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We propose a new application of the successive linearization method for solving singular initial
and boundary value problems of Lane-Emden type. To demonstrate the reliability of the proposed
method, a comparison is made with results from existing methods in the literature and with exact
analytical solutions. It was found that the method is easy to implement, yields accurate results,

and performs better than some numerical methods.

1. Introduction

In this work, we investigate the application of a novel approach of solving a class of nonlinear
singular initial value and boundary value problems in the second-order ordinary differential
equations. In recent years, these problems have attracted the attention of many researchers
because of their useful applications in astronomy, mathematical biology, physics, and other
areas of science and engineering. One of the equations describing this type of equations is the

Lane-Emden type equation formulated as
" 2 ! n
y'(@) + Sy () +y" =0,

with initial conditions

y0 =1 ¥ (0)=0,
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where n € [0,5] is a constant parameter. This equation is very useful in astrophysics in
the study of polytropic models and stellar structures [1, 2]. For the special case when
n = 0,1,5, exact analytical solutions were obtained by Chandrasekhar [1]. For all other
values of n, approximate analytical methods and numerical methods are used to approximate
the solution of the Lane-Emden equation. Analytical approaches that have recently been
applied in solving the Lane-Emden equations include the Adomian decomposition method
[3, 4], differential transformation method [5], homotopy perturbation method [6], homotopy
analysis method [7, 8], power series expansions [9-13], and variational iteration method
[14, 15]. Generally, when all the above cited analytical approaches are used to solve Lane-
Emden equation, a truncated power series solution of the true solution is obtained. This
solution converges rapidly in a very small region (0 < x < 1). For x > 1, convergence is
very slow and the solutions are inaccurate even when using a large number of terms [16].
Convergence acceleration methods such as Padé approximations may be used to improve the
convergence of the resulting series or to enlarge their domain of convergence. The homotopy
analysis method [8, 17] has a unique advantage over the other analytic approximation
methods because it has a convergence controlling parameter that can be adjusted to improve
the region of convergence of the resulting series.

An important physical parameter associated with the Lane-Emden function is the
location of its first positive real zero. The first zero of y(x) is defined as the smallest positive
value xp for which y(xg) = 0. This value is important because it gives the radius of a
polytropic star. The analytic approaches on their own are not very useful in solving for x
because their region of convergence is usually less than xj. Recently, there has been a surge
in the number of numerical methods that have been proposed to find solutions of the Lane-
Emden equations. Recent numerical methods that have been proposed include the Legendre
Tau method [18], Sinc-collocation method [19], the Lagrangian approach [20], the successive
linearization method [21], and a numerical method based on radial basis functions [22].
Accurate results for the Lane-Emden equation have previously been reported in [23] where
the Runge-Kutta routine with self-adapting step was used to generate seven digit tables of
Lane-Emden functions. These tables are now widely used as a benchmark for testing the
accuracy of new methods for solving the Lane-Emden equations. More recently, numerical
values giving the first zero of the Lane-Emden equation for various values of n with at least
ten decimal places of accuracy were tabulated in [24] who use a numerical perturbation
approach and in [25] who use the Chebyshev spectral method.

Another important class of singular ODE’s of Lane-Emden type is the Frank-
Kamenetskii [26] boundary value problem

y'(x) + gy'(x) +6e¥ =0, (1.3)

which is solved subject to the boundary conditions
y'(©0)=0,  y()=0. (1.4)

This equation is used to model the temperature distribution in a vessel before a thermal
explosion takes place. A substantial amount of research has been done on this type of problem
using both analytical and numerical treatments. Closed form solutions of this problem were
reported in [26, 27] for the case when k = 0 and 1. Analytical treatment of (1.3) leading
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to series solutions was carried out in [28-30] using the Adomian decomposition method
and in [31] using a power series approach based on symmetry reduction. Asaithambi [32]
used a shooting method based approach that uses automatic differentiation to obtain a Taylor
series expansion of the solution. Numerical approaches based on B-spline functions (see e.g.,
[28, 33, 34]) have been widely used to develop solutions of singular boundary value problems
of the type (1.3). Kumar and Gupta [35] present a survey and review of papers of spline
solution of singular boundary value problems of the type (1.3).

In the present paper, we present a very simple and robust method that gives very
accurate solutions to the nonlinear initial and boundary value problems governed by (1.1)
and (1.3), respectively. The method extends the approach of [21] who attempted to solve the
Lane-Emden equation (1.1) for the case when n = 2,3,4 using the successive linearization
method (SLM). The successive linearization method is a new numerical iterative approach
that has been recently reported and successfully utilized in solving boundary value problems
[36-39] occurring in boundary layer flows in the application of fluid mechanics.

The SLM approach is based on transforming an ordinary nonlinear differential
equation into an iterative scheme made up of linear equations which are then solved using
numerical approaches. In [21], the SLM was used to obtain solutions of (1.1) that were
accurate only up to seven decimal places. In this study, a modified version of the SLM is
presented which converges much faster and gives solutions that are accurate to more than
fifteen decimal places. We also extend the application of the present method to singular
boundary value problems governed by the Frank-Kamenetskii equation. The accuracy of
the present method it tested against results obtained using other methods was found in,
literature.

2. Numerical Solution

In this section, we present the method used to solve the governing equations (1.1)—(1.4).

2.1. Solution of Lane-Emden Equation

To solve the Lane-Emden equation (1.1), it is convenient to recast the problem from being an
initial value problem to a boundary value problem by considering only the domain x € [0, a],
where a is the first zero of y(x). In most practical applications of the Lane-Emden equation
(1.1), the goal is to integrate the governing equation from 0 to a. Since a is an unknown
parameter, we rescale the problem by setting

x = at. (2.1)
Substituting (2.1) into (1.1) and simplifying gives
2 2..n
Yut gyrray’ = 0, y(0) =1, y(1) =0, y:(0) =0, (2.2)

which is a nonlinear eigenvalue problem with a as the eigenvalue. To solve (2.2), we use
the successive linearization method (SLM) (see e.g., [36-39]). The SLM approach is based on
transforming an ordinary nonlinear differential equation into an iterative scheme made up
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of linear differential equations which are then solved using analytical or numerical methods
wherever possible. In applying the SLM on (2.2), we set

i1
y(t) =vit) + D ym(t), i=1,23,..., (2.3)
m=0

where y; are unknown functions that are obtained by iteratively solving the linearized version
of the governing equations assuming that y; (0 < m < i — 1) are known from previous
iterations. The algorithm starts with an initial approximation y(t) which is chosen to satisfy
the boundary conditions in (2.2). A suitable initial guess that satisfies all the boundary
conditions in (2.2) of this example is

yo(t) =11 (2.4)

We observe that (2.2) is a second-order differential equation but has three boundary
conditions. The third boundary condition (y;(0) = 0) is used as an extra condition that is
required to solve for the eigenvalue a. Since a is an unknown parameter, we also apply the
SLM approach in solving for a by setting

i-1
a=a;+ Zam. (2.5)
m=0

An initial approximation for « that was found to give accurate results for all n € (0,5) was

a§=6<§>é (2.6)

This value of ay was obtained by substituting the initial approximation y, given by (2.4) in
(2.2) and solving the resulting equation at x = 1/2, the middle of the domain for .

Substituting the expansions (2.3) and (2.5) into (2.2) and neglecting nonlinear terms
in y; and a; give

L2
yi+ ?yi + ari-1Yi + Az = Ti-a, (27)

subject to

vi(0)=0,  v(1)=0,  (0)=0, (2.8)
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i1 2 fu n-1 i1 n-1 n
avicr=n( dam ) ( Dym ) @i =2Dam( Dym ),
m=0 m=0 m=0 m=0

i1 5 il i1 2 /i1 n
ri-1 = — Zym+?zym+ (Zam> <Zym> s
m=0 m=0 m=0 m=0

where the dots denote differentiation with respect to the scaled variable t. To solve (2.7),
we use the Chebyshev collocation method in which case the functions y; are approximated
by Chebyshev interpolating polynomials in terms of their values at the collocation points.
Before applying the spectral method, it is convenient to transform the physical region [0,1] of
problem 11 into the domain [-1,1]. This can be achieved by using the mapping

where

t_z+1
==

1<z<1. (2.10)

We use the Gauss-Lobatto collocation points [40, 41] to define the Chebyshev nodes in [-1,1]
as

aj .
zjzcos<ﬁ>, j=0,1,...N, (2.11)

where (N + 1) is the number of collocation points. The derivatives of y; at the collocation
points can be written as

N N
yi(zj) = ZDjkyi(Zk) = DYl yl(Z]) = ZD]z-kyi(Zk) = D2Y1 (212)
k=0 k=0

where Y; = [yi(zo),yi(zl),...,yi(zN_1),yi(zN)]T, T is transpose, and D is the Chebyshev
derivative matrix of size (N + 1) x (N + 1) whose entries are defined [40, 41] as

Ci (_1)j+k ) .
D=2~ k; j,k=0,1,...,N,
jk Ck Zj — 2k ]# J
Zk

Dk = - k=12,...,N-1, (2.13)

2(1-2z3)

2NZ+1
Dy = G =-Dnn,

with

(2.14)



6 Mathematical Problems in Engineering

Applying the Chebyshev spectral collocation method in (2.7)-(2.8) gives

Ai1Y;+Bisja; = Ri, (2.15)
subject to
Yi(zx) =0, yi(zo) =0, (2.16)
N
> Dnkyi(zk) =0. (2.17)
k=0

The matrices in (2.15) are defined as

Ri1 = [ria(z0), 1i1(21), -, i1 (2n-1), i (20)]7,

4
Ai =4D* + —] D+aj,
tl,
-4 5
20 ...0
ai,i-1(to) 0 o 0 to 4
0 ai-1(t) - 0 4 0 n 0
B A Hd' C o e
0 0 coaio1(tN) Ty
0 0 .. —
| NG
az,i-1(to)
, az,i-1(t1)
Biii=a;1, withay; 1= )
az;i-1(tn)

We note that the system (2.15) consists of (N +1) unknowns in ¥; and an additional unknown
a;. To solve for all (N + 2) unknowns, we increase the dimension of the system (2.15) by
introducing an additional row on which we impose the Neumann boundary condition (2.17).
The resulting system takes the form

Aiq ‘ B ][Y; Ri
_ . (2.19)
DN,() ce DN,N ‘ 0 a; 0

The boundary conditions (2.16) can be imposed on system (2.19) by deleting the first
and (N + 1)st rows of the coefficient matrix and vectors and deleting the first and (IN + 1)st
columns of the coefficient matrix. Thus, starting from the initial approximations Y and ay,
the solutions Y; and a; (i =1,2,3,...) can be determined from

-
Yi Ai— Bi— R,'_
a; Dn1 -+ DnnNa ‘ 0 0




Mathematical Problems in Engineering 7

2.2, Solution of the Frank-Kamenetskii Equation

The Frank-Kamenetskii equation admits exact analytical solutions when k =1 (see e.g., [27,
42]). When 6 < 2, it has two solutions. The problem has no solution for 6 > 2 and when 6 = 2,
it has a unique solution. The solutions are given by [42]

16e1 16e¢
ylg[ﬁ] ylg[m] 221)

where the constants ¢; and c¢; are given by

o1 = log [2(4 _6)+4 /22— 5)] . o= log[4 —o%2 V202 - %) ] (2.22)

26

To solve (1.3), it is convenient to introduce the boundary condition at x = 0 as
y(0) =5 (2.23)

where f is a constant. The governing equation (1.3) is then solved subject to the Dirichlet
boundary conditions y(0) = p and y(1) = 0 using the SLM approach as described in the
previous subsection using the Neumann boundary condition y'(0) = 0 as an extra condition
for determining the unknown g. To this end, we look for a solution of the form

i-1 i-1
y(x) = i) + D ym(x),  B=Pi+ D,Pm (2.24)
m=0 m=0

where y; and p; are obtained iteratively by solving the linearized equations that result from
substituting (2.24) into the governing equation (1.3). Substituting (2.24) into (1.3)-(1.4) and
neglecting nonlinear terms in y; and f; give

k
v+ ;yﬁ +briyi = sia, (2.25)

subject to
yi(0) = i = pi1, yi(1) =0, y;(0) =0, (2.26)

where

i-1 i-1

i-1
by = 6e><p<2ym>, pic1 = D Bm— D, ym(0),
m=0

m=0 m=0

(2.27)

i-1 i-1 i-1
Si = —I:Zy;; + ;Zy;n + 6exp<Zym>].
m=0 m=0 m=0
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A suitable initial guess that satisfies the boundary conditions (1.4) and (2.23) is

Yo(x) = ,50<1 - xz), (2.28)
where fy is the initial approximation for § which is given by
3
5 exp<%> = 260(1 + k). (2.29)

Equation (2.29) is obtained by substituting (2.28) into the governing equation (1.3) and
setting x = 1/2. The solutions for fy can be obtained using nonlinear equation solvers
in scientific computing software such as the fsolve routine that is available in MAPLE or
MATLAB.

Equations (2.25)-(2.26) are solved using the spectral collocation method. The details of
the implementation of this approach are similar to those given for the Lane-Emden equation
in the previous section. The discretized equation system to be solved is

Ci1Yi =5,
N
ZDNkyi(Zk) =0, yi(zo) =0, (2.30)
k=0
yi(zn) - ﬂi = pi-1,
where
Si-1 = [si-1(20), 5i-1(z1), - ., sic1 (zn)], Cii1=4D*+ |=| D+by,,
d
-1 -
by (50) P, 0 0
1,i-1(X0 0 0 0
, 1 2.31
0 bii1(xy) - 0 2k 0 — .-~ 0 (2:31)
by = . . . ) , [—] =2k X1
: : : : X la oo
0 0 <o+ by (xN) T
0 0 ... —
L XN J
The equation system (2.30) can be written as the matrix equation
10 0 0 07[ wiz) 1 [ 0 ]
0 yi(z1) si-1(z1)
Ci1 : : :
- . 2.32
0 yi(zn-1) si-1(zN-1) (2.32)
0 0 1 -1 yi(ZN) Pi-1
| Dno Dnjt Dyn-1t Dnnv O L B 1 L 0
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where the boundary conditions have been imposed on the first and last rows of C;_; and S;_;
and the derivative boundary condition has been added in the (NN +2) row. Thus, starting from
Yo and Py given by (2.28) and (2.29), the subsequent solutions for y;, f; (i =1,2,3,...) can be
obtained by solving the matrix system (2.32).

3. Results

In this section, we present the approximate solutions of the governing equations (1.1)—(1.4)
using the successive linearization method (SLM). In order to assess the performance and
reliability of the present method of solution, the results are tabulated in Tables 1-6 and
compared with accurate results from the literature and exact analytical solutions for the cases
where analytical solutions are available.

In the case of the Lane-Emden equation (1.1), exact analytical solutions are only
available for the case when n = 0,1,5. For any other values of n, numerical methods are
used to integrate the equation. The main difficulty in analyzing the Lane-Emden equation
is the singularity behaviour occurring at x = 0. Most researchers revisit the Lane-Emden
equation repeatedly to test the viability of their new numerical methods against it. Accurate
numerical results to seven decimal places are tabulated in Horedt [23, 43]. More accurate
results including more decimal places have recently been reported in [24, 25]. In this work,
we compare the results of the SLM approximate results to at least twelve decimal places
for the dimensionless radius and mass of the polytropic stars with the results of [24, 25]. In
Table 1, we present the SLM solution of the Lane-Emden equation (1.1) for the first zero a.
The first zero is the smallest root a such that y(a) = 0 and gives the dimensionless radius
of the polytropic star [1]. The present results, at different iterations, are compared with the
numerical results of [24, 25] to fifteen decimal places. The results presented in Table 1 we
generated using N = 40 collocation points for n = 1,2 and N = 70 for n = 3,4. It can be
seen from the table that the present SLM approach gives very accurate results which rapidly
converge to the numerical result. Accuracy to fifteen decimal places is obtained after only
four iterations for n = 1, five iterations for n = 2, six iterations for n = 3, and seven iterations
for n = 4. We remark that the original SLM solution of the Lane-Emden equation reported in
[21] gave results which were only accurate to seven decimal places even after increasing the
number of iterations. This shows that the present modification of the original SLM approach
results in a more robust method of solution. Similar results for nonintegral values of n are
given in Table 2.

In Table 3, we give a comparison of the values of iy'(1) which is used in the definition of
the dimensionless mass of the polytropic star given by —a?y’(a) against the numerical results
of [25]. Again, it can be seen that the present SLM results rapidly converge to the numerical
results of [25].

Figure 1 shows the Lane-Emden equation solution curves for different indices
obtained using eight iterations of the SLM solution series. These solution curves are
qualitatively similar to those obtained using other numerical methods (see e.g., [22]).

The Frank-Kamenetskii equation (1.3) was solved using the SLM iteration scheme
given by the matrix equation (2.32), and the present results were compared against the
exact analytical results given by (2.21)-(2.22) for the case when k = 1 and 6 = 1. The
initial approximations required to start the SLM algorithm were generated using (2.28)-
(2.29). For k = 1 and 6, (2.29) generates two solutions for fy which then result in two
SLM solutions. Table 4 gives a comparison between the SLM approximate results to twenty
decimal places against the exact analytical solutions. It can be seen from the table that for
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n=05,1,15,2,25,3,35,4

X

Figure 1: Graph of the SLM solutions of the Lane-Emden equation (1.1) forn = 0.5,1,1.5,2,2.5,3,3.5, and
4 using i = 8 iterations.

y(x)
N

BO 0= 0- -6 - -0 —_ 4

;0'0"0"'0""0""'5""' 5

1st solution

0 0.2 0.4 0.6 0.8 1

Figure 2: Comparison between the analytical solution (in diamonds) and the SLM approximate solutions
for different values of 6 when k = 1.

the first root, convergence to twenty decimal places is achieved after only three iterations.
For the second root, convergence to twelve decimal places of accuracy is achieved after only
five iterations and convergence to twenty decimal places is achieved after six iterations. From
this observation, it can be seen that the present algorithm is very robust.

In Table 5, we give results for the maximum absolute errors for (1.3) when k = 1 and
6 =1 for different collocation points (grid points) at different iterations. The present results
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Table 1: Comparison of the first zero («) of the Lane-Emden equation at different iterations for different
values of n against numerical results given by Boyd [25] and Seidov [24].

-~

n=1 n=2 n=3 n=4
1 3.103790966018498  4.035737655330261  5.557521240863945 8.688676175146224
2 3.141338575299632  4.330814323152805  6.592739714660735  11.771827678456009
3 3.141592635714092  4.352749271550132  6.877461391335034  13.886237798409815
4 3.141592653589793  4.352874592230670  6.896766842576802  14.817460536386396
5 3.141592653589793  4.352874595946125  6.896848617928429  14.967975594173165
6 3.141592653589793  4.352874595946125  6.896848619376960  14.971544376671904
7 3.141592653589793  4.352874595946125  6.896848619376960  14.971546348837493
8 3.141592653589793  4.352874595946125  6.896848619376960  14.971546348838095
Reference [25] 3.141592653589793  4.352874595946125  6.896848619376960  14.971546348838095
Reference [24]  3.141592653589793  4.352874595946124  6.896848619376960  14.971546348838093

Table 2: Comparison of the first zero (a) of the Lane-Emden equation at different iterations for different
values of n against numerical results given by Boyd [25].

Iteration n
n=0.5 n=15 n=25 n=235

1 2.748427032416 3.524247954347 4.685837835928 6.799314270510
2 2.752696116339 3.650158732919 5.264679963832 8.585590955706
3 2.752698054064 3.653750290899 5.353307428656 9.386863426519
4 2.752698054065 3.653753736216 5.355274556453 9.531659161527
5 2.752698054065 3.653753736219 5.355275459011 9.535802061278
6 2.752698054065 3.653753736219 5.355275459011 9.535805344243
7 2.752698054065 3.653753736219 5.355275459011 9.535805344245
8 2.752698054065 3.653753736219 5.355275459011 9.535805344245
Reference [25] 2.752698054065 3.653753736219 5.355275459011 9.535805344245

are compared with the recent B-Spline numerical results of [33]. It is worth noting that the B-
Spline approach of [33] was meant to be an improvement on other numerical approaches that
have previously been used to solve (1.3). For example, the results reported in [33] are more
accurate than those reported in [34] where a three point finite difference approach was used
to solve the same problem. Table 5 indicates that the present results are far more superior than
the B-Spline results of [33] when the same number of grid points are used. We remark that
results for only the first root were reported in [33] whereas our approach gives two solutions
of (1.3). It can also be seen from Table 5 that the convergence of the method improves with
an increase in the number of iterations.

Table 6 gives the results for the second root. Again, it can be seen from this table that
the present method gives very accurate results which rapidly converge to the exact solution.
Increasing N and the number of iterations improves the accuracy of the method.

In Figure 2, we plot the solution profile y(x) for different values of the Frank-
Kamenetskii parameter 6 after 6 iterations. It can be seen from the figure that there is good
agreement between our approximate results and the exact analytical solutions.
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Table 3: Comparison of the value of dy/dt(1), for the Lane-Emden equation at different iterations for
different values of n against numerical results given by Boyd [25].

; n
n=1 n=2 n=3 n=4

1 —-1.032146158998257 —0.614886114475695 —0.316160520906889 —0.009814787486055
2 —1.000237675841930 —0.558083545440036 —0.306609857182704 —0.146741321451808
3 —1.000000012692448 —0.553918189951109 —0.293448460329348 —0.128608843668195
4 —1.000000000000000 —0.553897421500438 —0.292634978984266 —0.121103290612396
5 —1.000000000000000  —0.553897420877304 —0.292631615214246 —0.120066832081784
6 —1.000000000000000 —0.553897420877304 —0.292631615154770 —0.120043051612478
7 —1.000000000000000  —0.553897420877304 —0.292631615154770 —0.120043038478707
8 —1.000000000000000 —0.553897420877304 —0.292631615154770 —0.120043038478703
Reference [25] —1.000000000000000 —0.553897420877304 —0.292631615154770 —0.120043038478703

Table 4: SLM results for y(0) corresponding to the two roots of (1.3) whenk =1,6 =1, and N = 50.

Iteration 1st root 2nd root
1 0.31669044212643981117 4.12191170750356255708
2 0.31669436763842469104 3.85609488634651084646
3 0.31669436764074987779 3.84275755885741291875
4 0.31669436764074987779 3.84218880566051216841
5 0.31669436764074987779 3.84218871571893306220
6 0.31669436764074987779 3.84218871571892197872
7 0.31669436764074987779 3.84218871571892197872
Exact 0.31669436764074987779 3.84218871571892197872

Table 5: Maximum absolute errors for solution of (1.3) (1st root).
N Iter.

1 2 3 Reference [33]
20 3.926 x 107 2.325 x 10712 2.488 x 1072 3.161 x 107
40 3.926 x 107 2.325 x 10712 5.976 x 1072 7.874 x107°
60 3.926 x 107 2.325 x 10712 5.976 x 1072 3.501 x 107°
90 3.926 x 107° 2.325 x 10712 5.976 x 1072 1.552 x 107°
111 3.926 x 107° 2.325 x 10712 5.976 x 1072 1.039 x 107°

Table 6: Maximum absolute errors for solution of (1.3) (2nd root).

N Iter.

2 4 6 8
20 2.460 x 1072 1.094 x 1077 6.407 x 10710 6.407 x 10710
40 2.482 x 1072 1.093 x 1077 8.611 x 107 8.611 x 107%
60 2.480 x 1072 1.094 x 1077 5013 x 10728 5.515x 10728
90 2.482 x 1072 1.094 x 1077 5.014 x 1072 3.300 x 107
111 2.482 x 1072 1.094 x 1077 5.014 x 107% 3.300 x 10738
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4, Conclusion

In this paper, we presented a new application of the successive linearization method (SLM)
in solving Lane-Emden equations that model polytropic models of arbitrary index n € (0,5).
The method is also tested on a singular boundary value Frank-Kamenetskii problem. The
governing nonlinear equations were transformed to eigenvalue problems and subsequently
solved using the SLM approach. A comparison was made between exact analytical solutions,
numerical results from the literature and the present approximate solutions. The comparison
indicates that the present method is robust and gives very accurate results and performs
better that other numerical methods that have previously been applied to solve the same
problems. The results presented in this paper can easily be extended to other initial and
boundary value problems which are difficult to solve using other numerical methods.
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