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An optimal input design method for parameter estimation in a discrete-time nonlinear system
is presented in the paper to improve the observability and identification precision of model
parameters. Determinant of the information matrix is used as the criterion function which is
generally a nonconvex function about the input signals to be designed. To avoid the locally
optimizing problem, a randomized design method is proposed by which a globally optimizing test
plan other than input signals may be obtained. Then the randomized design can be approximated
by a nonrandomized design about optimal inputs. An iterative algorithm integrated with dynamic
programming is given and verified by a numerical example on experimental design for self-
calibration tests of ISP system.

1. Introduction

Model parameters applied to computation or compensation in science and engineering, such
as error model coefficients in INS (inertial navigation system), generally require much higher
identification precision than in other applications. However, haphazard experiments not
only lead to poor accuracy in parameter estimating, but also would make some parameters
unobservable. A good experimental design can increase both the precision and the efficiency
of a test [1] and then improve the precision of system identification or state estimation [2-5].

The field of system identification and filtering are relatively mature [6-10]; relevant
experimental design methods have not made substantial advance yet. D-optimal design
which allocates the experimental input variables by maximizing the determinant of
information matrix of the system is recognized as the most effective method for an
experimental design [11, 12]. For model parameter identification of a dynamic system, the
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D-optimal design problem has a similar mathematical expression as the optimal control
problem, but cannot be solved by the Pontryagin’s maximum principle and dynamic
programming method, due to particularity in the form of performance index [13].

On the other hand, even for a dynamic system with linear or low-order nonlinear
model, the D-optimal design problems may involve global optimizing of nonconvex function
and cannot achieve analytical solutions by traditional nonlinear programming methods.
Although many numerical searching algorithms have been proposed to solve the nonconvex
problem in global optimizing, such as genetic algorithm, simulated annealing algorithm, and
so forth, most of them are either time-consuming or no guarantee of global optimization of
searching results [14-16].

D-optimal design for randomized inputs is a convex optimization technique, in which
the experimental variables are transformed to test plans. A test plan specifies different
probability measures to each input variable in admissible set and one selects inputs for
a particular trial of the experiment via randomization. The randomized design method is
mainly used in regression design problems. Mehra introduces the method to optimal input
design for parameter identification in a discrete-time MIMO linear system with process noise
[11].

Morelli and Klein consider input design problem for LTI systems in aircraft flight
tests, and the specific goals with test time optimization are achieved using principles of
dynamic programming [17]. Neto et al. generalize the results to nonlinear dynamic systems
and consider additive colored noises in measurement [18]. The cost function selected by
Neto et al. is the trace of a dispersion matrix in which the autocorrelation matrix of the
colored measurement noises is introduced. They solve the optimization problem by genetic
algorithm.

Lintereur studies optimal trajectories for a 2-axis gimbaled test table by which errors in
inertial systems caused by angular motion are calibrated [19]. The trace of covariance matrix
computed by Kalman filtering is minimized using a conjugate gradient algorithm, but local
minimum may be obtained.

In this paper, we propose a randomized design method for parameter estimation in
discrete-time nonlinear dynamic systems with constraints on inputs. By this design method,
the original nonconvex optimization problem can be solved by the convex optimization
technique, and the global optimal maximum is guaranteed. An iterative algorithm is given
and verified by a numerical example on experimental design for continuous tumbling self-
calibration tests of ISP system.

2. Problem Statement

In this section we give a mathematical formulation of the D-optimal design problem, in which

a time-varying MIMO nonlinear system with unknown model parameters is considered. For

simplification in notation and deduction, the process noise is assumed to be zero here.
Consider the following nonlinear dynamic system:

Xia1 = f(xk,uk, k,0),  x0 =X,
2.1)
Yk = h(xg, t,0) +vk, k=0,1,...,N,
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where xx = x (i) is a n x 1 state vector, Xy is a constant vector, ux = u(ty) is a g x 1 input vector,
Yk = y(tk) is a px1 sampling output vector at moment k, and vx = v(tx) is a px1 measurement
noise vector. vy is the Gaussian white noise sequences with E(vx) =0 and E(vxol) = RSz,
N is the number of output samples observed and is fixed. 6 = [6; 0, - - Gm]T denotes the mx1
vector of constant identifiable parameters, we estimate 6 from the knowledge of {yx, ux-1, k =
1,...,N} and give an unbiased efficient estimator 0 with covariance M1, where M is the
Fisher information matrix. Therefore, the design problem is to select a series of inputs uy € €,
such that a suitable criterion function corresponding to the objectives of the identification
experiment is optimized.
The Fisher information matrix is defined as follows:

M =e%[@logge(m))<alog§9(r6>>T], 2)

where Y denotes the set of observations {yx, k = 1,..., N} and the expectation in (2.2) is
taken over the sample space Qy of observations and the parameter space €24 of 6.

Using conditional expectations, M may be evaluated in two steps, first by computing
M'(0) = Eyjp{e} and then M = EgM'(0). The second step is generally more tedious and an a
priori distribution p(6) should be known exactly. Here a Taylor-series approximation is used
to simplify the computation:

aM:.].
M';;(0) = M';;(6o) + W (6 - 60)
0
’ (2.3)
1 T & ;'i
+§(9—90) 302 (9—90)+"',
6o
where 0 is the a priorimean of 6,i,j =1,...,m.
Retaining terms up to second order,
, 1 [oM
Mi,j = Mi,]' (6o) + 5 tr 502 , P, (2.4)
0

where P is the a priori covariance of 0.

The second term is typically small compared to the first term either because P, is small
or M'(0) is insensitive to 6.

The conditional likelihood function L(0) = logp(Y | 0) for system (2.1) is given as
follows:

N

N 1
L(0) = ~— log(2m) = 5 3 { ()" Ry vy + log| R }. (2.5)
k=1
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The matrix M'(6) has elements

) 3 OL(0) oL(0)
M;;(0) = EY< 30, 06;
(2.6)
_ i <6h(xk,tk,9)>TR_1 Oh(x, tr, )
= 00; k 00; ’
The sensitivity function is
Oh(xy, t,0) _ oh oh

00;  oxl 0k 50, @7

where xg, k is the partial derivative of x(f) about 8; at moment k, that is, xg, x = xg,(tx) which
meets the following equation:

0 0
X0, k+1 = _foG,-,k t <5, Xg,o0= O/ i= 11 R (X (28)
ox] 00);

Since xg,x and xi all depend on the elements of U, where ur = [ug

the Ng-dimensional vector to be designed, we denote M'(0) as M'(6,U).
From (2.6), it is easy to get

) N /oh(xk, te, 0)\T _1ah(xk,tk,6)}
M'(8,U) = R . 29
. ;{( 00 > k 00 (29)

T .
ceun4] € Quis

Also from (2.4), the Fisher information matrix is generally
M(U) = EgM'(6,U) = M'(6,,U). (2.10)

There are many formulations of criterion function that measures the degree of
observability about parameter 6, such as tr(M~1(U)) or [M~}(U)|. A design which minimizes
the scalar measure |[M~!(U)| or maximizes |M(U)| is called D-optimal, and it is equivalent
to minimizing the volume of the uncertainty ellipsoid about parameter estimators. An
important advantage of D-optimality is that it is invariant under scale changes in the
parameters and linear transformations of the output.

Now, we choose | M~ (U)] as the criterion function and formulate the D-optimal design
problem as follows:

min M_l(ll)|
UeQy
st. X1 = f(x,uk, k,0), x0=Xo (2.11)
0 0
X0, k+1 = —fxgi,k + —f xp0=0,1i=1,...,m.

ox; 00;’
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It should be pointed out that the problem in (2.11) cannot be solved by typical
methods such as the Pontryagin’s maximum principle and dynamic programming method
since |M~1(U)| or tr(M~}(U)) cannot be transformed to the index form in multistage decision
process. In fact, there also exists great difficulty in getting a numerical solution with global
optimization since |[M~(U)| is not a convex function of U.

In the next section, we will present a randomized design method based on test plan
theories.

3. D-Optimal Design Method

For a randomized input U € Q; with probability measure ¢(dU)defined for all Borel sets and
points of €y, the definition of the information matrix is

M) = fQ MU) - ¢(dL), (3.1)

where fQu du) =1.
If the probability measure is purely discrete, the information matrix is defined as
follows:

1
M(¢) = D&EMU), (32)
i=1

where [ is the number of spectrums, Zf’:l &=1,0<¢<1.

M(2) is linear in ¢, so the criteria |[M™!(Z)| or tr(M~!(¢)) are convex functions of ¢,
and optimization with respect to ¢ gives globally optimizing design. However, we cannot
find directly the optimal design ¢* which minimizes |M~!(¢)|. Here, an iterative algorithm is
proposed for searching ¢* based on the following theorem [11].

Theorem 3.1. Let &* be the optimal design then the following are equivalent:

(i) &* maximizes |M(§)|,
(i) &* minimizes maxyeq, tr(M™1(¢)M(U)),
(ifi) maxyeq, tr(M~' (¢ )MU)) = tr(M~' (&) M(E")) = m.

The D-optimal design &* may be computed with the following algorithm.

Algorithm 3.2. Step 1. Start with any design &, such that M (&) is nonsingular and let k=0.

Step 2. Compute M (¢x) and tr(M~1(¢&)M(U)) using (2.1), (2.6)-(2.10).

Step 3. Maximize tr(M~1(&)M(U)) over U € Q and get Uy.

Step 4. If tr(M 1 (&) M (Uy)) = m, stop. Otherwise, let &1 = (1 — ag)éx + ard(Ux), 0 <
ar <1 where ¢(Uy) is the design at the single point U.

Choose aj such that 322 ai = oo, limy ot = 0, [M (é41)| > [M (&)

Step 5. Set k = k + 1 and go to step 2.

The convergence of the above algorithm to the global maximum is proved in the
appendix.
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Remarks. (1) The optimal design can be depicted by the following set:

(&, U8, Uy; .. 8, U), 1< m(m; 1). (3.3)

This can be used in a manner of randomized strategies when the experiment can be repeated.
If the experiment is to be conducted only once, a nonrandomized design involving only one
input U should be preferable, that is, it assigns probability one to a particular U. Since the
randomized design (3.3) has been derived, we can seek nonrandomized design U* so that
|M(U*)| approximates | Zﬁ;l &EM(U)).

(2) Step 3 is most time-consuming computationally, and the criterion function
tr(M~1(¢) M(U)) is generally not a convex function of U. Only if model (2.1) can be reduced
to a linear discrete-time system, it would be a quadratic functional of U. Using (2.9) and
(2.10), we get

tr(M-l(g)M(U)> ~ tr(M-l(g)M'(eo, u>>

- - Oh(xx, tx, 0)
_étr{M 1(§)<T .

" g1 910 b, 6)
) kT 60

(3.4)
J

Unlike the computing of determinant, the operations with trace and sum of matrix
can exchange order. By (3.4), the optimization problem can be solved by using maximum
principle or dynamic programming methods since the above equation possesses the form of
criterion function in multistage decision process.

Therefore, by using randomization and Theorem 3.1 the solution to a highly nonlinear
and nonconvex optimization problem, that is, minimization of |[M~!(U)| is reduced to solving
a relatively simpler optimization problem. This is mainly due to the fact that randomization
produces convexity.

4. Simulation

In this section, we present a numerical example to verify the effectiveness of the proposed
design method. The experiment to be designed is the continuous tumbling self-calibration
test of an ISP system. Choose the determinant of information matrix as observability index
and select the currents of gyro torquers or the command angular speed to the ISP as the
experimental input variables, then the idea of D-optimal design can be applied to program the
rotational trajectories of platform which represent the attitude and angular speed of platform
at each moment.

First, we give the model equations of accelerometers and gyroscopes in the ISP system.
The output equations of accelerometers that are also the observation equations are:

0 A. -A)] [¢x kox + kixAx
y=|-4A. 0 A, gyl + koy + kiy Ay —a Ay + ¢, (4.1)

Ay -Ax O - koz + kiz Az + ay Ay —ax Ay
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where a,, ay, a, represent the misalignment angles of accelerometers” input axes with respect
to platform frame.

kox, koy, koz and kiy, k1, k1. represent the bias and scale factors of accelerometers.

y represents outputs of accelerometers; € denotes the observation noises in outputs
with zero mean and covariance matrix 6;13 « 3 at each moment.

Ay, Ay, A; are projections of gravitational acceleration on the ideal platform frame
which is defined based on x accelerometer’s input axis and initially aligned to north, west,
vertical direction, unit gy, where gy is the local gravitational acceleration value:

Ay sin(a) cos(c) + cos(a) sin(b) sin(c) (4.2)

Ay sin(a) sin(c) — cos(a) sin(b) cos(c)
Lz] _ [ cos(a) cos(b) ]

where a, b, c represent three ideal angular positions of platform gimbals from outer to inner,
respectively, and meet the following differential equations:

a —cos(a) tan(b) cos(b) sin(a)tan(b) | [wec
[b] = [ sin(a) 0 cos(a) ] [ 0 ]
¢ cos(a)sec(b) 0 —sin(a)sec(b)] Lwes

(4.3)

sin(c) cos(c) 01 |tgy

cos(c)sec(b) —sin(c)sec(b) 07 [tgx
) [—cos(c)tan(b) sin(c) tan(b) —1] [tgjl

where w., w,s represent north and vertical components of rotational speed of the earth w,,
respectively.

¢x, Py, - in (4.1) represent the attitude errors between the practical platform frame
and ideal one:

o 0 tg: —tgy] [« dox + dixt@x = YxztQy + Yryt &=
(I',ry = —tgz 0 tgx ()Lfy + dOy + d]ytgy + sztgx - nytgz ’ (44)

s tgy, —tgx O ¢ doz + d12tgz — Yoyt + Yaxt8y

where Yxy, Yzy, Yzxs Yyxs Yyz Yxz Tepresent the misalignment angles of gyroscopes” input axes
with respect to platform frame.

dox, doy, do= and di, dyy, d1. represent the fixed drifts and scale factor errors of gyro
torquers.

u(t) = [ s« tg t2:]" represent equivalent command angular speed to the ISP in an ideal
platform frame and are the input variables to be designed.

Choose ¢y, ¢, - and a, b, ¢ as the state vector x(t); note that only the state of (4.4) is
related to partial elements of unknown parameter vector 8, where

QT = [92 QT] 7 ea = [aXI ay/ azr kOxr kOyr kOZl klxr klyl klz] T/
¢ (4.5)

T
Qg = [ny/ Yzyr Yzxr Yyxr Yyzr Yxzs de/ dOy/ dOz, dlx/ dlyr dlz] .
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Therefore, the equations for xg, (t) can be derived by making partial derivative of (4.4)
about 6,.
Rewrite (4.1), (4.3), and (4.4) for abbreviation as follows:

X1 (t) = Ar(w)x1(t) + B1(u)0g, x1(to) = x10,

x2(t) = f(xZI u)/ x2(t0) = 0/ (46)
vk = Hi(xo)x1 6 + H2(x24)0s + 6k, k=0,1,...,N,

where x1(t) = [, ¢y, 921", x2(t) = [a,b,c]".
Then the equations for xg,(t) are as follows:

X, (t) = A1(u)xo,(t) + B1i(u), x¢,(t0) =0, i=1,...,s, (4.7)

where By (1) denotes the ith column of matrix By (u), and s is the dimension of 6,.

M'(9,U) = 6;212\[:[ Hj (xo ) Ha(x2k)  Hj (o) Hi (x20) Xo (48)
k=

4| Xg H (x26) Ha(x26) X§H{ (x2,6) Hi(x2,6) Xo

Where X@ = [XQllk, ceey szrk].

It shows that M'(6, U) is insensitive to 0 since in (4.6) and (4.7), x2x as well as xg, k is
independent of the unknown parameter 6.

Thus, in this problem

1
M@U) =M 6,U), M@ =D aMU) (49)
i=1

for any 6 and state equation for x;(t) can be deleted from the constraint conditions in (2.11).
Now we reformulate the design problem for self-calibration tests of ISP system as
follows:

max [M(¢)]
s.t. x(t) = f(xz, u), x2(tp) =0, (4.10)

X, (t) = A1(u)xp,(t) + B1,i(u), xp,(tp)=0,i=1,...,s,

where Qu = {U : u” <up <u*, k=0,...,N -1} is the amplitude constraint on the precise
command angular speed.

Since three state equations should be added to the constraint equations in (4.10) if one
parameter in 0, is to be estimated, the dynamic programming algorithm in Step 3 will be very
time-consuming. Therefore, only 9 parameters in 6, are considered in this example.

The initial design ¢ is chosen from a single-point design which maximizes |M(U)|
via a rough search by confining each element of the input signals u(t) to a four-segment
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Table 1: Design results by the propose algorithm.

i 1 2 3 4
log [M(U;)] 47 45 47 52
& 0.1 02 02 05

Table 2: Standard errors of parameter estimators (6, = 1).

a  ay  az ko koy ko: kix ki ki
u, 067 077 076 04 043 043 0.7 0.67 0.63
u, 065 057 053 036 036 038 053 056 0.66

square wave varying between -10w,, 0, and 10w,. Figure 1 shows the convergence of
tr(M1 (&) M (Uy)) after eleven times of iterations, and |M (éx1)|/|M (é)| tends to one which
means |M ()| converges to a local maximum |[M(¢*)]. Since |[M(¢)] is a concave function
about ¢, ¢* is global optimizing as well.

The values of log [M(U;)| at each supporting point U; and measure ¢; are listed in
Table 1 with 65 = 1. In addition, log|M(¢*)| = log| >,; M(U;)¢i| = 5.5 and log |[M(¢(U'))| =
log IM(3; U;¢;)| = 1.7. It shows that the randomized design ¢* has better performance than
any single-point design ¢(U;), whereas the linear combination U’ = >; U;¢;, although it is
also an admissible control input in Q;, shows poor performance and cannot be used as a
nonrandomized approximation to the optimal test plan ¢* here.

In Table 1 the 4th supporting point U4 has the maximum log |M(U;)| which approx-
imates mostly to log|M(¢*)|. So single-point design ¢(U4) is chosen as the nonrandomized
approximation to ¢*. Comparison of estimation errors between tests with Uy and U; (the
initial rough design) is in Table 2, which shows some improvement in budgets of estimation
precision. The control input curves of Uy are plotted in Figure 2 with unit w,. The whole test
time is three hours, and the sampling time is 22.5 minutes. None of tg,, tgy, and tg. in Uy is
the bang-bang type mainly because a constraint on angle b(-sr/6 < b < 7 /6) is also assumed.
The projection of gravitational acceleration in the ideal platform frame is plotted in Figure 3.

The profiles of Ay, Ay, and A, show that input axis of each accelerometer completes
nearly a whole tumble in gravitational field which can provide sufficient stimulations to the
error terms of accelerometers in practical testing.

5. Conclusion

A D-optimal design method for parameter estimation in nonlinear dynamic systems is
presented based on test plan design theories. The corresponding iterative algorithm is
proposed with a dynamic programming algorithm imbedded. The proof for the convergence
of the algorithm is given as well. Simulation results on an optimal trajectory design problem
in self-calibration test of ISP system demonstrate the effectiveness of the proposed algorithm.
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Figure 1: Convergence of the proposed algorithm.
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Appendix

Proof of the Convergence of Algorithm 3.2

Proof. In the algorithm, aj is chosen such that

IM($)| < IM(&1)] < --- < [M(E)]-

(A1)

Since any bounded monotone nondecreasing sequence converges, the sequence
[M (&), IM(é1)l,-..,|M(ék)| converges to some limit | M (¢)|.
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Figure 3: Acceleration projection in the ideal platform frame.

To prove IM(E)| = |[M(¢*)|, we assume the contrary IM(&)| < |[M(&*)|. Then, by
Theorem 3.1, for any k there is a constant # such that

tr(M‘l(gk)M(Uk)> —m>n>0. (A.2)
It follows that
L logM@EG)l| =M @) (-ME) + M) > 1 (A3)
k ;=0

For the smoothness of the function log|M(ék+1)| about ax and by the assumption
limy ., i = 0, there is a positive integer s such that for any k > s, (0/0ax) log |M (ék+1)| > 1.
Now integrating both sides of the above inequality over ax from 0 to a, one obtains

M ()]
M| = Pl -

On the other hand, in view of the convergence of the sequence |M(¢)], ..., for any
small positive number v, there is a positive integer n such that for any integer p > g > n, the
following inequality holds:

|M(&)| = M (&) < v (A.5)



12 Mathematical Problems in Engineering

Let t = max(n, s), then for any integer p > g > t,

p-1
Y2 [M(&)] - [M(&)] > [exp 2,0 = 1] - [M (&) (A6)
=q
This means
p-1 1
ay < E[Iog(Y+ |M(89)]) —log| M(&)]]. (A7)
k=q

which contradicts the assumption Y2, ax = co.
Therefore, [M(¢)| = |M(¢¥)], the global maximum is obtained by the algorithm. O
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