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The pth mean practical stability problem is studied for a general class of Ito-type stochastic
differential equations over both finite and infinite time horizons. Instead of the comparison
principle, a function 7(t) which is nonnegative, nondecreasing, and differentiable is cooperated
with the Lyapunov-like functions to analyze the practical stability. By using this technique, the
difficulty in finding an auxiliary deterministic stable system is avoided. Then, some sufficient
conditions are established that guarantee the pth moment practical stability of the considered
equations. Moreover, the practical stability is compared with traditional Lyapunov stability; some
differences between them are given. Finally, the results derived in this paper are demonstrated by
an illustrative example.

1. Introduction

Lyapunov stability is one of the most important conceptions of stability and has been widely
applied to many fields involving nearly all aspects of reality. As we all know, however, the
Lyapunov stability is usually employed to study the steady-state property over an infinite
horizon and cannot cope with the transient behavior of the trajectory. Therefore, even a
stable system in the sense of Lyapunov cannot be applied in the practice since the trajectory
exhibits undesirable transient behaviors such as exceeding certain boundary imposed on
the trajectory. Moreover, for a Lyapunov stable system, the domain of the desired attractor
may be too small to control the initial perturbation in it, which also limits the uses of the
Lyapunov stability. On the other hand, for an unstable system in the sense of Lyapunov, it
is often the case that its trajectory oscillates sufficiently near by the desired state, which is
absolutely acceptable in the practical engineering. As such, we are more interested in the
transient behavior over a finite or infinite horizon rather than the steady-state property over
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an infinite horizon. For this purpose, a new notion of stability, that is, the practical stability
has first been proposed in [1], where it has been shown that the Lyapunov stability may not
assure the practical stability and vice versa. Subsequently, the theory on the practical stability
has been developed in [2—4].

Up to now, the practical stability problem has been well investigated for deterministic
differential equations and many desirable results have been achieved. For example, in [5], a
concept of finite time stability, as one special case of practical stability proposed in [6], has
been introduced to examine the behavior of systems contained within prespecified bounds
during a fixed time interval. The practical stability with respect to a set rather than the
particular state x = 0 has been extended. In [7, 8], some results on the practical stability
have been obtained for discontinuous systems and some differences between the practical
stability and the Lyapunov stability have been given. In [9], by using the method of Lyapunov
function and Dini derivative, some sufficient conditions have been derived for various types
of practical stability. In [10], a new definition of generalized practical stability is introduced.
By making use of Lyapunov-like functions, some sufficient conditions are established.

With respect to the stochastic differential systems, we just mention the following repre-
sentative works. The practical stability in the pth mean has been proposed for discontinuous
systems in [11]. In [12], by using the Lyapunov-like functions and the comparison principle,
a unified approach is developed to deal with the problems of both the pth mean Lyapunov
stability and the pth mean practical stability for the delayed stochastic systems. In [13], some
criteria of practical stability in probability have been established in terms of deterministic
auxiliary systems with initial conditions. The results obtained in [11, 13] have been further
extended to a class of large-scale Ito-type stochastic systems in [14], where the initial
conditions of the resulting auxiliary systems are random. In all papers mentioned above, the
practical stability of the stochastic systems is determined through testing one corresponding
auxiliary deterministic system, whereas, in [15], the sufficient conditions for practical stability
in the mean square for a class of stochastic dynamical systems are established by using an
integrable function and Lyapunov-like functions instead of the comparison principle.

In this paper, we are concerned with the problem of the practical stability in the pth
mean for a general class of Ito-type stochastic differential equations over both finite and
infinite time intervals. By using Lyapunov-like functions and a nonnegative, nondecreasing,
and differentiable function #(t), some criteria are established to ensure the pth mean practical
stability for the considered stochastic system. This technique avoids the difficulty in finding
an auxiliary deterministic stable system. Moreover, the practical stability is compared with
traditional Lyapunov stability and some differences between them are presented. Finally, an
illustrative example is provided to demonstrate the results derived in this paper.

Notation. R* denotes the n-dimensional Euclidean space. Ty denotes the interval [ty,T),
where t),T € R, (in this paper, T can be finite or infinite). M{[to, T) represents the family
of nonnegative, nondecreasing, and differentiable functions on [fo,T). C'"*(Ty x R",R,)
represents the family of all real-valued functions V (¢, x(t)) defined on Ty x R" which are
continuously twice differentiable in x(t) € R"” and once differentiable in t € R.. Let (€, ¥, P)
be a complete probability space. For a random variable ¢, E||¢|[P means the pth mean of ¢. The
followings are the other notions in this paper:

So(t) = {x(t) € R" : E[lx(B)[” < A},

S(t) = {x(t) e R" : E|lx(t)|P < A},
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V(t) = sup(EV (¢, x(t)) : x(t) € So()},

VS(t) = inf(EV (£, x(t)) : x() € dS(t)},
(1.1)

where A, A (A < A) are given.

2. Preliminaries and Definitions

Consider the stochastic system described by the following n-dimensional stochastic dif-
ferential equation:

dx(t) = f(t, x()dt + g(t, x(£))dB(t) on te T, o
x(to) = xo, .

where dx(t) is the stochastic increment in the sense of Itd6 and B(t) is an m-dimensional
Brownian motion. f(t, x(t)) and g(t, x(t)) are n x 1 and n x m matrix functions, respectively.
And x(tg) = xo is the initial value. Then, we let x(t) = x(t;ty, x9) be any solution process of

(2.1) with the initial value x(ty) = x¢. Furthermore, we assume that (2.1) satisfies the theorem
of the existence and uniqueness of solutions [16] as follows.

(i) (Lipschitz condition) for all x(t), y(t) € R", and t € Ty,
If & x®) - fLyO)V gt xt) - gL yO) | < Kllx®) -y @2
(ii) (Linear growth condition) for all x(¢), y(t) € R", and t € T,

1 x @V g x®) < K* (1+ Ix®)IF), (2.3)

where K and K* are two positive constants.
Note that Sy(t) and S(t) satisfy the conditions

So(t) C S(t),  8So(t) NOS(t) = 0. (2.4)

By using Ito formula, The derivative of the Lyapunov-like function V (t,x(t)) € C“*(Ty x
R", R.) with respect to t along the solution x(t) of (2.1) is given by

dV(t,x(t)) = LV (t, x(t))dt + Vi (t, x(t))g(t, x(t))dB(t), (2.5)
where

LVt x(8)) = Vilt, x(0) + Vet 2() £, 2(0) + s traceg7 (¢, 2(1) Ve (1, x(1)g 6, x(1))]
(2.6)

Now, we give the definitions on the practical stability in the pth mean for (2.1).
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Definition 2.1. System (2.1) is said to be practically stable in the pth mean (PSM) with respect
to (A, A), 0 < A < A; if there exist (A, A), then one has E||xy|| < A; one implies that

Ellx(tto, x)|F <A VteT,. 2.7)

Remark 2.2. In Definition 2.1, for Ty = [to,T), if the T is finite time, then the system (2.1) is
called finite time practically stable, which is one special case of practical stability.

Noticing the notations of Sy(f) and S(t) above, we can see that Sy(tp) is a subset
of the initial-state set when the initial time is f;, and S(t) is a subset of the state space
at time t. Therefore, it is easy to see that E||xo||’? < A; one implies that x(ty) € So(to),
El|[x(t;to, x0)|IP < A, and x(¢; to, x9) € int S(t). Thus, we give the following definition which is
equal to Definition 2.1.

Definition 2.3. System (2.1) is said to be PSM with respect to (1, A), 0 < A < A, if, for given
So(t), S(t) with Sp(t) C S(t) and 0Sy(t) N 0S(t) = @, one has x(ty) € So(tp) then it is implied
that

x(t; to, .XO) € intS(t) vVt e Ty. (28)

Remark 2.4. If the conditions of Definition 2.3 are satisfied, then the system (2.1) is also said
to be practically stable in the pth mean with respect to (So(fo), S(t)).

In Section 3, the criteria for practical stability in the pth mean will be established for
(2.1).

3. Practical Stability Criteria

In this section, the practical stability in the pth mean will be investigated in detail, and
some stability criteria will be derived for (2.1) by using a Lyapunov-like function and a
nonnegative, nondecreasing, and differentiable function 7(t).

Theorem 3.1. If the following conditions are met:

(1) So(t) C S(t) and 0So(t) NOS(t) =0 forall t € Ty,
(2) there exists a function V (t,x(t)) € CY*(Ty x R", R,), which is satisfying the following

conditions:
(a)
ELV(t,x(t)) <0 teT,, x(t) € S(t), (3.1)
(b)
V() < Va(t) VEET,, (3.2)

then (2.1) is PSM with respect to (A, A).
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Proof. For all xg € So(ty), let x(t) = x(t; ¢y, x0) be a solution of (2.1) with the initial value xy.
For contradiction, we assume that there exists a first time t; € Tj such that E||x(¢)||” < A for
to<t<t and E||x(t1)||?’ =A.

By the notations of VAS/}’ 1), V,E(t), and (2)-(b), we have

Val(to)< VS (1) < EV(t, x(1)). (3.3)

Noticing the V (¢, x(t)) and (2.5), (2.6), it can be obtained that

t ty

LV (s, x(s))ds + J‘ Vi(s,x(s))g (s, x(s))dB(s). (3.4)

to

V(t1, x(t)) = V(to, x(ty)) = f

to

By the assumption (2)-(a) and taking the expected value on the both sides of (3.4), we have

to

5]
E[V (11, x(1)) — V (to, x(t0))] = EU LV(s,x<s>)ds]

t (3.5)
= f ELV (s, x(s))ds
to
<0
because
t
E [ f vx<s,x(s))g(s,x<s>>d3<s>] ~0, (3.6)
to
then we have
V3(ty) < V(1) < EV(t, x(t)) < EV (to, x(to)) < VS0 (ko). (3.7)
This is a contradiction, so the proof is complete. O

Remark 3.2. In Theorem 3.1, if the Ty is a finite time interval, then (2.1) is practically stable
on finite time. Furthermore, it should be pointed out that the condition ELV (t,x(t)) < 0 is
necessary to guarantee the pth moment stability for (2.1) in the sense of Lyapunov. However,
it would be too strict for the pth mean practical stability of (2.1). In the following theorem,
this condition is replaced by

ELV(t,x(t)) < d"(t), (3.8)

where 7(t) € M[ty, T).
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Theorem 3.3. If the following conditions are met:

(1) So(t) € S(t) and 0So(t) NOS(t) = O for all t € T,
(2) there exists a function 1(t) € M{[to, T), which satisfies the following conditions:

(a)
ELV(t, x(1) < d’zi(tt) te Ty, x(t) € S(t), (3.9)

(b)
1(to) = V! (to), (3.10)

(c)
n) <VS(t) VEeT,, (3.11)

then (2.1) is PSM with respect to (A, A).

Proof. Let x(t) be a solution of (2.1) with the initial value xy € Sy(to). For contradiction, we
assume that the result is not true, which means that there exists a first time t; € Ty such that
Ellx(t)|I’ < Aforty <t <t and Ellx(t1)|” = A.

Noticing the notation of V,;(t), we have

VS(t)< EV(h, x(h)). (3.12)

By using (2.5), (2.6), it follows that

ty 131

LV (s, x(s))ds + J Vi(s,x(s))g (s, x(s))dB(s). (3.13)

to

Vb, x(t)) - V(to, x(t)) = f

to

Taking the expectation on the both sides of (3.13), considering

E[J‘t1 Vx(s,x(s))g(s,x(s))dB(s)] =0 (3.14)

to

and the assumption (2)-(a), we obtain

EV (t1,x(t1)) = EV (ty, x(tp)) + ft] ELV (s, x(s))ds

to

ty

< EV (ty, x(to)) +f dn(s)

to
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= EV (to, x(fo)) + 1(t1) = n(to)

= ﬂ(tl) - [VAS/? (t()) - EV(tOIX(tO))]

<n(t).
(3.15)

Then, it follows from (3.12) and (3.15) that
VrS(tl) < EV(ty, x(t)) <n(tr) (3.16)

which contradicts with the condition (2)-(c) of Theorem 3.3, and, hence, the proof is complete.
O

Remark 3.4. In Theorem 3.3, we mainly use the function 7(t) and the Lyapunov-like functions
but not the comparison principle in [11-14] to achieve the result, which avoids the difficulty
in finding an auxiliary deterministic stable system. Here, we assume that

ELV (¢, x(t)) < dz(tt) (3.17)

holds on x(t) € S(t). Next, the condition x(¢) € S(t) will be replaced by a weaker one, that is,
x(t) € S(£)/So(t).

Theorem 3.5. If the following conditions are met:

(1) So(t) € S(t) and 0So(t) NOS(t) = O for all t € Ty,
(2) there exists a function 1(t) € M[to, T), which satisfies the following conditions:

(a)
ELV(t,x(t)) < d’éﬁt) teT,, x(t) e %(tt)) (3.18)

(b)
n(h) = Vi (), x(b) € Solt), (3.19)

(c)
n) <VS(t) VEeT,, (3.20)

then (2.1) is PSM with respect to (A, A).

Proof. Let x(t) be a solution of (2.1) with the initial value xg € Sy(to). For contradiction, we
assume that there exists a first time t, € Ty such that E||x(¢)||F < A for typ < t < t; and
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E||x(t2)||? = A. Due to the continuity of E||x(t)||’ and the connectivity of S(t), So(t), there
exists such a time t; and E||x(t;)|[P = A holds for the last time before the time t,. So, we get
that X(t) € S(t)/S()(t) whent € [tl, tz].

Noticing the (2.5), (2.6), it can be obtained that, when t € [t1, f5],

fz tZ

LV (s, x(s))ds + f Vi (s, x(s))g (s, x(s))dB(s). (3.21)

f

V(tZIx(tZ)) - V(tl,X(tl)) = J‘

t

By virtue of

E[J‘t2 Vx(s,x(s))g(s,x(s))dB(s)] =0, (3.22)

51

we take the conditional expectation of (3.21) conditioning on the initial value x(fy) = xo; it
can be seen from condition (2)-(a) that

3]

t
E[V(t2, x(t2)) = V(t1, x(t1)) | x(to) = xo] = EU LV(s,x(s))ds | x(t) = xo]

= ftz ELV (s, x(s))ds
ty (323)

< ftz drn(s)

5]

=1n(t2) —n(t).
Taking the expectation on the both sides of (3.23) and using the assumption (2)-(b), we obtain

EV (ty, x(t2)) = EV (t1, x(t1)) +n(t2) — n(t1)
=1(t) - [1(t1) — EV(t1, x(t1))]

(3.24)
<n(t2) = [n(t) = Vip )]
=1(t2).
Then,
Va(B)< EV (b, x(12)) < n(h). (3.25)
Noticing the assumption (2)-(c), this is a contradiction, Then, the proof is complete. O

In the theorems above, some sufficient conditions that guarantee the pth mean
practical stability are derived for (2.1). It is worth mentioning that the establishment of the
practical stability criteria here avoids introducing other auxiliary stable systems, which make
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it convenient to determine whether an Ito-type stochastic differential system is the pth mean
practically stable. In Section 4, an example will be employed to demonstrate the obtained
results.

4. Example

In this section, one numerical example is given to demonstrate the result in Theorem 3.3. The
results obtained in Theorems 3.1 and 3.5 can be verified in the same way.

Example 4.1. Consider the one-dimensional stochastic differential equation as follow:

dx(t) = x(t) sin(t)dt + dB(t) on te€ [t,T), @)
4.1
x(to) = xo,

where B(t) is a one-dimensional Brownian motion.

Let K = K* = 1; it is obvious that (4.1) satisfies both the Lipschitz condition and
the Linear growth condition, so the existence and uniqueness of the solution x(t) of (4.1) is
guaranteed.

Now, we investigate the practical stability in the 1st mean for (4.1) with respectto A = 1
and A = 2. One assumes that the initial value x(t) satisfies the conditions E|x(tp)| < 1 and
E|x(t; to, x0)| < 2 for t € Tj. Then, we approximate the value of ty and T.

We define a Lyapunov-like function as

V(t, x(t) = [x(B)]. (4.2)

Due to the fact that V (¢, x(t)) is a positive-definite function, one can easily get V (¢, x(t)) > 0
when x(t) #0.
So, when x(t) #0, it is obvious that

, x>0,

Vi(t, x(t)) =0, Va(t, x(t)) = { Vax(t, x(t)) = 0. (4.3)
-1, x<0,

By using the It6 formula, we calculate the derivative of the Lyapunov-like function V (¢, x(t))
along the solution x(t) of (4.1), and noticing the (2.6), we have

LV (t,x(t)) = Vi(t, x(t)) + Vi (t, x(t)) f(t, x(t)) + %trace [gT(t,x(t))Vxx(t,x(t))g(t,x(t))]
=0+ x(t)sin(t) +0 (44)

< |x(B)].
Taking the expectation on both sides of (4.4), one obtains

E[LV(t,x(t))] < Elx(t)| < A=2, (4.5)
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1.2

1.1 ¢
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Figure 1: Illustration of the practical stability in the 1st mean.

so we define
n(t) = 2t. (4.6)

From (4.4)—(4.6), it can be easily verified that the condition (2)-(a) of Theorem 3.3 is satisfied.
Then, by the condition (2)-(b) of Theorem 3.3, we have

1(to) = Vii (to) = sup{Elx(to)]; x(to) € So(to)} = A =1 (4.7)

and hence, it can be obtained from (4.6) that

1
o = - (4.8)

On the other hand, from the condition (2)-(c) of Theorem 3.3, we have
n(t) < V() = inf(E|x(t)| : x(f) € 0S(t)} = A = 2. (4.9)
So, we have

t<1. (4.10)

Now, we have the fact that ) = 1/2 and T = 1. According to Theorem 3.3, (4.1) is practically
stable in the 1st mean with respectto A = 1and A =2 ont € [1/2,1). In the simulation, we
take 50 initial values satisfying E|x(1/2)| < 1. For every initial value, the 1st mean orbit and
the maximum of E|x(t)| for t € [1/2,1) are computed numerically. The simulation result is
depicted in Figure 1.
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5. Conclusion

This paper mainly establishes the sufficient conditions of practical stability in the pth mean
for the Ito-type stochastic differential equation over finite or infinite time interval. By using
Lyapunov-like functions and a nonnegative, nondecreasing, and differentiable function #(t)
instead of the comparison principle, the difficulty in finding an auxiliary deterministic stable
system is avoided. Moreover, this paper indicates that the practical stability can be examined
over finite or infinite time interval and it can be used to depict the transient behavior of the
trajectory.

For further studies, we can extend practical stability in the pth mean to uniformly
practical stability and strict practical stability in the pth mean by the same methods in this
paper. And, we can also consider other techniques to establish the sufficient conditions for
the practical stability in probability and the almost sure practical stability instead of the
comparison principle. Other future research topics include the investigation on the filtering
and control problems for uncertain nonlinear stochastic systems; see, for example, [17-26].
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