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Multiplicative noise, also known as speckle noise, is signal dependent and difficult to remove.
Based on a fourth-order PDE model, this paper proposes a novel approach to remove the multi-
plicative noise on images. In practice, Fourier transform and logarithm strategy are utilized on the
noisy image to convert the convolutional noise into additive noise, so that the noise can be removed
by using the traditional additive noise removal algorithm in frequency domain. For noise removal,
a new fourth-order PDEmodel is developed, which avoids the blocky effects produced by second-
order PDE model and attains better edge-preserve ability. The performance of the proposed
method has been evaluated on the images with both additive and multiplicative noise. Compared
with some traditional methods, experimental results show that the proposed method obtains
superior performance on different PSNR values and visual quality.

1. Introduction

Image denoising plays an important role in the areas of image processing. A real recorded
image may be distorted by many expected or unexpected random factors, of which random
noise is an unavoidable one [1, 2]. The objective of image denoising or filtering is to recover
the true image from the noisy one. One of the challenges during the denoising process is to
preserve and enhance the important features. For images, edge is one of the most universal
and crucial features. Denoising via linear filters normally does not give satisfactory perfor-
mance since both noises and edges contain high frequencies. Therefore, some nonlinear filters
[3–18] have been proposed. Median filter [1] is one of the classical examples. Wavelet-based
image filters [19–22] are developing quickly. PDE-based nonlinear diffusion filters [23–26]
also make a hit on image denoising. One of PDE-based methods is the famous total variation
model (TVM) [27–35]. TVM has been improved in theory and algorithm continuously.
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Recently, Kim [23] proposed a model called αβω(ABO)-model by hybridizing a nonconvex
variant of the TVM, the motion by mean curvature (MMC) [29], and Perona-Malik model
[4] to deal with the mixture of the impulse and Gaussian noises reliably. In [23], they apply
the essentially nondissipative difference (ENoD) schemes [5, 6] for the MMC component to
eliminate the impulse noise with a minimum (ideally no) introduction of dissipation. Many
denoising methods are also employed in medical image processing [36–39].

Due to the coherent nature of some complicated image acquisition processes, such
as ultrasound imaging, synthetic aperture radar (SAR) and sonar (SAS), and laser imaging,
the standard additive noise model, so prevalent in image processing, is inadequate. Instead,
multiplicative noise models, that is, in which the noise field is multiplied by (not added to)
the original image, provide an accurate description of coherent imaging systems [40–42].
Multiplicative noise is naturally dependent on the image data. Various adaptive filters [43, 44]
for multiplicative noise removal have been proposed. Experiments have shown that filtering
methods work well when the multiplicative noise is weak.

In this paper, a new fourth-order PDE model is introduced by improving the original
fourth-order PDE model [24] in order to get high fidelity of the denoised images. To solve
the model efficiently and reliably, we suggest a simple and symmetrical difference schemes.
Median filter is exploited to alleviate the speckle effects in the processed image. At the
same time, a new multiplicative noise removal algorithm based on fourth-order PDE model
is proposed for the restoration of noisy image. To apply the proposed model for removal
of multiplicative noise, the Fourier transform is used to change convolution into product;
meanwhile, the logarithmic transformation is used to convert multiplicative noise into addi-
tive one. Experimental results show that the proposed method gets nice result in restoring
images, especially in edge preservation and enhancement.

The rest of this paper is organized as follows. In Section 2 we investigate a general
model of multiplicative noise. Total variation model and its discretization are introduced in
Section 3. In order to avoid the blocky effects of second-order PDEmodel and preserve edges,
a new fourth-order PDE denoising model is proposed in Section 4. Section 5 is devoted to a
study of multiplicative noise removal method, and an algorithm based on fourth-order PDE
model is developed. Numerical results are presented in Section 6. We summarize our conclu-
sions in Section 7.

2. Multiplicative Noise Model

Noise removal or reduction is very important in image processing community. The objection
of image denoising or filtering is to recover the true image from a noisy one. There are dif-
ferent noise types in real world. Multiplicative noise is common beside additive noise.
Quality of images may degenerate while images’ obtaining, transferring, and storage. The
movement of objects, the defects of the imaging system, the noise of the inherent record
equipment, and external disturbance also cause the image noise. Under the assumption that
imaging system is linear translation invariance system, we can use the following degradation
model to describe the multiplicative noise images:

u0
(
x, y

)
= hd

(
x, y

) ∗ f(x, y) + n
(
x, y

)
, (2.1)
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Figure 1:Multiplicative noise images. (a)Original “Lena” image; (b) image convolution with template 3 ×
3 of (a); (c) image with Gaussian white noise of mean 0 and variance 0.01; (d) image with Gaussian white
noise of mean 0 and variance 0.05; (e) original “vegetables” image; (f) image convolution with template
3 × 3 of (a); (g) image with Gaussian white noise of mean 0 and variance 0.01; (h) image with Gaussian
white noise of mean 0 and variance 0.05.

where f is the ideal image, u0 is the noised image, n denotes the additive noise with mean 0
and variance σ2, ∗ denotes convolution operation, hd denotes the point spread function (PSF),
andGaussian function can be considered as one of the classical PSF:

Gd

(
x, y

)
= exp

{
−(x2 + y2)

2σ2

}

, (2.2)

Therefore, the synthesized imageswithmultiplicative noise in this paper are generated
for ideal images convolution with 2D Gaussian kernels and then noised with additive
Gaussian white noise. An example is shown in Figure 1. hd in (2.1) is chosen as (2.2), namely

Gaussian function templates. 3 × 3 Gaussian function template T3 = (1/16) ×
[ 1 2 1
2 4 2
1 2 1

]
is em-

ployed here.

3. Total Variation Model

In order to recover the true image f as much as possible and/or to find a new image u in
which the information of interest such as object boundary in the image is more obvious and/
or more easily extracted, we will discuss PDE-based image denoising in this section. Second-
order PDEmodels have been studied as a useful tool for image denoising. The classical model
of them is total variation model (TVM) [27], and we will introduce it.

TVMwas first proposed by Rudin et al. [27]. It is now one of the most successful tools
in image restoration. TVM has a simple fixed filter structure. In terms of the mathematical
foundation, unlike most statistical filters, TVM is based on functional analysis and geometry.
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Figure 2: Four neighboring image structure.

The additive noise removal problem is converted to energy function minimization problem
as below:

u = argmin{ETV(u)}

ETV(u) =
∫∫

Ω

|∇u|dxdy +
λ

2

∫∫

Ω

(u0 − u)2dxdy,
(3.1)

whereΩ denotes image domain, and λ is Lagrange multiplier. The selection of the parameter
λ is very important for the smoothing result. The corresponding Euler-Lagrange equation is

−∇ ·
( ∇u

|∇u|
)
+ λ(u − u0) = 0, (3.2)

and the steepest descent marching gives

∂u

∂t
= ∇ ·

( ∇u

|∇u|
)
− λ(u − u0). (3.3)

To avoid singularities in flat regions or at local extreme, |∇u| in (3.2) is regularized to

|∇u|ε =
√
|∇u|2 + ε2 for a small positive parameter ε. Chan et al. [30] deduce discrete iterative

equation of TV model as follows:

un+1
α =

∑

β∈N(α)

hαβu
n
β + hααu

0
α, (3.4)

where u0
α denotes the pixel value at node α in the noisy image, n denotes iteration times, un

α

denotes the image pixel value after n+1 iterations,N(α) denotes field of node α (see Figure 2).
The filter coefficients hαα and hαβ are given by

hαα =
λ

λ +
∑

β∈N(α) wαβ
,

hαβ =
wαβ

λ +
∑

β∈N(α) wαβ
,

(3.5)
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wαβ =
gn
α + gn

β

2h2
,

gn
α =

1
|∇un

α|
,

(3.6)

|∇un
α| ≈

√√
√
√ 1

2h2

∑

β∈N(α)

(
un
β
− un

α

)2
. (3.7)

Here, for any node αhαα +
∑

β∈N(α) hαβ = 1.
In conclusion, TV denoising algorithm steps can be summarized as follows:

(1) to assign parameter λ and a;

(2) compute the local variation |∇un
α| by (3.7);

(3) compute respectively gn
α and wn

αβ
(3.6);

(4) compute the filter coefficients hαα and hαβ by (3.5);

(5) calculate iterative equation (3.4).

For TV filtering process, the computational cost can be reduced by the algorithm. TVM
not only can remove noise but also can keep the image edge information. Some experimental
results are shown in Figure 3. TVM is better than the traditional denoising methods not only
in PSNR values but also in visual quality.

4. A New Fourth-Order PDE Denoising Model

In order to avoid the blocky effects (seen in Figure 3(f) and Figure 4(f))widely seen in images
processed by anisotropic diffusion while preserve edges, You and Kaveh [24] proposed a
fourth-order PDE for noise removal. Motivated by [24] and TVM,we proposed a novel model
in [25, 26]. The new approach combines the advantages of the famous TVM and original
fourth-order PDE model. It can avoid the blocky effects and get high fidelity (improve the
quality of the processed image), which is important for image filter application (see Figure 4).

Consider the energy function as follows:

E(u) =
∫∫

Ω

(
f
(∣∣∣∇2u

∣∣∣
)
+
λ

2

∣∣∣u − u0
∣∣∣
2
)
dxdy, (4.1)

where Ω is the image domain and λ > 0 is a parameter similar as in TVM. u0 is the noisy
image. ∇2 denotes Laplacian operator and we require f is an increasing function and bigger
than zero. Therefore, the minimization of the functional is equivalent to smoothing the image
as measured by |∇2u|.

The corresponding Euler-Lagrange equation is

∇2
(
f ′
(∣∣∣∇2u

∣∣∣
)
sign

(
∇2u

))
+ λ ·

(
u − u0

)
= 0, (4.2)
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Figure 3: Detail of restoring noisy Elaine image (512 × 512) with different filters. (a) Original image; (b)
noisy image, PSNR = 20.0742; (c) median, PSNR = 26.4554; (d) averaging, PSNR = 27.6876; (e) wiener,
PSNR = 26.7866; (f) TVM, PSNR = 30.0919.

where sign is the signed distance function, so (4.2) can be written as

∇2

(

f ′
(∣∣∣∇2u

∣∣∣
) ∇2u

|∇2u|

)

+ λ ·
(
u − u0

)
= 0. (4.3)

If we define c(s) = f ′(s)/s, which is

∇2
(
c
(∣∣∣∇2u

∣∣∣
)
∇2u

)
+ λ ·

(
u − u0

)
= 0, (4.4)

therefore, the Euler equation may be solved through the following gradient descent proce-
dure:

∂u

∂t
= −∇2

(
c
(∣∣∣∇2u

∣∣∣
)
∇2u

)
− λ ·

(
u − u0

)
. (4.5)

So we can discretize and iterate to solve the equation.
To solve the model in (4.5) efficiently and reliably, we propose a simple symmetric

difference algorithm based on four neighboring systems (seen in Figure 2).
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We calculate Laplacian of the image intensity function as

∇2u|i,j =
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

h2
, (4.6)

where h is space grid size. Given a time step Δt, (4.5) can be discretized as

un+1 = un −Δt
(
∇2

(
c
(∣∣
∣∇2un

∣
∣
∣
)
∇2un

)
+ λ

(
un − u0

))
. (4.7)

Similar as [24], we define

c(s) =
1

1 + (s/k)2
, (4.8)

where k is a parameter.
So the symmetric fourth-order PDE denoising algorithm is as follows.

Step 1. Initialization: select the constants λ, k, h, Δt and choose an initial function (image) u.

Step 2. Compute ∇2u and |∇2u| using (4.6).

Step 3. Compute c(|∇2un|) using (4.8).

Step 4. Update u using (4.7).

Step 5. Repeat Steps 2 and 4 until convergence.

Figure 4 shows the results for a medical image with Gaussian white noise of mean 0
and variance 0.01. Median filter is applied to alleviating the speckle effects in the processed
image. We can see from Figure 4 that the new fourth-order PDE method obtains the biggest
PSNR values in all filter method and can avoid the block effect in Figure 4(f). At the same
time, the last result of the new method (Figure 4(j), PSNR = 28.4746 dB) is better than the
original fourth-order PDEmethod (Figure 4(b), PSNR = 27.7743 dB) not only in PSNR values
but also in visual quality.

5. Multiplicative Noise Removal Algorithm Based on
Fourth-Order PDE Model

Objective of most traditional algorithms is to deal with additive noise, but the result is not
ideal for the big multiplicative noise. This paper proposes a newmultiplicative noise removal
algorithm and combines the denoising algorithm with image frequency domain. The whole
process is as follows.

Firstly, remove the additive noise n in model (2.1) by denoising algorithm, then the
model is simplified as

u0
(
x, y

)
= hd

(
x, y

) ∗ f(x, y). (5.1)
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Figure 4: Detail of the denoising medical image with different methods. (a) A slice of an MRI brain image;
(b) image with Gaussian white noise of mean 0 and variance 0.01, PSNR = 21.0980; (c) denoised with
median filter (template: 3 × 3), PSNR = 27.3774; (d) denoised with averaging filter (template: 3 × 3),
PSNR = 27.7701; (e) denoised with Wiener filter (template: 5 × 5), PSNR = 27.8061; (f) denoised with
TVM (λ = 0.01, 10 iterations), PSNR = 24.9200; (g) results with the original fourth-order PDE model,
PSNR = 27.6730; (h) denoised (g) with Median filter, PSNR = 27.7743; (i) results with the new fourth-
order PDE model, PSNR = 26.9902; (j) denoised (i) with median filter, PSNR = 28.4746.

Secondly, convolution in (5.1) changes to product according to fast Fourier transform
(FFT):

U(u, v) = Hd(u, v) · F(u, v), (5.2)

where U(u, v), Hd(u, v), and F(u, v) denote FFT of u0(x, y), hd(x, y), and f(x, y), respec-
tively.

Thirdly, (5.2) can be rewritten by logarithmic transformation (LN) as follows:

lnU(u, v) = lnF(u, v) + lnHd(u, v). (5.3)

Fourthly, lnHd(u, v) in (5.3) can be regarded as additive noise in image frequency
domain, and we can remove it by some additive denoising algorithms, such as TVM and
fourth-order PDE model. Therefore,

lnU(u, v) = lnF(u, v). (5.4)

Fifthly, by exponential transform (EXP), (5.4) is rewritten as

U(u, v) = F(u, v). (5.5)

Sixthly, by inverse fast Fourier transform for (5.5), we can get

u = f, (5.6)
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TVM FFT log TVM EXP IFFT 

uu0

Figure 5: Structure of multiplicative noise removal algorithm based on the total variational model.

Table 1: PSNR values obtained with difference filters (template 3 × 3).

Noise level PSNR(dB) for Lena/vegetables image
Noisy image Average filter Median filter TV filter MNRATV

0.05 13.73/13.67 22.08/22.15 23.66/23.56 25.06/25.26 25.47/26.04
0.10 11.40/11.39 19.71/19.74 21.32/21.25 22.48/22.48 23.81/24.14
0.15 10.25/1024 18.36/18.46 19.85/19.80 20.64/20.74 22.64/22.92
0.20 9.54/9.52 17.46/17.50 18.78/18.66 19.44/19.40 21.74/21.78
0.25 9.05/9.05 16.84/16.87 17.96/17.83 18.54/18.56 21.05/21.12
0.30 8.69/8.68 16.40/16.49 17.29/17.16 17.86/17.85 20.46/20.51
0.35 8.42/8.40 16.02/15.98 16.67/16.62 17.29/17.33 19.93/20.02
0.40 8.19/8.20 15.68/15.71 16.24/16.40 16.86/16.90 19.56/19.62

where u in (5.6) is considered as the denoised image got by our algorithm. There are two
denoising processes in the multiplicative noise removal framework, that is, the first step and
the fourth step, if we select the denoising methods all as TVM removal framework of all as
TVM, structure of multiplicative noise removal algorithm can be seen below.

In Figure 5, multiplicative noise removal algorithm considers the natural image noise
as two parts, convolution changes to product by Fourier transform and product changes to
summation by logarithm, then noise can be removal according to total variation model and
the image is rebuilt.

6. Experimental Results

We use MATLAB 7.10 (R2010a) as the tool to carry out all algorithms a PC equipped with
an Intel Core i3-2330M CPU at 2.20GHz and 4G RAM memory and Windows 7 operating
system. Denoising performance is evaluated using the PSNR (peak signal-to-noise ratio) in
dB which defined by

PSNR = 10 · log10
R2M ·N

[
f
(
x, y

) − u
(
x, y

)]2 , (6.1)

where u(x, y) denotes the restored image with respect to the original image f(x, y), R = 255,
and M and N are the wide and high of image.

The effectiveness of the new multiplicative noise removal algorithm is based on the
total variation model (MNRATV) shown in Table 1, Figures 6 and 7. The sizes of the noisy
“Lena” and “vegetables” images is all 512 × 512. The numerical results are listed in Table 1
and compared in Figure 6. Visual quality is shown in Figure 7. Experimental results show that
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Figure 6: PSNR values in Table 1 plotted together. (a) Lena image; (b) vegetables image.
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Figure 7: Results of difference noise removal algorithms for noisy “Lena” and “vegetables” images. (a) The
multiplicative noisy image; (b) results of Median filter algorithm; (c) results of Averaging filter algorithm;
(d) results of TVM; (e) results of MNRATV.

the new method is available. It is better than the traditional denoising algorithm not only in
PSNR values but also in visual quality.

We can see from Table 1 and Figure 6 that the PSNR values of the restored images by
MNRATV are higher than restored images by all the other methods. It is little bigger than
those by TVM when the noise level is lower. The results of MNRATV and TVM are shown in
Figure 8.
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var = 0.05

(a)

PSNR = 25.07 dB

(b)

PSNR = 25.47 dB

(c)

var = 0.1
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(h)

PSNR = 22.62 dB
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Figure 8: Results of MNRATV and TVM. Column 1 is the multiplicative noise with variance 0.05, 0.10,
0.15, and 0.20; respectively, Column 2 is the corresponding results with TVM, and Column 3 is the cor-
responding results with MNRATV.

Table 2: Different multiplicative noise removal method constructed with exist model.

Denoising method 1 Denoising method 2 New method

TVM TVM MNRA1(MNRATV)
FPDE TVM MNRA2
TVM FPDE MNRA3
FPDE FPDE MNRA4

There are two denoising methods in the first step and fourth step of the multiplicative
noise removal framework; we can call it denoising method 1 and denoising method 2. If they
are all chosen as TVM, then thewhole framework in Figure 5 is calledMNRA1method, which
is called MNRATV before. TVM and fourth-order PDE (FPDE) model which we introduced
in Section 4 constitutes four methods. Details are shown in Table 2.

Different methods are employed to remove the noisy Lena image with different var-
iance. PSNR values are shown in Table 3. Seen from Table 3, TVM or FPDE directly is not
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Table 3: PSNR values obtained with difference algorithm for Lena image.

variance
PSNR(dB)

Noisy image TVM FPDE MNRA1 MNRA2 MNRA3 MNRA4

0.05 13.6935 25.0739 24.0739 25.4833 25.6347 25.8190 25.7443
0.10 11.4336 22.4860 22.3232 23.9355 24.2382 23.8612 23.9770
0.15 10.2712 20.7197 20.7700 22.7277 23.2101 22.4985 22.7830
0.20 9.5307 19.4144 19.6830 21.6790 22.4667 21.3851 21.7750
0.25 9.0769 18.6046 18.8871 21.0824 21.8927 20.6409 21.0582
0.30 8.6769 17.7913 18.0713 20.3577 21.2616 19.9417 20.3536
0.35 8.4000 17.2305 17.4785 19.8687 20.7377 19.3328 19.7712
0.40 8.1948 16.8051 16.9839 19.5339 20.3135 19.1239 19.4284

good because of the multiplicative noise type. Median filter cannot be exploited as denoising
method 2 since complex number is generated by the Fourier transform. Denoising method 1
is selected as FPDE in MNRA2, and it gets better results.

7. Conclusion

PDE models have been widely applied in image processing community especially in image
denoising. However, traditional PDE-based methods have some drawbacks unless the gov-
erning equations are both incorporating appropriate parameters and discretized by suitable
numerical schemes. In this paper, a new fourth-order PDE model is introduced by improving
the original fourth-order one [24] in order to avoid the blocky effect. To solve the model
efficiently and reliably, we suggest a symmetrically difference schemes. Median filtering is
exploited to alleviate the speckle effects in the processed image in succession. Accordingly, a
new multiplicative noise removal algorithm based on the proposed fourth-order PDE model
is presented. To remove the multiplicative noise, the convolution is changed into a product
by applying the Fourier transform. Furthermore, the multiplicative noise is converted into
the additive one by using a logarithmic transformation. Then the noise can be removed by
applying the proposed PDE model. Experimental results have shown the effectiveness of the
proposal.
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