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An analysis is carried out for axisymmetric stagnation flow of a micropolar nanofluid in a moving
cylinder with finite radius. The coupled nonlinear partial differential equations of the problem
are simplified with the help of similarity transformations and the resulting coupled nonlinear
differential equations are solved analytically by homotopy analysis method (HAM). The features
of the flow phenomena, inertia, heat transfer, and nanoparticles are analyzed and discussed.

1. Introduction

During the past years, the study of stagnation flows has become more and more important
because of their applications in engineering and technology. Hiemenz [1] first discussed the
steady flow of a Newtonian fluid impinging orthogonally on an infinite flat plate. Later on,
a large number of papers have been done on orthogonal, nonorthogonal, and axisymmetric
stagnation flows. Some important studies on the topic include references [2–10].

A large amount of literature is available on the viscous theory. However, only a limited
attention has been given to the study of non-Newtonian fluids. There are two major reasons
responsible for this. The main reason is that the additional nonlinear terms arising in the
equation of motion rendering the problem more difficult to solve [11]. The second reason
is that a universal non-Newtonian constitutive relation that can be used for all fluids and
flows are not available. The study of non-Newtonian fluids has many applications in various
industries, such as nuclear paints, physiology, biomechanics, chemical engineering, and
technology. There are many non-Newtonian fluid models. However, Eringen [12] proposed
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the theory ofmicropolar fluid that is capable to describe practical fluids by taking into account
the effects arising from local structure and micromotion of the fluid elements. The study has
attracted many researchers to investigate the non-Newtonian fluids with various aspects.

Recently, the study of convective transport of nanofluids has gained considerable im-
portance due to its applications. According to Khan and Pop [13] most of the conventional
transfer fluids like oil, water, and ethylene glycol are poor heat transfluids because the
thermal conductivity of these fluids plays an important role on the heat transfer coefficient be-
tween the heat transfer medium and heat transfer surface. The importance of these nanofluids
has been discussed by Choi [14]. Kuznetsov and Nield [15] have studied the thermal insta-
bility in a porous medium layer saturated by nanofluids.

Keeping the above importance in mind, the aim of the present work is to discuss the
axisymmetric stagnation flow of a micropolar nanofluid flow in a moving cylinder. To the
best of the authors’ knowledge, no attempt has been made in this direction. The governing
equations of the micropolar fluid along with heat transfer and nanoparticle equation are sim-
plified by applying suitable similarity transformations and then the reduced highly
nonlinear-coupled equations are solved analytically with the help of homotopy analysis
method. The convergence of the HAM solution and the physical behavior of pertinent para-
meters of the problem are discussed through graphs.

2. Formulation

Let us consider an incompressible flow of a micropolar nanofluid between two cylinders such
that the flow is axisymmetric about z-axis. The inner cylinder is of radius R rotating with
angular velocity Ω and moving with velocity W in the axial z-direction. The inner cylinder
is enclosed by an outer cylinder of radius bR. Further, the fluid is injected radially with
velocity U from the outer cylinder towards the inner cylinder. The geometry of the problem
is shown in Figure 1. The governing equations of motion and microinertia in the presence of
nanoparticles and the heat transfer are

rwz + (ru)r = 0, (2.1)
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where (2.1) is the continuity equation, (2.2)–(2.4) are the r, θ and z components of
momentum equation, (2.4)–(2.6) are the angular momentum, temperature, and nanoparticle
concentration equations. Note that neglecting microrotation and nanoparticle concentration,
the remaining system would be that solved by Hong and Wang [16]. In the above equations
(u, v,w) are the velocity components along the (r, θ, z) axes, N∗ is the angular microrotation
momentum, μ is the dynamic viscosity, k∗ is the vertex viscosity, j is the microrotation
density, γ is the micropolar constant, ρ is density, cp is the specific heat at constant pressure,
v is the kinematic viscosity, σ is temperature, k is the thermal conductivity, φ is the
nanoparticle volume fraction, ρ∗ is the nanoparticle mass density, c∗p is the effective heat of
the nanoparticle material, DB is the Brownian diffusion coefficient, DT is the thermophretic
diffusion coefficient, and p is pressure.

Let us define the following similarity transformations and nondimension variables as
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With the help of these above transformations, (2.1) is identically satisfied and (2.2) to (2.6)
take the following forms:
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(2.9)

where Re = UR/2ν is the cross-flow Reynolds number, Pr = v/α is the Prandtl number, Λ =
γ/μj is themicropolar coefficient, δ = R2/j andK = k∗/μ are themicropolar parameters, Le =
α/DB is the Lewis number, Nb = ρ∗c∗pDB(φb − φ1)/ρcpα is the Brownian motion parameter,
and Nt = ρ∗c∗pDT (σb − σ1)/ρcpασ1 is the thermophoresis parameter.
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Figure 1: The inner cylinder is rotating with angular velocity Ω and move axially with velocity W . The
outer cylinder is fixed with fluid injected towards the inner cylinder.

The boundary conditions in nondimensional form are

f(1) = 0, f ′(1) = 0, f(b) =
√
b, f ′(b) = 0,

g(1) = 1, g(b) = 0, h(1) = 1, h(b) = 0,

M(1) = −2nf ′′(1), M(b) = 0, N(1) = −2ng ′(1), N(b) = 0,

θ(1) = 0, θ(b) = 1, Ψ(1) = 0, Ψ(b) = 1.

(2.10)

3. Solution of the Problem

The solution of the above boundary value problem is obtained with the help of HAM. For
HAM solution we choose the initial guesses as [17–23]
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The corresponding auxiliary linear operators are
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where ci (i = 1, . . . , 16) are arbitrary constants. The zeroth-order deformation equations are
defined as
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4f̂ ĥ′ +

2f̂ ĥ
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The boundary conditions for the zeroth-order system are
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ĝ
(
1; q

)
= 1, ĝ
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Themth-order deformation equations can be obtained by differentiating the zeroth-order de-
formation equations (3.4) and the boundary conditions (3.6), m-times with respect to q, then
dividing bym!, and finally setting q = 0, we get
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With the help of MATHEMATICA, the solutions of (2.9) subject to the boundary conditions
(2.10) can be written as
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Figure 15: Influence of K over Ψ for n = 0.
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(
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)]
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(
η
)
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(
η
)]
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(3.9)



Mathematical Problems in Engineering 15

where

fm
(
η
)
= f∗

m

(
η
)
+ C1 + C2η + C3η

2 + C4η
3,

gm
(
η
)
= g∗

m

(
η
)
+ C5 + C6η, hm

(
η
)
= h∗

m

(
η
)
+ C7 + C8η,

Mm

(
η
)
= M∗

m

(
η
)
+ C9 + C10η, Nm

(
η
)
= N∗

m

(
η
)
+ C11 + C12η,

θm
(
η
)
= θ∗

m

(
η
)
+ C13 + C14η, Ψm

(
η
)
= Ψ∗

m

(
η
)
+ C15 + C16η.

(3.10)

In which f∗
m(η), g

∗
m(η), h

∗
m(η),M

∗
m(η),N

∗
m(η), θ

∗
m(η), andΨ∗

m(η) are the special solutions, and
the solutions can be written as

fm
(
η
)
=

∞∑
n=1

amnη
4n+3 , gm

(
η
)
=

∞∑
n=1

bmnη
4n+1 , (3.11)

hm

(
η
)
=

∞∑
n=1

cmnη
4n+1 , (3.12)

Mm

(
η
)
=

∞∑
n=1

dmnη
(11n+1)/2 , Nm

(
η
)
=

∞∑
n=1

emnη
(11n+1)/2 , (3.13)

θm
(
η
)
=

∞∑
n=1

rmnη
4n+1 , Ψm

(
η
)
=

∞∑
n=1

smnη
4n+1 . (3.14)

4. Results and Discussion

The governing nonlinear partial differential equations of the axisymmetric stagnation flow of
micropolar nanofluid in a moving cylinder are simplified by using similarity transformation
and then the reduced highly nonlinear-coupled differential equations are solved analytically
by the help of homotopy analysis method. The velocity field for different values of Re, andK
are plotted in Figures 2 to 5. It is observed that f increases with the increase in the parameters
Re, and K as (see Figures 2 and 3). The values of g for different values of Re are shown in
Figure 4. It is observed that the nondimensional velocity g decreases with an increase in Re.
The nondimensional velocity h for different values of Re is plotted in Figure 5. It is depicted
that the velocity field decreases with the increase in Re. The variation of microrotation
functionsM andN for different values of Re andK are plotted in Figures 6 to 9. It is observed
that for increase in both of these parameters M increases (see Figures 6 and 7). The change
inN is similar toM (see Figures 8 and 9). The variation of temperature θ for different values
of Pr, K,Nb, andNt are shown in Figures 10, 11, 12, and 13. It is observed from these figures
that with an increase in these parameters, the temperature field increases. The variation of the
nanoparticle concentration Ψ for different values of Pr, K, Nt, and Le are shown in Figures
14, 15, 16 and 17. It is observed from these figures that with an increase in all the above-
mentioned parameters the concentration increases. Physically, it means that the effect of the
Prandtl number, micropolar parameter, thermophoresis parameter, and the Lewis number
is to increase the nanoparticle concentration. It may be noted that the temperature and
concentration functions are plotted for the case of strong concentration, that is, when n = 0.
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Figure 17: Influence of Le over Ψ for n = 0.

5. Conclusion

The effects of various physical parameters on the velocity, temperature, and nondimensional
nanoparticle parameter are summarized as the following.

(1) With the increase in Reynold’s number Re the velocity f , microrotation velocities
M and N, temperature θ, and nanoparticle concentration Ψ increase, while the
velocity profiles for g and h decrease.

(2) With the increase in micropolar parameter K, the profiles f , g, h, M, N, θ, and Ψ
all have shown increasing behavior.
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(3) With the increase in Prandtl number Pr, the temperature profile θ and nanoparticle
concentration Ψ increase.

(4) With the increase in Brownian motion parameterNb, the temperature profile θ and
nanoparticle concentration Ψ increase.

(5) With the increase in thermophoresis parameter Nt, the temperature profile θ and
nanoparticle concentration Ψ increase.

(6) With the increase in Lewis number Le, the nanoparticle concentration Ψ increases.
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