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This paper deals with the analysis of a third-order tensor composed of a fourth-order output
cumulants used for blind identification of a second-order Volterra-Hammerstein series. It is
demonstrated that this nonlinear identification problem can be converted in amultivariable system
with multiequations having the form of Ax + By = c. The system may be solved using several
methods. Simulation results with the Iterative Alternating Least Squares (IALS) algorithm provide
good performances for different signal-to-noise ratio (SNR) levels. Convergence issues using the
reversibility analysis of matrices A and B are addressed. Comparison results with other existing
algorithms are carried out to show the efficiency of the proposed algorithm.

1. Introduction

Nonlinear system modeling based on real-world input/output measurements is so far
used in many applications. The appropriate model and the determination of corresponding
parameters using the input/output data are owned to apply a suitable and efficient
identification method [1–7].

Hammerstein models are special classes of second-order Volterra systems where
the second-order homogenous Volterra kernel is diagonal [8]. These systems have been
successfully used to model nonlinear systems in a number of practical applications in several
areas such as chemical process, biological process, signal processing, and communications [9–
12], where, for example, in digital communication systems, the communication channels are
usually impaired by a nonlinear intersymbol interference (ISI). Channel identification allows
compensating the ISI effects at the receivers.

In [13], a penalty transformation method is developed. Indeed a penalty function is
formed by equations relating the unknown parameters of themodel with the autocorrelations
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of the signal. This function is then included in the cost function yielding to an augmented
Lagrangian function. It has been demonstrated that this approach gives good identification
results for a nonlinear systems. However, this approach is still sensitive to additive Gaussian
noise because the 2nd-order moment is used as a constraint. Authors, in [7], overcame this
sensitivity by using 4th-order cumulants as a constraint instead of 2nd-order moments in
order to smooth out the additive Gaussian noise. But the proposed approach which is based
on a simplex-genetic algorithm becomes so long and computationally complex.

The main drawback of identification with Volterra series lies on the parametric
complexity and the need to estimate a very big number of parameters. In many cases, Volterra
series identification problemmay be well simplified using the tensor formulation [10–12, 14].

Authors, in [10], used a parallel factor (PARAFAC) decomposition of the kernels to
derive Volterra-PARAFAC models yielding an important parametric complexity reduction
for Volterra kernels of order higher than two. They proved that these models are equivalent
to a set of parallel Wiener models. Consequently, they proposed three adaptive algorithms
for identifying these proposed Volterra-PARAFAC models for complex-valued input/output
signals, namely, the extended complex Kalman filter, the complex least mean square (CLMS)
algorithm, and the normalized CLMS algorithm.

In this paper, the algorithm derived in [14] is extended to be applied to blind
identification of a general second-order Volterra-Hammerstein system. The main idea is to
develop a general expression for each direction slices of a cubic tensor and then express
the tensor slices in an unfolded representation. The three-dimensional tensor elements
are formed by the fourth-order output cumulants. This yields to an Iterative Alternating
Least Square (IALS) algorithm which has the benefit over the original Volterra filters
in terms of implementation and complexity reduction. A convergence analysis based on
matrices reversibility study is given showing that the proposed IALS algorithm converges
to optimal solutions in the least mean squares sense. Furthermore, some simulation results
and comparisons with different existing algorithms are provided.

The present work is organized as follows; in Section 2, a brief study of the three-
dimensional tensor is presented. In Section 3, the model under study and the related output
cumulants are then proposed, whereas, in Section 4 the decomposition analysis of the
cumulant tensor is developed. In Sections 5 to 8, we give, respectively, the proposed blind
identification algorithm, the convergence study, some simulation results, and at the end some
main conclusions are drawn.

2. Three-Dimensional Tensor and Different Slice Expressions

A three-dimensional tensor C ∈ C
M×M×M can be expressed by

C =
M∑

i=1

M∑

j=1

M∑

k=1

Cijke
(M)
i ◦ e(M)

j ◦ e(M)
k

, (2.1)

where Cijk is the tensor value in the position (i, j, k) of the cube with dimension M, e(M)
p

denotes the pth canonical basis vector with dimension M, and the symbol ◦ stands for the
outer product (Figure 1).
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Figure 1: Cubic tensor representation.

A cubic tensor can be always sliced along three possible directions (horizontal, vertical,
and frontal) as depicted in Figure 2. This yields, in each case, to M matrices of M × M
dimensions.

The expression of the ith slice in the horizontal direction is given by

Ci•• =
M∑

j=1

M∑

k=1

Cijke
(M)
j ◦ e(M)

k
=

M∑

j=1

M∑

k=1

Cijke
(M)
j e

(M)T
k

. (2.2)

In the same manner, the other matrix expressions along with the vertical and frontal
directions are expressed, respectively, by

C•j• =
M∑

i=1

M∑

k=1

Cijke
(M)
i e

(M)T
k ; C••k =

M∑

i=1

M∑

j=1

Cijke
(M)
i e

(M)T
j . (2.3)

It is important to express the tensor slices in an unfolded representation, obtained by
stacking up the 2Dmatrices. Hence, three unfolded representations of C are obtained. For the
horizontal, the vertical, and the frontal directions, we get, respectively,

C[1] =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1..

C2..

...

CM..

⎞
⎟⎟⎟⎟⎟⎟⎠

; C[2] =

⎛
⎜⎜⎜⎜⎜⎜⎝

C.1.

C.2.

...

C.M.

⎞
⎟⎟⎟⎟⎟⎟⎠

; C[3] =

⎛
⎜⎜⎜⎜⎜⎜⎝

C..1

C..2

...

C..M

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.4)

We note that each matrix C[p] : p = 1, 2, 3 is an (M ×M,M) one.
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Figure 2: Different direction slices of a cubic tensor.

3. Nonlinear System Model and Output Cumulants Analysis

We focus on the identification of a second-order Volterra-Hammerstein model with finite
memory as it is given in [14]:

y(n) =
M∑

k=0

h1(k)u(n − k) +
M∑

k=0

h2(k)u2(n − k); h1(0) = 1; h2(0) = 1, hi(M)/= 0, (3.1)

where u(n) is the input of the system, assumed to be a stationary zero mean Gaussian white
random process with E(u2(n)) = γ2. M stands for the model order.

The Hammerstein coefficients vectors h1 and h2 are defined by

hp =
[
hp(0), hp(1), . . . , hp(M)

]T ; p = 1; 2. (3.2)

As we evoked in the Introduction, identification algorithms based on the computation
of 2nd-order output cumulants are sensitive to additive Gaussian noise because 2nd-order
cumulants of this latter are in general different to zero. Since the 4th-order cumulants of
additive Gaussian noise is null, it will be interesting to use the 4th-order output cumulants
to derive identification algorithms. But this will introduce another problem which is the
computation complexity. In this paper, we will overcome this shortcoming by using a tensor
analysis.
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To determine the kernels of this model, we will generate the fourth-order output
cumulants. For this purpose, we need to use the standard properties of cumulants and the
Leonov-Shiryaev formula for manipulating products of random variables.

The fourth-order output cumulant is given by [15]:

c4y(i1, i2, i3) = cum
[
y(n + i1), y(n + i2), y(n + i3), y(n)

]

= 8γ32
{
φ0(i1, i2, i3, 0) + φ0(i1, i3, i2, 0)

+ φ0(i2, i3, i1, 0) + φ0(i1, 0, i2, i3)

+φ0(i2, 0, i1, i3) + φ0(i3, 0, i1, i2)
}

+ 48γ42
M∑

l=0

h2(l + i1)h2(l + i2)h2(l + i3)h2(l),

(3.3)

where

φ0(i1, i2, i3, i4) =
M∑

l=0

h1(l + i1)h1(l + i2)h2(l + i3)h2(l + i4). (3.4)

It is easy to verify that c4y(i1, i2, i3) = 0 for all |i1|, |i2|, |i3| > M.
All the nonzero terms of c4y(i1, i2, i3) are obtained for (i1, i2, i3) ∈ [−M,M]3. Such a

choice allows us to construct a maximal redundant information, in which the fourth-order
cumulants are taken for time lags i1, i2, and i3 within the range [−M,M].

In the sequel we shall present an analysis of a 3rd-order tensor composed of the 4th-
order output cumulants.

4. Formulation and Analysis of a Cumulant Cubic Tensor

Let us define the three-dimensional tensor C(4,y) ∈ C
(2M+1)×(2M+1)×(2M+1), in which the element

in position (i, j, k) corresponds to c4y(i1, i2, i3), with i = i1+M+1; j = i2+M+1; k = i3+M+1.
As i1, i2, i3 ∈ [−M,M], we get i, j, k ∈ [1, 2M + 1]. Thus,

Cijk = c4y
(
i −M − 1, j −M − 1, k −M − 1

)

= 8γ32
{
φ0

(
i −M − 1, j −M − 1, k −M − 1, 0

)

+ φ0
(
i −M − 1, k −M − 1, j −M − 1, 0

)

+ φ0
(
j −M − 1, k −M − 1, i −M − 1, 0

)

+ φ0
(
i −M − 1, 0, j −M − 1, k −M − 1

)

+ φ0
(
j −M − 1, 0, i −M − 1, k −M − 1

)
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+φ0
(
k −M − 1, 0, i −M − 1, j −M − 1

)}

+ 48γ42
M∑

l=0

h2(l + i −M − 1)h2
(
l + j −M − 1

)

× h2(l + k −M − 1)h2(l),

(4.1)

φ0(·, ·, ·, ·) is given by (3.4). It follows that

Cijk = 8γ32

{
M∑

l=0

h1(l + i −M − 1)h1
(
l + j −M − 1

)
h2(l + k −M − 1)h2(l)

+
M∑

l=0

h1(l + i −M − 1)h1(l + k −M − 1)h2
(
l + j −M − 1

)
h2(l)

+
M∑

l=0

h1
(
l + j −M − 1

)
h1(l + k −M − 1)h2(l + i −M − 1)h2(l)

+
M∑

l=0

h1(l + i −M − 1)h1(l)h2
(
l + j −M − 1

)
h2(l + k −M − 1)

+
M∑

l=0

h1
(
l + j −M − 1

)
h1(l)h2(l + i −M − 1)h2(l + k −M − 1)

+
M∑

l=0

h1(l + k −M − 1)h1(l)h2(l + i −M − 1)h2
(
l + j −M − 1

)
}

+ 48γ42
M∑

l=0

h2(l + i −M − 1)h2
(
l + j −M − 1

)
h2(l + k −M − 1)h2(l).

(4.2)

Then, expression of the tensor C will be given by

C = 8γ32
2M+1∑

i=1

2M+1∑

j=1

2M+1∑

k=1

{
M∑

l=0

h1(l + i −M − 1)h1
(
l + j −M − 1

)
h2(l + k −M − 1)h2(l)

+
M∑

l=0

h1(l + i −M − 1)h1(l + k −M − 1)h2
(
l + j −M − 1

)
h2(l)

+
M∑

l=0

h1
(
l + j −M − 1

)
h1(l + k −M − 1)h2(l + i −M − 1)h2(l)

+
M∑

l=0

h1(l + i −M − 1)h1(l)h2
(
l + j −M − 1

)
h2(l + k −M − 1)
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+
M∑

l=0

h1
(
l + j −M − 1

)
h1(l)h2(l + i −M − 1)h2(l + k −M − 1)

+
M∑

l=0

h1(l + k −M − 1)h1(l)h2(l + i −M − 1)h2
(
l + j −M − 1

)
}

× e
(2M+1)
i ◦ e(2M+1)

j ◦ e(2M+1)
k

+ 48γ42

×
2M+1∑

i=1

2M+1∑

j=1

2M+1∑

k=1

M∑

l=0

h2(l + i −M − 1) · h2
(
l + j −M − 1

)
h2(l + k −M − 1)h2(l)

× e
(2M+1)
i ◦ e(2M+1)

j ◦ e(2M+1)
k

.
(4.3)

The mathematical development of the expression (4.3) yields to

C = 8γ32

{
M∑

l=0

h2(l)h1•l ◦ h1•l ◦ h2•l +
M∑

l=0

h2(l)h1•l ◦ h2•l ◦ h1•l

+
M∑

l=0

h2(l)h2•l ◦ h1•l ◦ h1•l +
M∑

l=0

h1(l)h1•l ◦ h2•l ◦ h2•l

+
M∑

l=0

h1(l)h2•l ◦ h1•l ◦ h2•l +
M∑

l=0

h1(l)h2•l ◦ h2•l ◦ h1•l
}

+ 48γ42
M∑

l=0

h2(l)h2•l ◦ h2•l ◦ h2•l,

(4.4)

where

hp•l =
2M+1∑

m=1

hp(l +m −M − 1)e(2M+1)
m , p = 1; 2. (4.5)

This notation leads to define two channel matrices H1;H2 ∈ C
(2M+1)×(M+1) as follows:

Hp � H(
hp

)
=
[
hp•0, hp•1, . . . , hp•M

]
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · hp(0)

...
...

. . .
...

0 hp(0) · · · hp(M − 1)

hp(0) hp(1) · · · hp(M)

...
...

. . .
...

hp(M − 1) hp(M) · · · 0

hp(M) 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.6)

with p = 1; 2, and H(·) is the operator that builds a special Hankel matrix from the vector
argument as shown above.
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Let us compute now the different slices of the proposed tensor.

4.1. Horizontal Slices Expressions

From (2.2) and (4.3), we get

Ci•• = 8γ32

{
M∑

l=0

h2(l)h1(l + i −M − 1)h1•lh2T•l

+
M∑

l=0

h2(l)h1(l + i −M − 1)h2•lh1T•l

+
M∑

l=0

h2(l)h2(l + i −M − 1)h1•lh1T•l

+
M∑

l=0

h1(l)h1(l + i −M − 1)h2•lh2T•l

+
M∑

l=0

h1(l)h2(l + i −M − 1)h1•lh2T•l

+
M∑

l=0

h1(l)h2(l + i −M − 1)h2•lh1T•l

}

+ 48γ42
M∑

l=0

h2(l)h2(l + i −M − 1)h2•lh2T•l,

(4.7)

which can be written as

Ci•• = 8γ32
{
H1diagi(H1)ΣT

2 + Σ2diagi(H1)H1

+H1diagi(Σ2)HT
1 +H2diagi(Σ1)HT

2

+Σ1diagi(H2)HT
2 +H2diagi(H2)ΣT

1

}

+ 48γ42H2diagi(Σ2)HT
2 ,

(4.8)

where Σ1 = H1 diag(h1); Σ2 = H2 diag(h2); diagn(·) is the diagonal matrix formed by the nth
line of its argument.

It can easily be demonstrated that

Cm•• = C•m• = C••m = Cm. (4.9)
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It follows that

Cm = 8γ32
{
H1diagm(H1)ΣT

2 + Σ2diagm(H1)HT
1

+H1diagm(Σ2) HT
1 +H2diagm(Σ1)HT

2

+Σ1diagm(H2)HT
2 +H2diagm(H2)ΣT

1

}

+ 48γ42H2diagm(Σ2)HT
2 ,

(4.10)

withm = 1, . . . , 2M + 1.
The expression of the unfolded tensor representation is given by

C[U] =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1

C2

...

C2M+1

⎞
⎟⎟⎟⎟⎟⎟⎠

= 8γ32

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H1diag1(H1)ΣT
2

H1diag2(H1)ΣT
2

...

H1diag2M+1(H1)ΣT
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ · · ·

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭
︸ ︷︷ ︸

the 6th terms with respect to Cm in (4.10)

+48γ42

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H2diag1(Σ2)HT
2

H2diag2(Σ2)HT
2

...

H2diag2M+1(Σ2)HT
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

(4.11)

To develop this expression, we need the following property.

Property 1. Let A be the matrix with dimensions (M,N) and B the matrix with dimensions
(M′,N), then

⎛
⎜⎜⎜⎜⎜⎜⎝

Adiag1(B)

Adiag2(B)

...

AdiagM′(B)

⎞
⎟⎟⎟⎟⎟⎟⎠

= B �A, (4.12)

where � stands for the Khatri-Rao product.
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It becomes that

C[U] = 8γ32

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(H1 �H1)diag(h2)HT
2 + (H1 �H2)diag(h2)HT

1

+(H2 �H1)diag(h2)HT
1 + (H1 �H2)diag(h1)HT

2

+(H2 �H1)diag(h1)HT
2 + (H2 �H2)diag(h1)HT

1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+ 48γ42
(
(H2 �H2)diag(h2)HT

2

)
.

(4.13)

5. Blind Identification System with Cumulant Tensor

To estimate the Volterra-Hammerstein kernels and to avoid the computation of Hp : p =
1, 2, we will use the following Khatri-Rao property to propose an Iterative Alternating Least
Square (IALS) procedure.

Property 2. If matrices A ∈ C
m×n and B ∈ C

n×m and vector d ∈ C
n are such that X =

Adiag(d)B, then it holds that vec(X) = (BT � A)d, where vec(·) stands for the vectorizing
operator.

Applying this property to (4.13), it is straightforward to write

vec
(
C[U]

)
= 8γ32

⎧
⎪⎪⎨

⎪⎪⎩

(H2 �H1 �H1)h2 + (H1 �H1 �H2)h2

+(H1 �H2 �H1)h2 + (H2 �H1 �H2)h1

+(H2 �H2 �H1)h1 + (H1 �H2 �H2)h1

⎫
⎪⎪⎬

⎪⎪⎭

+ 48γ42 ((H2 �H2 �H2)h2)

= 8γ32 {(H2 �H1 �H2) + (H2 �H2 �H1) + (H1 �H2 �H2)}h1

+

{
8γ32 ((H2 �H1 �H1) + (H1 �H1 �H2) + (H1 �H2 �H1))

+48γ42 ((H2 �H2 �H2))

}
h2.

(5.1)

Let A and B be

A = 8γ32 {(H2 �H1 �H2) + (H2 �H2 �H1) + (H1 �H2 �H2)},

B = 8γ32 ((H2 �H1 �H1) + (H1 �H1 �H2) + (H1 �H2 �H1)) + 48γ42 ((H2 �H2 �H2)).
(5.2)

The problem of the blind nonlinear identification will be expressed as

Ah1 + Bh2 = vec(CU). (5.3)

This system can be solved using several methods. We propose to resolve it using the
Iterative Alternating Least Square algorithm (IALS).
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6. Cost Functions and Iterative Alternating Least Square Algorithm

To apply the IALS algorithm, we suppose alternatively that Ah1 or Bh2 is a constant vector.
Then, we get two cost functions to be minimized. Assuming that the vector Bh2 is constant,
the first cost function will be expressed by

E1(h1) = ‖(vec(CU) − Bh2) −Ah1‖2. (6.1)

For the second cost function, we assume that Ah1 is constant; thus

E2(h2) = ‖(vec(CU) −Ah1) − Bh2‖2. (6.2)

The application of the least mean squares algorithm to these two functions leads to the
following solutions:

h1 = A#(vec(CU) − Bh2),

h2 = B#(vec(CU) −Ah1),
(6.3)

where the subscript # denotes theMoore-Penrose pseudoinverse of the correspondingmatrix.
Finally, the different steps of the proposed IALS algorithm are summarized in

Algorithm 1.
The notation x̂ stands for the estimates of the parameter x.

7. Convergence Analysis

Equation (6.3) shows that the ALS algorithm converges to optimal solutions if and only if the
Moore-Penroze pseudoinverse matricesA# and B# exist, which implies that matricesA and B
must be full rank [14, 16]. To do this, we start by affirming that, due to the Hankel structure
and the assumption that hi(M)/= 0 (3.1), each of the matrices H1 and H2 is full rank. Then

rank(H1) = rank(H2) = M + 1. (7.1)

Let us now find out the rank of matrices Hi � Hj � Hk; i, j, k ∈ {1, 2} obtained from
Khatri-Rao product (5.1). We will make use of the following definition and property defining
the k-rank of a matrix and the rank of a Khatri-Rao product of two matrices [17].

Definition 7.1. The rank of a matrixA ∈ C
E×F (denoted by kA) is equal to k if and only if every

k columns of A are linearly independent. Note that kA ≤ min(E, F), for all A.

This means that the rank of the matrix A is the largest integer k for which every set
containing k columns of A is independent.

Property 3. Consider the Khatri-Rao productA �B, whereA is E ×F and B is G×F. If neither
A nor B contains a zero column (and hence kA ≥ 1, kB ≥ 1), then kA�B ≥ min(kA + kB − 1, F).
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Initialize h1 and h2 as random variables (estimates ĥ(0)
1 ; ĥ(0)

2 ).
For n ≥ 1,

(i) build Hankel matrices using (4.5), for p = 1; 2,
Ĥ

(n)
1 = H(ĥ(n)

1 ), Ĥ
(n)
2 = H(ĥ(n)

2 ),
(ii) compute matrices estimate Â and B̂ as

Â(n) = 8γ32 {(Ĥ2 � Ĥ1 � Ĥ2) + (Ĥ2 � Ĥ2 � Ĥ1) + (Ĥ1 � Ĥ2 � Ĥ2)}
(n)

,

B̂(n) = {8γ 3
2 ((Ĥ2 � Ĥ1 � Ĥ1) + (Ĥ1 � Ĥ1 � Ĥ2) +(Ĥ1 � Ĥ2 � Ĥ1)) + 48γ42 ((Ĥ2 � Ĥ2 � Ĥ2))}

(n)
,

(iii) minimize cost functions (6.1) and (6.2) so that
ĥ
(n+1)
1 = Â(n)#(vec(CU) − B̂(n)ĥ

(n)
2 ),

ĥ
(n+1)
2 = B̂(n)#(vec(CU) − Â(n)ĥ

(n)
1 ),

(iv) reiterate until parametric error convergence
‖vec((ĥ(n+1)

1 ĥ
(n+1)
2 ) − (ĥ(n)

1 ĥ
(n)
2 ))‖

‖vec(ĥ(n+1)
1 ĥ

(n+1)
2 )‖

≤ ε.

Algorithm 1: Different steps of the new blind identification algorithm-based cumulant tensor analysis.

It follows that

kHi�Hj ≥ min(2M + 1,M + 1), ∀i, j ∈ {1, 2}, (7.2)

which is equivalent to

kHi�Hj ≥ M + 1. (7.3)

Due to the definition of the Khatri-Rao product and the structure of the Hankel
matrices Hi; i ∈ {1, 2}, we conclude that

kHi�Hj = M + 1 = rank
(
Hi �Hj

)
. (7.4)

Consequently,

k(Hi�Hj )�Hk = M + 1 = rank
(
Hi �Hj �Hk

)
, ∀i, j, k ∈ {1, 2}, (7.5)

which means that each matrix Hi �Hj �Hk is full rank whatever the values taken by i and j
in the set {1, 2}.

Let us now find out the rank of matrices A and B. For this purpose, we will study
the structure of the matrix Hi � Hj � Hk. Recall that Hi is a (2M + 1,M + 1) matrix. Let
Θi = [ 0 0 · · · 0]T be the zero column vector of dimension (2M + 1); i = 1, . . . ,M.
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Then, for the matrix Hi �Hj �Hk, we will have the following form:

Hi �Hj �Hk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θ1 Θ1 Θ1 XM

Θ2
... XM−1 Θ1

... ΘM−1 · · · Θ2 Θ2

ΘM X1
...

...

X0 ΘM ΘM−1 ΘM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7.6)

where Xi stands for the column vector of dimension (2M + 1)2(M + 1) which is constituted
by products of the kernels model arising from computation of the Khatri-Rao matrix product.
We have seen that Hi � Hj � Hk is full rank. The sum of different matrices Hi � Hj � Hk has
the same form ofHi �Hj �Hk whatever the system order and the values taken by i, j and k.
Consequently, matricesA and B are full rank and then their pseudoinverse exist. We conclude
that the IALS converges to an optimal solution in least mean squares sense.

8. Simulation Results

In this section, simulation results will be given to illustrate the performance of the proposed
algorithm. Two identification Volterra-Hammerstein systems are considered:

System 1:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z(n) = u(n) − 0.25u(n − 1) + 0.9u(n − 2)

+u2(n) + 0.5u2(n − 1) − 0.35u2(n − 2),

y(n) = z(n) + e(n),

System 2:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z(n) = u(n) − 0.4u(n − 1) + 0.5u(n − 2) + 0.95u(n − 3)

+u2(n) + 0.2u2(n − 1) − 0.7u2(n − 2) + 0.6u2(n − 3),

y(n) = z(n) + e(n).

(8.1)

The input sequence u(n) is assumed to be stationary, zero mean, white Gaussian noise
with variance γ2 = 1. The noise signal e(n) is also assumed to be white Gaussian sequence
and independent of the input. The parameter estimation was performed for two different
signal-to-noise ratio (SNR) levels: 20 dB and 3dB.

The SNR is computed with the following expression:

SNR =
E
(
z2(n)

)

E(e2(n))
. (8.2)

Fourth-order cumulants were estimated from different lengths of output sequences
(N = 4096 and N = 16384) assuming perfect knowledge of the system model. To reduce
the realization dependency, parameters were averaged over 500 Monte-Carlo runs. For each
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Figure 3: Estimates of the parameters of System 1 with the IALS algorithm forN = 4096 and SNR = 3dB.

simulation, we give the curves representing the variation of the estimates along with the
Monte-Carlo runs, and we resume exclusive results in different tables.

System 1

Figures 3 and 4 show the estimates of the different kernels of the proposed model, with the
IALS algorithm, forN = 4096 and for different SNR levels (3 dB and 20dB).

The mean and the standard deviation of the estimated kernels against the true ones
are shown in Table 1.

Likewise, Figures 5 and 6 show the estimates of the different kernels of System 1 for
N = 16384 and for SNR levels equal to 3 dB and 20dB, while, in Table 2, the mean and the
standard deviation of the estimated kernels against the true ones are shown.

From these results, we observe that the proposed IALS algorithm performs well
generating estimates for a large variation of the SNR (from 20dB to 3dB). We also note
that the standard deviation is relatively large and decreases with the number of the system
observations.

System 2

Figures 7 and 8 show the estimates of the different kernels of the second proposed model for
N = 4096 and for different SNR (20 dB and 3dB).

The mean and the standard deviation of the estimated kernels against the true ones
are shown in Table 3.

Figures 9 and 10 show the estimates of the different kernels of System 2 forN = 16384
and for different SNR (20 dB and 3dB), while, in Table 4, the mean and the standard deviation
of the estimated kernels against the true ones are shown. The mean and the standard
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Figure 4: Estimates of the parameters of System 1 with the IALS algorithm forN = 4096 and SNR = 20dB.

Table 1: True and estimated values of the kernels of System 1 for N = 4096 (500 Monte-Carlo runs).

True parameters 3 dB 20dB
Mean St. Dev. Mean St. Dev.

−0.25 −0.2401 0.3242 −0.2456 0.1778
0.9 0.9985 0.3773 0.8837 0.2143
0.5 0.5128 0.0945 0.4815 0.0589
−0.35 −0.3411 0.1046 −0.3521 0.0655

Table 2: True and estimated values of the kernels of System 2 for N = 16384 (500 Monte-Carlo runs).

True parameters 3 dB 20dB
Mean St. Dev. Mean St. Dev.

−0.25 −0.2464 0.2520 −0.2589 0.1576
0.9 0.9238 0.2947 0.8884 0.1976
0.5 0.4900 0.0679 0.5028 0.0482
−0.35 −0.3665 0.0753 0.3478 0.0508

deviation of the estimated kernels against the true ones, for the second system, are shown
in Table 4.

From these results, we note also that the proposed algorithm provides good estimates
for the proposed system. The number of observations N affects the range of variation of the
standard deviation values. Indeed, for important values of N, this range becomes so small.
The method provides good estimates even for low levels of SNR. Furthermore, we note that
the larger the Monte-Carlo runs number, the smaller the standard deviations are.
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Figure 5: Estimates of the parameters of System 1 with the IALS algorithm forN = 16384 and SNR = 3dB.

Table 3: True and estimated values of the kernels of System 2 for N = 4096 (500 Monte-Carlo runs).

True parameters 3 dB 20dB
Mean St. Dev. Mean St. Dev.

−0.4 −0.4512 0.6550 −0.4293 0.1594
0.5 0.5074 0.7632 0.5173 0.1968
0.95 1.1556 0.5329 0.9390 0.1545
0.2 0.2358 0.2525 0.2157 0.0958
−0.7 −0.6794 0.2855 −0.6814 0.1260
0.6 0.5872 0.2268 0.5962 0.0986

8.1. Comparison with Existing Methods

The performance of the previous algorithm was compared with two works: the algorithm
proposed in [9] (will be noted as BIL to blind identification with linearization) and the
Lagrange Programming Neural Network (LPNN) proposed in [13].

(i) In [14], the problem of blind identificationwas converted into a linear multivariable
form using Kronecker product of the output cumulants. This can be described by
the following equations:

C
k

y

(
q, τ

)
= b(τ)

(
Γkw

)

p×p
bT

(
q
)
, (8.3)

where Ck
y(τ1, τ2, . . . , τk−1) denotes the output cumulants sequence of order k, Γkw is

the intensity (zero lag cumulant) of order k of the vector W which is formed in its
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Figure 6: Estimates of the parameters of System 1with the IALS algorithm forN = 16384 and SNR = 20dB.
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Figure 7: Estimates of the parameters of System 2 with the IALS algorithm forN = 4096 and SNR = 3dB.

turn by the different powers of input, and b is the kernel vector.
For τ = 0, this becomes

C
k

y

(
q, 0

)
= b(0)

(
Γkw

)

p×p
bT

(
q
)
=
(
Γkw

)

p×p
bT

(
q
)
. (8.4)
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Figure 8: Estimates of the parameters of System 2 with the IALS algorithm forN = 4096 and SNR = 20dB.
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Figure 9: Estimates of the parameters of System 2 with the IALS algorithm forN = 16384 and SNR = 3dB.

Different important scenarios were discussed and successfully resolved. Here, we
are interested in the case of Gaussian input when the input statistics are known.
Despite the efficiency of the proposed method, the resulting algorithms are in
general cumbersome especially for the high series order (As confirmed by authors).
For more details, see [14].
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Figure 10: Estimates of the parameters of System 2 with the IALS algorithm for N = 16384 and SNR =
20dB.

Table 4: True and estimated values of the kernels of System 2 for N = 16384 (500 Monte-Carlo runs).

True parameters 3 dB 20dB
Mean St. Dev. Mean St. Dev.

−0.4 −0.4378 0.3824 −0.4121 0.1258
0.5 0.5116 0.5346 0.5122 0.1432
0.95 0.9450 0.4614 0.9507 0.1073
0.2 0.1847 0.1120 0.2143 0.0750
−0.7 −0.6877 0.1796 −0.6941 0.0772
0.6 0.6014 0.1323 0.5983 0.0604

(ii) In their work [13], authors tried to determine the different Volterra kernels
and the variance of the input from the autocorrelation estimates ρ[k] and the
third-order moments estimates μ[k, l] of the system output, using the Lagrange
Programming Neural Network (LPNN). As the LPNN is essentially designed
for general nonlinear programming, they expressed the identification problem as
follows:

Minimize: L
(
f
)
=
∑

i

∑

j

(
μ
[
i, j

] −M
[
i, j, f

])2
,

Subject to: ρ[i] = R
[
i, j

]
,

(8.5)

whereR[i, j] is the autocorrelation function of the real process y[n] andM[i, j] is its
third order moment sequence. f is the vector formed by the unknown parameters
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of the Volterra model and the unknown variance of the driving noise.
So the Lagrangian function will be written as

L
(
f, λ

)
= L

(
f
)
+
∑

i

λi
(
ρ[i] − R

[
i, f

])
. (8.6)

To improve the convergence and the precision of the algorithm, authors extended the
preceding function by defining the Augmented Lagrangian Function such as

L
(
f, λ

)
= L

(
f
)
+
∑

i

λi
(
ρ[i] − R

[
i, f

])
+ β

∑

i

(
ρ[i] − R

[
i, f

])2
, (8.7)

where {βk} is a penalty parameter sequence satisfying 0 < βk < βk+1 for all k, βk → ∞. So
the back-propagation algorithm can be established using the Lagrange multiplier.

The performance of the new proposed algorithm was compared with these two
algorithms. Each of these algorithms was used to identify the two models presented above
(8.1), for the case of Gaussian excitation, N = 16384 samples, and for the tow proposed SNR
levels 3 dB and 20dB.

Figures 11 and 12 show a comparison of the standard deviations given by each
algorithm. We note that these results may vary considerably depending on the number of the
output observations. These results show that the new proposed algorithm performs well. For
a small number of unknown parameters, we note that all algorithms give in general the same
STD values and these values decrease by increasing the SNR values. We note furthermore
that BIL algorithm is so complex for programming in comparisonwith the LPNN and the new
one. For big number of unknown parameters, the BIL algorithm becomes very computational
complex and even the LPNN,while the new algorithm keeps its simplicity and provides good
parameters with very competitive STD values.

9. Conclusion

In this paper, a new approach for blind nonlinear identification problem of a second-order
Hammerstein-Volterra system is developed. Thanks to a matrix analysis of a cubic tensor
composed of the fourth-order output cumulants, the nonlinear identification problem is
reduced to a system having the following general form: Ax + By = c. This system is
solved using the Iterative Alternating Least Square. A convergence analysis shows that
matrices A and B are full rank which means that the IALS algorithm converges to optimal
solutions in the least mean squares sense. Simulation results on two different systems show
good performance of the proposed algorithm. It is noted also that the different values of
the estimates improve with the number of the system observation even for small values
of SNR. Comparison results with two algorithms show that the new proposed algorithm
performs well and especially in the case of great number of unknown parameters. Extending
the proposed algorithm for more input classes and for more general Volterra-Hammerstein
systems remains an open problem, and it is now the subject matter of current works.
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Figure 11: Comparison of the standard deviations (STDs) of the new algorithm against those of the LPNN
and the BIL algorithms: System 1.
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Figure 12: Comparison of the standard deviations (STDs) of the new algorithm against those of the LPNN
and the BIL algorithms: System 2.
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