
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 310328, 17 pages
doi:10.1155/2012/310328

Research Article
FACC: A Novel Finite Automaton Based on
Cloud Computing for the Multiple Longest
Common Subsequences Search

Yanni Li,1, 2 Yuping Wang,1 and Liang Bao2

1 School of Computer Science and Technology, Xidian University, Xi’an 710071, China
2 School of Software, Xidian University, Xi’an 710071, China

Correspondence should be addressed to Yanni Li, yannili@mail.xidian.edu.cn

Received 14 April 2012; Accepted 30 August 2012

Academic Editor: Hailin Liu

Copyright q 2012 Yanni Li et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Searching for the multiple longest common subsequences (MLCS) has significant applications
in the areas of bioinformatics, information processing, and data mining, and so forth, Although
a few parallel MLCS algorithms have been proposed, the efficiency and effectiveness of the
algorithms are not satisfactory with the increasing complexity and size of biologic data. To
overcome the shortcomings of the existing MLCS algorithms, and considering that MapReduce
parallel framework of cloud computing being a promising technology for cost-effective high
performance parallel computing, a novel finite automaton (FA) based on cloud computing called
FACC is proposed under MapReduce parallel framework, so as to exploit a more efficient and
effective general parallel MLCS algorithm. FACC adopts the ideas of matched pairs and finite
automaton by preprocessing sequences, constructing successor tables, and common subsequences
finite automaton to search for MLCS. Simulation experiments on a set of benchmarks from both
real DNA and amino acid sequences have been conducted and the results show that the proposed
FACC algorithm outperforms the current leading parallel MLCS algorithm FAST-MLCS.

1. Introduction

Searching for MLCS is a classic dynamic programming problem. Let Σ be a set of the finite
or infinite alphabet, and X = x1, x2, . . . , xm be a finite sequence of symbols drawn from Σ,
that is, xi ∈ Σ, i = 1 ∼ m. A sequence Z = z1, z2, . . . , zk is called a subsequence of X if it
satisfies zj = xij , j = 1 ∼ k and 1 ≤ i1 < i2 < · · · < ik ≤ m, that is, Z = xi1 , xi2 , . . . , xik . For two
given sequences X and Y , Z is called a common subsequence (CS) of X and Y if and only if
Z is simultaneously a subsequence of both X and Y . When no other common subsequence
is longer than Z, Z is named the longest common subsequence (LCS) of X and Y . Similarly,

2 Mathematical Problems in Engineering

given a set of sequences {S1, S2, . . . , Sk} drawn from Σ, a subsequence is called their multiple
longest common subsequence (MLCS) if it is a subsequence for all of them (this subsequence
is called a common subsequence), and no other common subsequence is longer than it.

Searching for the MLCS is significant for a number of applications in the areas of
bioinformatics, information processing, data mining, and pattern recognition [1] and so
forth. In the above-mentioned application areas, information can be usually represented as
a sequence over a finite or infinite alphabet. For instance, a protein can be expressed as a
sequence of twenty different symbols (amino acid) in biology, and a DNA sequence can be
described as a sequence of four symbols A, C, G, and T [2]. A program source code can be
represented as a sequence over alphabets, that is, ASCII or Unicode. In a specific domain,
similarly, web information can be regarded as a word sequence of the domain-ontology. We
can explore and discover valuable information by making a comparison and analysis of the
sequences. For example, in the biological field, sequence comparison has been successfully
used to establish a link between cancer-causing genes and normal genes. By finding the
similarity between gene sequences, we can obtain valuable information on genetic diseases
[3–5], too. In web information search and data mining, by determining the MLCS of word
sequences of the domain-ontology, we can not only increase the accuracy rate of information
retrieval, but also mine considerably valuable information. In the programming analysis, by
discovering the MLCS among program source codes, we can acquire their redundancy and
similarity and eliminate the redundancy or detect clone codes.

Searching for the LCS of two or more given sequences is a classic NP-hard problem
[6]. Wagner and Fischer [7] first introduced a classic dynamic programming algorithm (DP)
for solving the LCS problem of two sequences, and both its time and space complexity are
O(mn), wherem and n are the lengths of the two sequences, respectively (the same notations
are used in what follows). However, its main drawbacks are as follows: it has a higher time
and space complexity, and it can only find the LCS of two relatively short sequences, but
can hardly deal efficiently with the LCS problem of the two longer sequences. Hirschberg [8]
presented a new LCS algorithm based on the idea of the “divide and conquer” approach,
which reduces space complexity to O(m + n) and gives a better solution to the problem
of the longer sequences. Using a decision tree model, Ullman et al. [9] (1976) devised a
better LCS algorithm with lower boundO(mn) of the time complexity. Based on the effective
detection of all the major matched points between compared sequences, Hunt and Szymansi
[10] designed a new LCS algorithm with the time complexity of O(n log log n), where n
is the maximum length of the compared sequences. The algorithm was later simplified by
Bespamyatnikh and Segal [11]. Masek and Paterson [12] put forward an improved dynamic
programming algorithm by using a fast algorithm to compute the sequence editing distance,
which reduces the time complexity to O(n2/ logn).

To further improve the time complexity of LCS algorithms, researchers have begun
to study the parallel LCS algorithm. Based on a CREW-PRAM model, Aggarwal and Park
[13] and Apostolico et al. [14] proposed parallel LCS algorithms with the time complexity
of O(logm logn) by using mn/ logm processors, respectively. Freschi and Bogliolo [15] pre-
sented another new parallel LCS algorithm by using some packed arrays andm+n processors
based on the run-length-encoded (RLE) string. The time complexity of the algorithm is
O(m′n + mn′ − m′n′), where m′ and n′ are the numbers of runs in their RLE representation,
respectively. Liu and Chen [16] presented a specific parallel MLCS algorithm over alphabet
{A, C, G, T}, FAST-LCS, based on proposed pruning rules which is more efficient than the
previous works. The space and time complexity of the algorithm are max {4∗ (n+1)+4∗ (m+
1), L} andO(|LCS(X,Y)|), respectively, where L is the number of identical character pairs and

Mathematical Problems in Engineering 3

|LCS(X,Y)| is the length of the LCS of X and Y . Wang et al. [17–19] developed the efficient
MLCS algorithms parMLCS and Quick-DP, respectively, based on dominant points approach,
which have reached a near-liner speedup for large number of sequences. It is worth mention-
ing that Yang et al. [20], as a new attempt, develop an efficient parallel algorithm on GPUs for
the LCS problem. But regretfully, the algorithm is not suitable for the general MLCS problem.

To meet the needs of practical applications, some researchers have also studied some
variations of the LCS problems, such as the longest common increasing subsequence (LCIS)
problems, the longest increasing subsequence (LIS) problems, and the common increasing
subsequence (CIS) problems, and so forth. Fredman [21] proposed an algorithm for LIS
problems. The optimal time complexity of the algorithm is O(n logn) when the average
length of sequences equals n. By combining LCS with LIS, Yang et al. [22] defined a common
increasing subsequence (CIS) and designed a dynamic programming algorithm for two
sequences CIS problems. The space complexity of the algorithm is O(mn). Brodal et al. [23]
present an algorithm for finding a LCIS of two or more input sequences. For two sequences
of lengthsm and n, wherem ≥ n, the time complexity and space complexity of the algorithm
are O((m + nl) log logσ + Sort) and O(m), respectively, where l is the length of an LCIS, σ is
the size of the alphabet, and Sortis the time to sort each input sequence.

Nevertheless, the aforementioned algorithms have the following disadvantages: (1)
most of them are inapplicable to the problems with more than two sequences (especially
a considerable number of sequences, a large alphabet, and a long average length of the
sequences); (2) the efficiency and effectiveness of a few parallel algorithms remain to be
improved; (3) the parallel implementations of the algorithms are of a certain difficulty due
to their complicated concurrency, synchronization, and mutual exclusion, that is, none of the
existing algorithms employed simple and cost-effective high performance parallel computing
framework such asMapReduce for implementing their algorithms; (4)most of the algorithms
did not provide an abstract and formal description to reveal the inherent properties of the
MLCS problem. To overcome these shortcomings, a novel finite automaton based on cloud
computing for the MLCS problem was proposed in this paper. The main contributions of this
paper are as follows.

(1) All common subsequences (CS) of the n sequences are abstracted as the language
over their common alphabet Σ, that is, every CS of n sequences is a sequence over
the Σ.

(2) Based on the ideas of the matched pair and finite automaton, a novel finite auto-
maton which can recognize/accept all of the CSs of n sequences is presented.

(3) A formal definition of the finite automaton was introduced, and its properties were
verified.

(4) A novel parallel algorithm FACC was proposed. FACC is by abstracting the MLCS
problem as one of searching for the longest path on the finite automaton, and
was implemented based on the new parallel framework MapReduce of cloud com-
puting and a variety of optimization techniques.

(5) A quantitative analysis of the time and space complexity of the FACC was con-
ducted.

(6) The algorithm FACC was validated on the DNA and amino acid sample sequences
from ncbi and dip databases. Then, the comparison of the time performance
between FACC and the leading algorithm: FAST-LCS [16] was made. The experi-
mental results show that the proposed FACC outperforms FAST-LCS.

4 Mathematical Problems in Engineering

Table 1: Notations and their meanings.

Notations Meaning

Σ The common alphabet of N sequences
Σi The set of alphabets in the ith sequence
Sk (k = 1, 2, . . . , d) The kth sequence, with d being the number of sequences drawn from Σ
T A set of sequences drawn from Σ
P = [p1, p2, . . . , pd] A matched pair
Q = {Q0, Q1, . . . , Qn} The set of the FA states
δ The FA’s transition function
Q0 = (0, 0, . . . , 0) The FA’s initial state
F The set of the FA’s final states
Atm The FA recognizing/accepting all of the CSs of sequences from T

Σ∗ Kleene closure of Σ, Σ∗ = {x | x is a sequence from Σwith the length of zero or
nonzero}

L(Atm) A language recognized/accepted by the Atm

The rest of this paper is organized as follows. Section 2 introduces some notations and
concepts in this paper for convenience discussion. Section 3 presents the finite automaton
Atm for recognizing common subsequence and its basic properties. Section 4 proposes a
new algorithm called finite automaton based on cloud computing (FACC) and describes its
implementation in detail. Section 5 explains the analysis of the time and space complexity of
FACC. The experiments are made and the analysis results are explained in Section 6. Finally,
Section 7 concludes the research.

2. Notations and Basic Concepts

For convenience, the following notations are adopted in Table 1.
Note that a sequence over some alphabet is a finite sequence of symbols drawn from

that alphabet. According to the formal language and automaton theory, we can view the
common subsequences of all sequences on set T as a language L of the common alpha-
bet Σ, and then regard the MLCS of the over sequences as the one or several longest stat-
ements of the language L. Based on this idea, a novel finite automaton Atm which can recog-
nize/accept the L is designed, and the Atm for MLCS was constructed quickly based on a
new constructing-searching algorithm and the MapReduce parallel framework of cloud com-
puting proposed in this paper, meanwhile the MLCS can be easily achieved.

For easy understanding, some basic concepts in the following are introduced, and the
properties of the Atm are discussed.

Definition 2.1. Suppose Sk ∈ T is a sequence over Σ for k = 1 ∼ d. Let Sk[pk] ∈ Σ denotes
the pkth (pk = 1, 2, . . . , |Sk|) character in sequence Sk. For the sequences S1, S2, . . . , Sd from T ,
vector p = [p1, p2, . . . , pd] is called a matched pair of the sequences, if and only if S1[p1] =
S2[p2] = · · · = Si[pi] = · · · = Sd[pd] = ch (i = 1, 2, . . . , d, ch ∈ Σ), where ch is the character
corresponding to the matched pair p, denoted as ch(p).

Mathematical Problems in Engineering 5

For example, for two sequences S1 = abcfg and S2 = bacgf , one can get the following
matched pairs by Definition 2.1: [1,2], [3,3], [4,5], [2,1], and [5,4] with their corresponding
ch’s being a, c, f , b, and g, respectively.

Definition 2.2. For the sequences S1, S2, . . . , Sd from T , p = [p1, p2, . . . , pd] and q = [q1, q2, . . . ,
qd] are two matched pairs. one calls p = q if and only if pi = qi for i = 1, 2, . . . , d. If p /= q and
qi < pi for i = 1, 2, . . . , d, one calls p a successive matched pair of q, and denote it as q < p. If q < p
and there does not exist a matched pair r = [r1, r2, . . . , rd] for S1, S2, . . . , Sd such that q < r < p,
one calls p a direct successor matched pair of q, denoted as q → p.

Definition 2.3. For the sequences S1, S2, . . . , Sd, from T , let q = [q1, q2, . . . , qd] be a matched
pair. If there does not exist a matched pair p = [p1, p2, . . . , pd] (p /= q) such that p < q, one
terms q an initial matched pair. In general, there may be more than one initial matched pair
from T .

Taking above sequences S1 and S2 as an example, we can see that the matched pairs
[3,3], [4,5], and [5,4] are the successive matched pairs of matched pairs [1,2] and [2,1].
Moreover, the matched pair [3,3] is a direct successive matched pair of the matched pairs
[1,2] and [2,1], wherein [1,2] and [2,1] are two initial matched pairs in total for sequences S1

and S2.
Based on above the definitions, the following conclusion can be easily inferred.

Lemma 2.4. The total number of all possible initial matched pairs is less than or equal to |Σ| regardless
of |T |.

3. Finite Automaton Atm for Recognizing Common Subsequence and
Its Basic Properties

It can be seen from the above discussion that the characters in the MLCS from T must be
the characters corresponding to their matched pairs. In the following, based on some ideas
and concepts from finite automaton (Atm), we can see the matched pairs of T as states of the
Atm and construct the Atmwhich can recognize/accept all the CSs of T by defining a specific
transition function. The formal definition of the Atm is as follows.

Definition 3.1. The common subsequence finite automaton Atm is a 5-tuple, that is,

Atm = {Q,Σ, δ,Q0, F}, (3.1)

where Q—Q = {Q0, Q1, . . . , Qn} is a finite set of states of the Atm, where Qi is the state
corresponding to the ith matched pair of T for i = 0 ∼ n; Σ—the common alphabet of sequen-
ces set T ; δ—the transition function δ : Q × Σ → Q. For for all a ∈ Σ and Qi, one defines the
transition function δ as follows

δ(Qi, a) =

{
Qj, if Qi −→ Qj, ch

(
Qj

)
= a

φ, else.
(3.2)

Q0—Let Q0 = (0, 0, . . . , 0), the initial state of the Atm. F—The set of final states of the
Atm, that is, F = {Qi | if δ(Qi, a) = Φ ∀a ∈ Σ}.

6 Mathematical Problems in Engineering

It can be seen from Definition 3.1 that the Atm is a deterministic finite automaton
(DFA), but it is different from the normal DFA. The Atm can be partial, that is, every state
in the Atm can be initial or final state.

What follows are the formal definitions of L(Atm) andMLCS recognized/accepted by
the Atm.

Definition 3.2. For Atm = {Q,Σ, δ,Q0, F} defined by Definition 3.1, a character sequence x ∈∑∗ is called to be recognized/accepted by the Atm if and only if for δ(Qi, a) ∈ Q′, where,Qi ∈
Q, Q′ = Q − {Q0} = {Q1, Q2, . . . , Qn}. L(Atm) = {x | x ∈ ∑∗, δ(Qi, x) ∈ Q′} is called a langu-
age recognized/accepted by Atm.

Based on Definition 3.2, we can easily deduce the following conclusion.

Lemma 3.3. For Atm = {Q,Σ, δ,Q0, F}, if for all x ∈ Σ∗ and δ(Q0, x) ∈ F, then

MLCS = {x | x ∈ Σ∗, δ(Q0, x) ∈ F, |x| = max(|x|)}. (3.3)

That is, MLCS is the set of the longest sequences recognized/accepted by L(Atm).

With Definition 3.2, we can obtain the following properties.

Theorem 3.4. For all S ∈ MLCS, let β be the corresponding matched pair of the ith (i > 1) character
ci and α be the corresponding matched pair of the (i − 1)th character ci−1 in sequence S, then, β must
be the direct successive matched pair of α. Furthermore, the first character of S must belong to the
character of an initial matched pair.

Proof. We give the proof by reduction in the following.
For all S ∈ MLCS, assuming that β is not the direct successive matched pair of α,

there will be a matched pair γ (γ corresponds to character c) such that α < γ < β. So we can
insert c between ci−1 and ci to get a longer common subsequence, denoted as MLCS’, which
is contradiction to the fact that S is the longest common subsequence.

Then, let us consider the matched pair λwhich corresponds to the first character of the
S. If λ is not an initial matched pair, according to Definition 2.3, there must exist a matched
pair ω, and ω < λ. So we can get a longer MLCS’ by inserting the character corresponding
to ω into the header of the S which contradicts to the fact that S is the longest common sub-
sequence.

Theorem 3.5. The Atm is a directed acyclic graph (DAG).

Proof. The theorem will be proved by reduction.
Suppose that there was a series of states Qi, Qj , and Qk forming a cycle in Atm, that

is, state Qi is the successive state of state Qi, Qk is the successive state of Qj , and Qi is the
successive state of Qk. Due to the fact that matched pairs pi, pj , and pk correspond to the
states Qi, Qj , and Qk, we can get the results, pi < pj , pj < pk and pk < pi, which contradicts to
Definition 2.2. Therefore, Atm is a directed acyclic graph.

Theorem 3.6.
∑

a∈Σ
∏d

i=1|S′
i|a + 1 is an upper bound of the number of Atm’s states, where |S′

i|a
represents the occurrence number of a in sequence S′

i.

Mathematical Problems in Engineering 7

Split 0

Split 1

Split 2

Split 3

Split 4

Input
files

Worker

Worker

Worker
Worker

Worker

User
program

(1) Fork
(1) Fork

(1) Fork

(2)
Assign
reduce

(2)
Assign

map

Master

Output
files

Map
phase

Intermediate files

(on local disks)
Reduce
phase

Output
file 0

Output
file 1

(6) Write(5) Remote read

(4) Local write
(3) Read

Figure 1: The execution framework of MapReduce.

Proof. Because the number of times the character a appears in the sequence S′
i is less than or

equal to |S′
i|a,

∏d
i=1|S′

i|a is an upper bound for the number of the Atm’s states for the character
a. Thus,

∑
a∈Σ

∏d
i=1|S′

i|a is an upper bound for all elements in Σ. By considering the initial state
of the Atm, we get an upper bound

∑
a∈Σ

∏d
i=1|S′

i|a + 1 of the number of the Atm’s states.

4. FACC Algorithm Based on MapReduce Parallel Framework of
Cloud Computing

4.1. The Overview of the MapReduce Parallel Framework of
Cloud Computing

For the convenience, we first briefly overview the MapReduce parallel framework of cloud
computing.

Cloud computing is a new computing model [24], which is a development of dis-
tributed computing, parallel computing and grid computing. MapReduce is a parallel frame-
work of cloud computing and an associated implementation for processing and generating
large datasets. It is amenable to a broad variety of real-world tasks and has been widely
recognized as a cost-effective high performance parallel computing model. In the model,
based on “divide and conquer” technology, users only specify the computation in terms of a
map and a reduce function, and the underlying runtime system automatically parallelizes the
computation across large-scale clusters of machines, handles machine failures, and schedules
intermachine communication to make efficient use of the network and disks [25, 26]. Figure 1
shows the execution framework of MapReduce [26].

8 Mathematical Problems in Engineering

4.2. The Proposed Algorithm: FACC

In this subsection, before describing the details of the proposed FACC, we first give its frame-
work as follows.

(1) Preprocessing. Determine the common alphabet Σ of sequence set T , and preprocess
every sequence of T as follows. The redundant characters in each sequence are
filtered, that is, removing the characters which do not appear in at least one
sequence in T . This process will ensure a quick searching later for MLCS of T .

(2) Construction of successor tables. Based on the MapReduce parallel framework of
cloud computing, successor tables (see Section 4.2 Definition 4.1) for every prepro-
cessed sequence of T are parallel constructed. Since any character in the MLCS
should be a character corresponding to a matched pair, we can construct the suc-
cessor table for each sequence so that all possible matched pairs of T can be found
quickly.

(3) Construction of the finite automaton Atm for recognizing/accepting common subsequence.
Based on the MapReduce parallel framework, and using the matched pairs as the
states and adding an initial state to the Atm, we can construct the Atm which can
recognize/accept all the CS of sequences of the T according to transition function
of the Atm, wherein each state holding all of the states of its parent nodes during
the construction of the Atm.

(4) Traversal of the Atm and output all of the MLCS. Search for the MLCS by traversing
the Atm through the depth-first method.

In the following, the proposed FACC and its implementation based on MapReduce
will be described step by step in detail.

4.2.1. Preprocessing

Recall that the MLCS of T should be the sequences over their common alphabet Σ. The goal
of the preprocessing is to reduce the searching time by filtering the redundant characters in
each sequence which does not appear in Σ. After preprocessing, we will obtain the specific
sequences which only reserve the characters in Σ. Since preprocessing leads to some time
and space cost, the proposed FACC adopts this procedure only in the situations of the large
or unknown alphabet Σ.

The idea of the preprocessing is that a Key-Value table is designed (that is a data
structure Map), where the Key represents a character α and the Value is the total number
of the sequences containing character α. For N sequences, the Value corresponding to Key α
in the Map equals k if and only if k sequences contain the character α. Obviously, k ≤ N. In
this situation, we call the value of Key α is k. According to the definition of the value k of Key
α, we can see that all characters with value N consist of the alphabet Σ. Then, all sequences
are filtered in parallel using the MapReduce of cloud computing and only the characters in
Σ are reserved. The ith resulted sequence obtained from Si after the filter is denoted as S′

ifor
i = 1 ∼ N.

Algorithm 1 shows the pseudocode of the preprocessing algorithm.
For example, sequences S1 = abecadbca and S2 = acbafcgba, Σ1 = {a, b, c, d, e} and

Σ2 = {a, b, c, f, g} are the alphabets of these two sequences, respectively. After preprocessing

Mathematical Problems in Engineering 9

Algorithm Pre-processing (InitStringSet)
Input: InitStringSet: a initial string set.
Output: Σ :common alphabet over InitStringSet

StringSet: the result of pre-processed InitStringSet
(1) for each string Si in InitStringSet
(2) tempSet = ∅
(3) for each character Si[j] in Si

(4) if (Si[j] /∈ tempSet)
(5) tempSet = tempSet ∪ {Si[j]}
(6) if (Si[j] ∈ map)
(7) map (Si[j]) =map (Si[j]) + 1
(8) else
(9) map (Si[j]) = 1
(10) endfor
(11) endfor
(12) Σ = ∅
(13) for each character char[i] in map
(14) if (map(char[i]) == size (InitStringSet))
(15) Σ = Σ ∪ {char[i]}
(16) endfor
(17) StringSet = InitStringSet
(18) for each string Si in StringSet
(19) for each character Si[j] in Si

(20) if (Si[j] /∈ Σ)
(21) delete (Si[j])
(22) endfor
(23) endfor
(24) return Σ and StringSet

Algorithm 1: The pseudocode of the preprocessing algorithm.

to S1 and S2, we can get Σ = {a, b, c}, and S1 is converted into S′
1 = abcabca, and S2 is con-

verted into S′
2 = acbacba.

4.2.2. Successor Table

Let Tabk denote the successor table of the sequence Sk and its definition is as follows.

Definition 4.1. For a sequence Sk = x1, x2, x3, . . . , xn drawn from alphabet Σk = (σ1, σ2, . . . , σt),
the successor table Tabk of the sequence Sk is an irregular two-dimensional table, where the
element of ith row and jth column of the table Tabk is denoted as Tabk[i, j], which is defined
as follow.

Tabk
[
i, j

]
= min

{
p | xp = σi, p ≥ 1, p ≥ j, p < n, 1 ≤ i ≤ |Σk|, 1 ≤ j ≤ n

}
. (4.1)

The value of Tabk[i, j] indicates the minimal subscript position p of the sequence Sk =
x1, x2, x3, . . . , xn according to σi after position j when xp = σi.

For the two sequences S′
1 = abcabca and S′

2 = acbacba, Tables 2 and 3 show the suc-
cessor tables of them.

10 Mathematical Problems in Engineering

Table 2: Successor table Tab1 of S′
1.

a 1 4 4 4 7 7 7
b 2 2 5 5 5
c 3 3 3 6 6 6

Table 3: Successor table Tab2 of S′
2.

a 1 4 4 4 7 7 7
b 3 3 3 6 6 6
c 2 2 5 5 5

To construct successor tables for T , We dispatch |T | Map functions to construct
successor table for each sequence of T in parallel, and then employ a Reduce function to
aggregate the successor tables of the sequences of T .

Because the irregular successor tables only store the useful information and are
constructed in parallel, it can considerably reduce the time and space complexity of searching
for the MLCS.

With the constructed successor table, a direct successive matched pair of a matched
pair can be gotten quickly. Take Tab1 and Tab2 as examples. When searching for the successive
matched pairs of matched pair [i, j], all we need to do is searching for the matched pairs of
the [Tab1(i), Tab2(j)], (where Tab1(i) and Tab2(j) stand for all the elements of the ith and
jth columns in the Tab1 and Tab2, respectively), and then, removes all of the matched pairs
which are not direct successive matched pairs. For example, by checking Tab1 and Tab2 based
on Definition 4.1, we can get the following successive matched pairs [4, 4], [2, 3], and [3, 2]
of matched pair [1, 1]. Due to [2, 3] < [4, 4] and [3, 2] < [4, 4], we remove indirect successive
matched pair [4, 4], and finally, get the expected direct successive matched pairs [2, 3] and
[3, 2] of the matched pair [1, 1].

4.2.3. Constructing the Common Subsequence Atm of T

By the aforementioned Definition 3.1 and its properties of the Atm, we can build the common
subsequence Atm of the sequence set T in parallel by MapReduce. The algorithm Build-Atm
is shown in Algorithm 2.

With the algorithm shown in Algorithm 2, take two sequences S′
1 and S′

2 for example,
the main construction process of the Atm can be shown as follows (the process also applies
to multiple sequences of T). (1) Construct a virtual initial state (0,0) corresponding to the
matched pair [0,0] with character ε. (2) Determine all of the direct successive matched pairs
of the matched pair [0,0]. (3) Use the deep first search (DFS) method to construct the Atm.

Notice that each state in the Atm must remember all of the states of its parent nodes
during the construction of the Atm. For example, two sequences S′

1 and S′
2 illustrated in

Figure 2 have a direct successive matched pair [1,1] of the matched pair [0,0]. Because
matched pair [1,1] corresponds to character a, we can get a state transition δ((0, 0), a) = (1, 1).
By the algorithm shown in Algorithm 2. The final common subsequence Atm constructed in
the example of Figure 2 is shown in Figure 3, where the states (0,0) and (7,7) are the initial
and final states of the Atm of the sequences S′

1 and S′
2, respectively.

Mathematical Problems in Engineering 11

Algorithm Build-Atm(Pos, dsucSet)
Input: Q0: the initial state of the Atm (0, 0, . . . , 0)

tabSet: the set of successor tables for T drawn from Σ
Output: Atm: a Atm of T for MLCS
(1) Atm = NULL, Q = {Q0}
(2) Build-Atm(Q, tabSet)
(3) dispatch |Q|map functions in parallel do
(4) for each Qi ∈ Q, for ∀a ∈ Σ dispatch a Map function
(5) Qj = δ(Qi, a)
(6) if Qj /∈ Q and Qj /=Φ
(7) Q = Q ∪Qj

(8) end for
(9) reduce all the results of the Map functions
(10) reduce all the results of the Map functions
(11) Build-Atm(Q, tabSet)
(12) return Atm
(13) end

Algorithm 2: The pseudocode for constructing Atm in parallel by MapReduce.

a

a a

a

a

ab

b b

bc

c c

c

1 2 3 4 5 6 7

S1
′

S2
′

Figure 2: Sequences S′
1 and S′

2.

4.2.4. Traversing Atm and Finding the MCLS

By the finite automata theory and Definitions 3.1 and 3.2, we can get a character sequence,
corresponding to a path from Q0 to a state of the F of Atm, which is a candidate longest
common subsequence of T , named LCS′. Hence, all the longest character sequences of all
the candidate sequences are exactly the elements of MLCS from T . We first design a specific
set named resultSet to store the expected MLCS. Then, By the depth first search method,
the Atm is traversed from Q0 to every state of the F in parallel by MapReduce schemes.
Once we get a candidate LCS′, we make following operations: if resultSet is not empty and
all string length of elements in resultSet is longer than that of the LCS′, ignore the LCS′;
otherwise clear resultSet, and then insert LCS′ into the resultSet. Because resultSet is a set,
it can eliminate redundant elements automatically, hence, we can acquire the MLCS from
the resultSet eventually. In the example for the sequences S′

1 and S′
2 the all MLCSs are

{abcba, ababa, acaca, acbca, acaba, abaca}.

5. The Time and Space Complexity Analysis of FACC

5.1. Time Complexity

In what follows, we first give the time complexity of the FACC in every stage, and then the
total time complexity.

12 Mathematical Problems in Engineering

(2, 3)
(1, 1)

(3, 2)

(3, 5)

(4, 4)

(5, 3)

(4, 7)

(5, 6)

(6, 5)

(7, 7)
(0, 0) a

a

a

a

a

a

b

b

b

c

c

c
ε

Figure 3: The common subsequence Atm of the sequences S′
1 and S′

2.

Preprocessing

It is necessary to traverse every sequence of T once in order to find its common alphabet,
therefore the step is O(

∑d
i=1 |Si|) time, where |Si| is the length of a sequence Si and d is the

number of total sequences of T , that is, d = |T |. It is also necessary to traverse every sequence
of T to filter the characters not in Σ, which also requires O(

∑d
i=1 |Si|) time complexity.

Assuming all the sequences in T with the same length n and the number of Map functions is
d, the total time complexity is O(n) in the stage based on MapReduce schemes.

Constructing the Successor Table

To build successor tables for all of the sequences pre-processed, it is necessary to traverse
these sequences once again. It turns out that the same time complexity is required as the
above preprocessing stage based on MapReduce schemes.

Constructing Atm

According to Theorem 3.6, it is known that the upper bound for the number of the Atm’s
states is

∑
a∈Σ

∏d
i=1|S′

i|a + 1, where |S′
i|a stands for the number of times character a appears in

the sequence S′
i. Because the time complexity for constructing the Atm is proportional to the

number of the Atm’s states |Q|, the time complexity for constructing the Atm is O(|Q|) in this
stage based on MapReduce schemes.

Thus, the total time complexity of FACC is equal toO(n)+O(n)+O(|Q|) = max{O(n),
O(|Q|)}.

5.2. Space Complexity

Because the storage space of sequences and successor tables is static and proportional to
the size of T , the space complexity of their storage is O(

∑d
i=1 |Si|). For building the Atm, the

storage space is proportional to the number of states, hence the space complexity for building
the Atm is O(

∑
a∈Σ

∏d
i=1|S′

i|a). On the other hand, in recursively constructing the Atm, on the
average, the recursion depth is log(

∑
a∈Σ

∏d
i=1|S′

i|a), and then the space complexity required
temporary space is O(log(

∑
a∈Σ

∏d
i=1|S′

i|a)) for constructing and traversing the Atm. It hap-
pens that the space complexity of FACC is

O

(
d∑
i=1

|Si|
)

+O

(∑
a∈Σ

d∏
i=1

∣∣S′
i

∣∣
a

)
+O

(
log

(∑
a∈Σ

d∏
i=1

∣∣S′
i

∣∣
a

))
+O

(
log

(∑
a∈Σ

d∏
i=1

∣∣S′
i

∣∣
a

))

= O

(
d∑
i=1

|Si| +
∑
a∈Σ

d∏
i=1

∣∣S′
i

∣∣
a

)
.

(5.1)

Mathematical Problems in Engineering 13

Table 4: Performance comparison between FAST-LCS and FACC on 20 DNA sequences (|Σ| = 4) with
lengths from 25 to 180.

|Si| FAST-LCS algorithm FACC algorithm

AT (ms) |MLCS| NMLCS Precision AT (ms) |MLCS| NMLCS Precision
TPR

25 8 14 7 0.88 13 14 8 1.00 0.62
50 21 23 2 1.00 32 23 2 1.00 0.66
75 747 33 8 0.80 545 33 10 1.00 1.37
100 12952 42 2 1.00 6859 42 2 1.00 1.89
110 38341 50 4 1.00 19951 50 4 1.00 1.92
120 84738 54 9 1.00 39218 54 9 1.00 2.16
130 256214 59 48 0.98 81781 59 49 1.00 3.13
140 614583 64 46 0.96 164817 64 48 1.00 3.73
150 1188403 69 2 1.00 333625 69 2 1.00 3.56
160 2417387 76 4 1.00 650569 76 4 1.00 3.72
170 4828904 79 10 0.83 1268609 79 12 1.00 3.81
180 9811863 85 2 1.00 2473788 85 2 1.00 3.97

6. Experiments and Analysis of Experimental Results

6.1. Dataset and Experimental Results

In this paper, to test the time performance of FACC and FAST-LCS fairly, we run the two algo-
rithms on the same hardware platform. Using the DNA and amino acid sample sequences
dataset provided by ncbi [27] and dip [28], we tested the proposed algorithm FACC on
the Hadoop cluster with 4 worker nodes, each of which contains 2 Intel CPUs (2.67GHz)
X5550, 8GB of RAM, and 24GB of local disk allocated to HDFS. In the cluster each node was
running Hadoop version 0.20.0 on RedHat Enterprise Linux Server release 5.3 and connected
by 100M Ethernet to a commodity switch. The FAST-LCS algorithm was run on 4 × 2 Intel
CPUs (2.67 GHz) X5550, and 8GB of RAM, using the same datasets and operating system,
and the programming environment of the algorithms is JDK 1.7. The comparisons of the time
performance between FACC and FAST-LCS are shown in Tables 4 and 5 and Figures 4 and 5.

6.2. Discussion of Experimental Results

Tables 4 and 5 compares various performance indices of FAST-LCS and FACC on 20 DNA
sequences (|Σ| = 4) and 20 amino acid sequences (|Σ| = 20) with different lengths of input
sequences. It can be seen that various performance indices of FACC are superior to those of
FAST-LCS, wherein the precision of FACC reaches 100% (shown in column Precision, which is
the ratio of the number of foundMLCSsNMLCS to the total number of MLCSs, of Tables 4 and
5), while that of FAST-LCS reaches 95% due to its incorrect pruning operation 2. Moreover,
Tables 4 and 5 and Figures 4 and 5 show that the time performance of FACC considerably
outperforms that of FAST-LCS, and with the increasing lengths of input sequences, the
advantage of FACC is growing significantly over FAST-LCS.

Figure 6 shows the time performance of the proposed FACC with preprocessing and
without preprocessing. It can be seen from Figure 6 that the time performance for the
case with preprocessing is obviously superior to that without preprocessing, especially for

14 Mathematical Problems in Engineering

Table 5: Performance comparison between FAST-LCS and FACC on the 20 amino acid sequences (|Σ| = 20)
with lengths from 25 to 320.

|Si| FAST-LCS algorithm FACC algorithm

Time (ms) |MLCS| NMLCS Precision T (ms) |MLCS| NMLCS Precision
TPR

25 96 3 11 1.00 104 3 11 1.00 0.92
50 171 5 2 1.00 158 5 2 1.00 1.08
75 682 8 26 1.00 373 8 26 1.00 1.83
100 1177 14 1 1.00 601 14 1 1.00 1.96
120 2489 19 8 1.00 1210 19 8 1.00 2.06
140 4161 20 109 0.92 2006 20 119 1.00 2.07
160 14460 28 190 0.98 7192 28 194 1.00 2.01
180 32245 32 62 0.95 15807 32 65 1.00 2.04
200 69332 36 22 1.00 33803 36 22 1.00 2.05
220 140677 38 534 0.99 67889 38 539 1.00 2.07
240 269059 42 353 1.00 127409 42 353 1.00 2.11
260 497177 47 637 0.98 217605 47 650 1.00 2.28
280 1116905 49 8689 1.00 478707 49 8728 1.00 2.33
300 1617748 53 454 0.98 658212 53 462 1.00 2.46
320 2951500 60 201 0.96 1129275 60 210 1.00 2.61
Note: TPR indicates the ratio of the running time of FAST-LCS to that of FACC in Table 5.

20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8

9

10

The lengths of input sequences

T
im

e
(m

s)

FAST−LCS
FACC

×106

Figure 4: The time performance comparison between FACC and FAST-LCS on 20 DNA sequences (|Σ| = 4)
with lengths from 25 to 180.

the cases of a large set of alphabet and a long average length of sequences. Furthermore, the
more the number of input sequences, the more efficient the proposed FACC.

In summary, the time performance of the proposed algorithm FACC is much better
than that of FAST-LCS.

Mathematical Problems in Engineering 15

0 40 80 120 160 200 240 280 320
0

1

2

The lengths of input sequences

T
im

e
(m

s)

FAST−LCS
FACC

0.5

1.5

2.5

×106

Figure 5: The time performance comparison between FACC and FAST-LCS on 20 amino acid sequences
(|Σ| = 20) with lengths from 25 to 320.

70 80 90 100 110 120 130 140 150 160 170
0

1

2

The length of strings

T
im

e
(m

s)

Without preprocessing
With preprocessing

×104

2.5

0.5

1.5

Figure 6: Performance of FACC with/without preprocessing on 20 amino acid sequences (|Σ| = 20) with
lengths from 70 to 170.

7. Conclusions

Considering that the efficiency and effectiveness of the existing parallel algorithms for
searching for MLCS are not satisfactory with the increasing complexity and size of biologic
data and do not give an abstract and formal description of the MLCS problem and adopt
complicated parallel schemes, we propose a novel finite automaton based on MapReduce

16 Mathematical Problems in Engineering

parallel framework of cloud computing called FACC to overcome the existing algorithms’
shortcomings. The proposed algorithm is based onMapReduce parallel programming frame-
work of cloud computing, the matched pair, and finite automaton (FA) by using some effi-
cient techniques such as preprocessing, constructing the efficient successor table and common
subsequence Atm, and looking for MLCS, and so forth. The theoretical analysis to the pro-
posed algorithm shows that the time and space complexity are linear, that is, they are
max{O(n), O(|Q|)} and O(

∑d
i=1 |Si| +

∑
a∈Σ

∏d
i=1|S′

i|a), respectively, which are superior to the
leading parallel MLCS algorithms. Moreover, the simulation experiments of the proposed
algorithm on some real DNA and amino acid sequence sample datasets are made, and their
performance is compared with that of one of the current leading algorithms: FAST-LCS. The
experimental results show that the proposed algorithm is very efficient and effective, and its
performance is much better than that of FAST-LCS, especially for the cases of a large alphabet,
a considerable number and a long average length of sequences. Meanwhile, experimental
results also verify the correctness of our theoretical analysis.

Acknowledgment

This work is supported by the National Natural Science Foundation of China (no. 61272119).

References

[1] W. S. Chen, P. C. Yuen, and X. Xie, “Kernel machine-based rank-lifting regularized discriminant ana-
lysis method for face recognition,” Neurocomputing, vol. 74, no. 17, pp. 2953–2960, 2011.

[2] A. Cherkasov, “Bioinformatics: a practical guide to the analysis of genes and proteins,” American Jour-
nal of Human Biology, vol. 17, no. 3, pp. 387–389, 2005.

[3] E. W. Edmiston, N. G. Core, J. H. Saltz, and R. M. Smith, “Parallel processing of biological sequence
comparison algorithms,” International Journal of Parallel Programming, vol. 17, no. 3, pp. 259–275, 1988.

[4] E. Lander, “Protein sequence comparison on a data parallel computer,” in Proceedings of the Interna-
tional Conference on Parallel Processing (ICPP ’88), pp. 257–263, The Pennsylvania State University,
University Park, PA, USA, 1988.

[5] A.Galper andD. L. Brutlag, “Parallel similarity search and alignmentwith the dynamic programming
method,” Tech. Rep., Stanford University, Palo Alto, Calif, USA, 1990.

[6] D. Maier, “The complexity of some problems on subsequences and supersequences,” Journal of the
ACM, vol. 25, no. 2, pp. 322–336, 1978.

[7] R. A. Wagner and M. J. Fischer, “The string-to-string correction problem,” Journal of the ACM, vol. 21,
no. 1, pp. 168–173, 1974.

[8] D. S. Hirschberg, “A linear space algorithm for computing maximal common subsequences,” Commu-
nications of the ACM, vol. 18, no. 6, pp. 341–343, 1975.

[9] J. D. Ullman, A. V. Aho, and D. S. Hirschberg, “Bounds on the complexity of the longest common sub-
sequence problem,” Journal of the ACM, vol. 23, no. 1, pp. 1–12, 1976.

[10] J. W. Hunt and T. G. Szymansi, “A fast algorithm for computing longest common subsequences,”
Communications of the ACM, vol. 20, no. 5, pp. 350–353, 1977.

[11] S. Bespamyatnikh and M. Segal, “Enumerating longest increasing subsequences and patience
sorting,” Information Processing Letters, vol. 76, no. 1-2, pp. 7–11, 2000.

[12] W. J. Masek and M. S. Paterson, “A faster algorithm computing string edit distances,” Journal of
Computer and System Sciences, vol. 20, no. 1, pp. 18–31, 1980.

[13] A. Aggarwal and J. Park, “Notes on searching in multidimensional monotone arrays,” in Proceedings
of the 29th Annual Symposium on Foundations of Computer Science, pp. 497–512, White Plains, NY, USA,
1988.

[14] A. Apostolico, M. J. Atallah, L. L. Larmore, and S. McFaddin, “Efficient parallel algorithms for string
editing and related problems,” SIAM Journal on Computing, vol. 19, no. 5, pp. 968–988, 1990.

[15] V. Freschi and A. Bogliolo, “Longest common subsequence between run-length-encoded strings: a
new algorithm with improved parallelism,” Information Processing Letters, vol. 90, no. 4, pp. 167–173,
2004.

Mathematical Problems in Engineering 17

[16] W. Liu and L. Chen, “A fast longest common subsequence algorithm for biosequences alignment,”
IFIP International Federation for Information Processing, vol. 258, pp. 61–69, 2008.

[17] D. Korkin, Q. Wang, and Y. Shang, “An efficient parallel algorithm for the multiple longest common
subsequence (MLCS) problem,” in Proceedings of the 37th International Conference on Parallel Processing
(ICPP ’08), pp. 354–363, Portland, Ore, USA, September 2008.

[18] Q. Wang, D. Korkin, and Y. Shang, “Efficient dominant point algorithms for the multiple longest
common subsequence (MLCS) problem,” in Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI ’09), pp. 1494–1499, July 2009.

[19] Q. Wang, D. Korkin, and Y. Shang, “A fast multiple longest common subsequence (MLCS) algo-
rithm,” IEEE Transactions on Knowledge and Data Engineering, vol. 23, no. 3, pp. 321–334, 2011.

[20] J. Yang, Y. Xu, and Y. Shang, “An efficient parallel algorithm for longest common subsequence prob-
lem on GPUs,” in Proceedings of the World Congress on Engineering (WCE ’10), vol. 1, pp. 499–504, July
2010.

[21] M. L. Fredman, “On computing the length of longest increasing subsequences,” Discrete Mathematics,
vol. 11, no. 1, pp. 29–35, 1975.

[22] I. H. Yang, C. P. Huang, and K. M. Chao, “A fast algorithm for computing a longest common increas-
ing subsequence,” Information Processing Letters, vol. 93, no. 5, pp. 249–253, 2005.

[23] G. S. Brodal, K. Kaligosi, I. Katriel, and M. Kutz, “Faster algorithms for computing longest common
increasing subsequences,” in Proceedings of the 17th Annual Symposium on Combinatorial Pattern Match-
ing (CPM ’06), vol. 4900, pp. 330–341, 2006.

[24] M. Michael, Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate
Online, SAMS Press, 2009.

[25] J. Dean, “Experiences with MapReduce, an abstraction for large-scale computation,” in Proceedings
of the 15th International Conference on Parallel Architectures and Compilation Techniques (PACT ’06), p. 1,
IEEE Press, September 2006.

[26] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,” Communica-
tions of the ACM, vol. 15, no. 1, pp. 107–113, 2008.

[27] Pseudomonas aeruginosa PAO1 chromosome, complete genome, http://www.ncbi.nlm.nih.gov/
nuccore/110645304?report=fasta.

[28] http://dip.doe-mbi.ucla.edu/dip/Download.cgi.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

