∥∥
∞

≤
(

4k3η2GηD
Λ1

+ Λ3δ

)
δ. (4.20)

Thus, if δ in Theorem 4.3 is sufficiently small such that

δ

(
4k3η2GηD

Λ1
+ Λ3δ

)
= θ < 1, (4.21)

then the conditions of Lemma 4.4 are satisfied and therefore

∥∥Δβ
∥∥
∞ ≤ Λ2

∥∥Δw(k)
∥∥
∞∥∥w(k)

∥∥
∞
. (4.22)

With the computed β̃j , 1 ≤ j ≤ k, we should analyze the least squares solution of the perturb-
ed system

⎡
⎢⎢⎢⎣

1 β̃1 · · · β̃k
· · · · · ·
· · · · · ·
1 β̃2k+11 · · · β̃2k+1k

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

b̃

C̃1

·
C̃k

⎤
⎥⎥⎥⎦

= y + Δy, (4.23)

which will be written as B̃C̃ = ỹ. The following theorem provides an estimate of ‖ΔC‖2, being
C̃ = C+ΔC the solution of the perturbed system. Note that the following result is the first one
in this paper where we require the nonlinear parameters in the model (1.1) to be positive.

Theorem 4.5. Let n, y, Δy, and δ be as in the statement of Theorem 4.3, with ‖Δy‖∞ < δ. Let η̂β be
the condition number of matrix B in the Euclidean norm and consider

Λ4 = min
{‖B‖2,

∥∥y
∥∥
2

}
. (4.24)

Let us suppose that δ satisfies (4.10) and (4.21) and let

ρδ = δ
√
2k + 1max

{
k(2k + 1)

(
4k3η2GηD

Λ1
+ Λ3δ

)
Λ2, 1

}
< min

{
1,

Λ4

η̂β

}
. (4.25)
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Then

‖ΔC‖2
‖C‖2

≤ ρδ
Λ4

(
η̂β

cosσ
+ η̂2β tanσ

)
+O

(
δ2

)
, (4.26)

where

sinσ =

∥∥y − y∗∥∥
2∥∥y

∥∥
2

, (4.27)

and y∗ is the orthogonal projection of the vector y on the subspace spanned by the columns of B.

Proof. Let ε = ρδ/Λ4. Using the mean value theorem we see that

∣∣∣
(
βl + Δβl

)j − βj
l

∣∣∣ ≤ j(β∗l
)j−1Δβj , (4.28)

with β∗l between βj and βj + Δβj and 0 < βj < 1. Then

‖ΔB‖∞ = max
1≤i≤2k+1

(
k∑

l=1

∣∣∣
(
βl + Δβl

)j − βj
l

∣∣∣
)

≤ k(2k + 1)
∥∥Δβ

∥∥
∞.

(4.29)

From (4.20) and (4.22) it follows that

‖ΔB‖2 ≤
√
2k + 1‖ΔB‖∞

≤ k(2k + 1)3/2
∥∥Δβ

∥∥
∞

≤ k(2k + 1)3/2Λ2δ

(
4k3η2GηD

Λ1
+ Λ3δ

)

≤ ρδ
Λ4

‖B‖2.

(4.30)

On the other hand
∥∥Δy

∥∥
2 ≤

√
2k + 1

∥∥Δy
∥∥
∞

≤
√
2k + 1 δ ≤ ρδ

Λ4

∥∥y
∥∥
2.

(4.31)

By definition

ρδ
Λ4

<
1
η̂β
, (4.32)

and (4.26) follows from (4.30), (4.31), and (4.32), by Theorem 5.3.1 in [13].
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If the value of ρδ in (4.25) is given by

ρδ = k(2k + 1)3/2
(

4k3η2GηD
Λ1

+ Λ3δ

)
Λ2δ (4.33)

and sinσ = 0, then

‖ΔC‖2
‖C‖2

≤ 4k4(2k + 1)3/2Λ2

Λ1Λ4
η2GηDη̂βδ +O

(
δ2

)
. (4.34)

This estimate is similar to the is studied one obtained in reference [12], in which it is studied
the stability of a confluent Prony system. Let us suppose, without loss of generality, that
β1 < β2 · · · < βk. From [15] we see that

ηG = max
{
k, g

}
max
1≤j≤k

gj , (4.35)

where

g =
k∑

j=1

βk−1j , gj =
k∏

l /= j

1 + βl∣∣βj − βl
∣∣ . (4.36)

D is a diagonal matrix, therefore. We have

ηD =
maxj

∣∣Cjβj
(
1 − βj

)∣∣

minj
∣∣Cjβj

(
1 − βj

)∣∣ . (4.37)

We do not know a reasonable upper bound for the condition number η̂B.
It follows that the method is well conditioned if each one of the following statements is

satisfied: there is σ > 0 such that βj ≥ σ for 1 ≤ j ≤ k, the powers βj are widely separated, and
the number of nonlinear parameters remains small. The proximity between two βj values
leads to a large value of the condition number of G, ηG, and hence to the ill-conditioning
of the algorithm. This characteristic is consistent with the observations of Varah, [16], who
remarked the ill conditioning behaviour for any exponential fitting algorithm, provided that
there are two parameters βj very close.

5. Numerical Results

In this section we present some numerical experiments to see the actual behavior of our im-
plementation of the alternative Prony method described above. We have results for models
with two and three exponentials.

Since the application which motivated our work is related to T2 magnetic resonance
brain images, we will take the linear parametersCj to be positive and such that

∑k
j=1 Cj = 255,

and the nonlinear ones to lie in the interval [0.65, 26], see [17].
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Given a particular model y(t), the data values yi are generated evaluating y(ti) with
Δt = 0.04, ti = iΔt and adding noise. We have used two different kinds of noise: Gaussian and
Rician.

In MRI, data are intrinsically complex valued and corrupted with zero mean Gaussian
distributed noise with equal variance [18]. MR magnitude images are formed by simply
taking the square root of the two independent Gaussian random variables (real and imagin-
ary parts) pixel by pixel. For anMRmagnitude image, the Rician probability density function
of the measure pixel intensity x is given by

p
(
x | y) =

x

δ2
e−(x

2+y2)/2δ2I0

(
yx

δ2

)
, (5.1)

where I0 is the modified zeroth-order Bessel function of the first kind, y is the underlying
noise-free signal amplitude, and δ denotes the standard deviation of the Gaussian noise in the
real and imaginary parts.

The figures are log-log graphs, the horizontal axis corresponds to the noise, and the
vertical axis corresponds to the relative errors in the computations of the linear and nonlinear
parameters

db =
∣∣∣∣
Δb
b

∣∣∣∣, dCj =

∣∣∣∣∣
ΔCj

Cj

∣∣∣∣∣, dλj =

∣∣∣∣∣
Δλj
λj

∣∣∣∣∣. (5.2)

For each example, we first show the results for one run corresponding to a particular value
of the noise and then we show the average value of the relative errors for one hundred runs.
The Gaussian noise has zero mean, and the variance, δ, varies between 10−10 and 1. For the
Rice noise we use (yi, δ), with δ varying between 10−10 and 1 as the parameters for each sim-
ulation.

For Figures 1, 2, 3 and 4 we used the model

y(t) = 10 + 80e−11t + 165e−20t. (5.3)

Note the linear dependence of the errors with respect to level of noise. We also noticed that, in
general, the errors in the nonlinear parameters are slightly smaller than the errors in the linear
parameters. In Figures 1 and 2we have the results using Gaussian noise. Figures 3 and 4 show
the results for the same model and Rice noise; as the behaviour is similar for Gaussian and
Rice noises, we will only consider Rice noise for the rest of the experiments.

Next we present the results for the model

y(t) = 5 + 100e−11t + 150e−12t. (5.4)

In Figures 5 and 6 the graphs show a deterioration, as the theory suggests, because the non-
linear parameters are closer than in the previous example. In this case the errors in the linear
parameters are greater, formore than one order ofmagnitude, than the errors on the nonlinear
parameters.

Finally, we use the model

y(t) = 5 + 70e−2t + 85e−10t + 95e−18t. (5.5)
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db

dC1

dC2

δ
0.1

δ

0.1

100
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10−10
10−10 10−8 10−6 10−4 10−2 100

100
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10−10
10−10 10−8 10−6 10−4 10−2 100

dλ1
dλ2

Figure 1: Relative errors for the first model corresponding to Gaussian noise.
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Figure 2: Relative error average, after 100 runs, for the first model corresponding to Gaussian noise.
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db

dC1

dC2

δ
0.1
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100
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Figure 3: Relative errors for the first model corresponding to Rice noise.
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Figure 4: Relative error average, after 100 runs, for the first model corresponding to Rice noise.
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db
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Figure 5: Relative errors for the second model corresponding to Rice noise.
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Figure 6: Relative error average, after 100 runs, for the second model corresponding to Rice noise.
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db
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Figure 7: Relative errors for the third model corresponding to Rice noise.
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Figure 8: Relative error average, after 100 runs, for the third model corresponding to Rice noise.
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Table 1: Condition numbers.

ηG ηD η̂B

Example 1 16.88724660783 2.22604845378 53.04339947209
Example 2 130.20508573840 1.54342570227 397.12140292138
Example 3 184.8409648621 4.7771637988 269.0372904019

The results are shown in Figures 7 and 8. Again, there is a deterioration, with respect to the
first example, which is caused by the addition of one term to the exponential model.

Now we present Table 1 with the computed condition numbers for the different
relevant matrices for each one of the three examples.

6. Conclusions

In this work we have developed a stability analysis for the alternative formulation of the
Prony method presented by Martı́n-Landrove et al. [1, 2]. The analysis shows the linear
dependence between the perturbation of the data and the relative errors in the computed
values for the model linear and nonlinear parameters. It is also shown that the errors in the
linear parameters depend upon both the number and the closeness of the nonlinear para-
meters.
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