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Motivated by a class of contact vibration control problems in mechanical systems, this paper
considers a regulation problem for discrete-time switched bimodal linear systems where it is
desired to achieve output regulation against partially known deterministic and unknown random
exogenous signals. First, a set of observer-based Youla parameterized stabilizing controllers
is constructed, based on which the regulation conditions for the switched system against the
deterministic signals along with an H2 performance constraint against the unknown random
signals are derived. Then a corresponding regulator synthesis algorithm is developed based on
solving properly formulated linear matrix inequalities. The proposed regulator is successfully
evaluated on an experimental setup involving a switched bimodal mechanical system subject to
contact vibrations, hence, demonstrating the effectiveness of the proposed regulation approach.

1. Introduction

Recently, switched control systems have been attracting much attention in the control
community since they present problems that are not only academically challenging, but also
of practical importance. In the past decades, significant progress has been reported in the
literature [1–4] on switched systems and impulsive systems. However, most of the results
focus on the stability analysis for such systems. In practice, in addition to stability require-
ments, there is a need to find controllers that would achieve regulation against reference
or disturbance signals. For example, in hard or optical disk drives, maintaining a constant
small distance between the read/write head and the disk surface is an important target for
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the design of ultrahigh storage density drives [5–7]. In this case, the read/write head enters
into intermittent contact with the disk surface, which results in a switched system regulation
problem [5, 6]. Existing results in the literature on the exact output regulation problem
for switched systems have been derived using different approaches and under different
assumptions. The case of continuous-time switched systems with preknown switching times
and where the model for the exogenous inputs is either completely or partially known
is treated in [8]. Regulation in continuous-time piecewise affine (PWA) bimodal systems
with completely known reference trajectories and where switching is defined according
to a switching surface has been treated in [9] using a generalized error signal. General
continuous-time PWA systems have been treated in [10] for the case of perfectly known
reference trajectory. A different approach to the regulation problem in continuous-time
bimodal linear systems against known exogenous signals was presented by Wu and Ben
Amara in [11–13]. The design of the desired regulator was performed within a set of Youla
(or Q-) parameterized regulators for the system. The synthesis algorithms are formulated in
sets of bilinear matrix inequalities [11] or linear matrix inequalities [12, 13], respectively.

In this paper, a Youla parameterized controller design approach is proposed for
discrete-time switched bimodal linear systems. The goal is to design a controller to achieve
regulation against partially known deterministic disturbance or reference signals in the
presence of unknown random disturbances. The problem treated in this paper is motivated
by the flying height regulation problem in hard or optical disk drives [5–7], where the
read/write head is supposed to track, at a small constant distance, the disk surface profile
in the presence of known and unknown disturbances and vibrations. The close proximity
of the read/write head to the disk surface results in intermittent contact between the two
and a bimodal system behaviour. The regulation problem is considered by constructing a
set of observer-based parameterized stabilizing controllers that satisfy a sufficient regulation
condition for the switched system. A corresponding regulator synthesis algorithm is
developed based on solving properly formulated linear matrix inequalities.

The rest of the paper is organized as follows. In Section 2, the general regulation
problem for the discrete-time switched bimodal system with deterministic input signals and
unknown random signals is presented. In Section 3, a Youla parameterized set of stabilizing
switched controllers for the switched system is constructed. In Section 4, regulation
conditions for the switched system are presented. In Section 5, a regulator synthesis
algorithm is proposed based on solving properly formulated linear matrix inequalities. In
Section 6, experimental results are presented to illustrate the effectiveness of the proposed
regulators, followed by the conclusion in Section 7.

2. The Regulation Problem for Switched Bimodal Systems

Consider the discrete-time switched bimodal system given by the following state space
representation:

Σr :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x(k + 1) = Arx(k) + Bru(k) +Dx
r dr(k) + Fx

r dw(k), x(0) = x0,

y(k) = C
y
r x(k) +D

y
r dr(k) + F

y
r dw(k),

e(k) = Ce
rx(k) +De

rdr(k) + Fe
r dw(k),

r =

{
1 if e(k) = Ce

rx(k) +De
rdr(k) + Fe

r dw(k) ≤ δ,

2 if e(k) = Ce
rx(k) +De

rdr(k) + Fe
r dw(k) > δ,

(2.1)
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where x ∈ Rn is the state vector, u ∈ R is the control input, y ∈ R is the measurement signal
to be fed to the controller, e ∈ R is the performance variable to be regulated and is assumed
to be measurable, r ∈ {1, 2} is the index of the system Σr under consideration at time k, and
δ is a constant satisfying |δ| > 0. The external signal dw ∈ Rl represents unknown random
signals. The external signal dr ∈ Rh, representing deterministic disturbance and/or reference
signals, is also assumed to switch according to the rule given in (2.1). The signal dr is given
by:

dr =
[
d1
r · · · dh

r

]T
, (2.2)

where each d
j
r is of the following form:

d
j
r(k) =

kj∑

i=1

c
r,j

i cos
(
ω

r,j

i k + φ
r,j

i

)
+ c

r,j

kj+1
, r ∈ {1, 2}, j = 1, . . . , h, (2.3)

with known frequencies ω
r,j

i , and unknown amplitudes c
r,j

i and phases φ
r,j

i , i = 1, . . . , kj ;
j = 1, . . . , h. It should be noted that switching is dependent on a time varying switching
surface defined by e(k) = Ce

rx(k) + De
rdr(k) + Fe

r dw(k), and furthermore the exogenous
input dr switches at the same time switching in the plant model takes place. Moreover, dr

is discontinuous during switching. The control objective with respect to the switched system
(2.1) is to design an output feedback controller to regulate the performance variable e of the
switched system against the external input signals dr and dw. More specifically, it is desired to
achieve exact output regulation against the deterministic exogenous input dr and tominimize
the effects of the random input dw to the performance variable e, simultaneously.

One of the motivations for the regulation problem presented for the system (2.1) above
is the mechanical system shown in Figure 1. In this system, the mass M is supposed to
maintain a constant separation with the contact surface S while the latter keeps moving
laterally. The system exhibits a bimodal behaviour depending on whether contact between
the mass M and the contact surface S takes place. A detailed model for such system is
presented in [5, 11], which can be found in many practical applications, such as the flying
height regulation problem for the read/write head in hard or optical disk drives.

3. Construction of a Set of Parameterized Output Feedback Controllers

In this paper, the feedback controllers are obtained by considering Youla (Q-) parameterized
output feedback controllers for the switched system (2.1). The construction of such set of
controllers proceeds along the same lines as in [12, 13]. Each controller is expressed as a
linear fractional transformation involving a fixed system Jr and a proper stable parameterQr

that could be chosen as desired (see Figure 2). The state space representation of the systems
Jr and Qr are given by the following:
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Disturbance forces
Contact surface S

M

Actuator force

Direction of surface motion

Figure 1: Example of a mechanical system with switched dynamics.

Jr

Plant
∑

r

dw

dr

e

u y

Qr

yQy − ꉱy

Figure 2: Closed loop system with a Q-parameterized controller.

Jr :

⎧
⎪⎪⎨

⎪⎪⎩

x̂(k + 1) =
(
Ar + LrC

y
r + BrKr

)
x̂(k) − Lry(k) + BryQ(k), x̂(0) = x̂0,

u(k) = Krx̂(k) + yQ(k),
y(k) − ŷ(k) = y(k) − C

y
r x̂(k).

Qr :

{
xQ(k + 1) = AQxQ(k) + BQ

(
y(k) − ŷ(k)

)
, xQ(0) = x0

Q,

yQ(k) = CQrxQ(k),

(3.1)

where x̂(k) is an estimate of the plant state vector x(k), ŷ(k) = C
y
r x̂(k) is an estimate of the

plant output y(k), Kr and Lr , r ∈ {1, 2}, are state feedback and observer gains, respectively,
xQ ∈ RnQ , AQ is a fixed stability matrix, BQ is a fixed matrix, and matrix CQr changes with
r ∈ {1, 2}. In this paper, the transfer function of the Qr parameter is considered as the form

Qr(z) = F(z)
∑nq

q=1 θ
q
r z

1−q, where F(z) is a stable function and θ
q
r ∈ R. Let χ = [xT xT

Q x̃T ]
T

1×N ,
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N = 2n+nQ, x̃(k) = x̂(k)−x(k), then the resulting closed loop system is given by the following
state space representation:

cl∑

r

:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

χ(k + 1) = Ârχ(k) + Ed
r dr(k) + Ew

r dw(k),
e(k) = Cex

r χ(k) +De
rdr(k) + Fe

r dw(k),

r =

{
1 if e(k) = Cex

r χ(k) +De
rdr(k) + Fe

r dw(k) ≤ δ,

2 if e(k) = Cex
r χ(k) +De

rdr(k) + Fe
r dw(k) > δ,

(3.2)

where

Âr =

⎡

⎣

Ar + BrKr BrCQr BrKr

0 AQ −BQC
y
r

0 0 Ar + LrC
y
r

⎤

⎦, Ed
r =
[

(Dx
r )

T (BQD
y
r )

T −(Dx
r + LrD

y
r )

T
]T
,

Ew
r =

[

(Fx
r )

T (BQF
y
r )

T −(Fx
r + LrF

y
r )

T
]T
, Cex

r =
[
Ce

r 0 0
]
.

(3.3)

To examine the internal stability of the closed loop system, consider the system (2.1)
in the absence of the signals dr and dw. The state equation for the resulting system is given
by the following:

⎡

⎣
x(k + 1)
xQ(k + 1)
x̃(k + 1)

⎤

⎦ =

⎡

⎣

Ar + BrKr BrCQr BrKr

0 AQ −BQC
y
r

0 0 Ar + LrC
y
r

⎤

⎦

⎡

⎣
x(k)
xQ(k)
x̃(k)

⎤

⎦. (3.4)

Based on (3.4), define the following three subsystems:

S1 : x(k + 1) = [Ar + BrKr]x(k), (3.5)

S2 : x̃(k + 1) =
[
Ar + LrC

y
r

]
x̃(k), (3.6)

S3 : xQ(k + 1) = AQxQ(k). (3.7)

Lemma 3.1. If the switched systems (3.5) and (3.6) are each asymptotically stable under arbitrary
switching and AQ is a stability matrix, then the switched system (3.4) is also asymptotically stable
under arbitrary switching.

Proof. If the switched system (3.6) is asymptotically stable under arbitrary switching signal,
then we have [2]

‖x̃(k)‖ =
∥
∥
∥φ̃(k, 0)x̃(0)

∥
∥
∥ ≤ c̃‖x̃(0)‖ãk, (3.8)
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for some c̃ > 0 and ã ∈ (0, 1)where φ̃(k, 0) is the state transitionmatrix of the switched system
(3.6). Therefore, x̃ → 0 as k → ∞ for any x̃(0). Similarly, if the system (3.7) is asymptotically
stable, then we have

∥
∥xQ(k)

∥
∥ =
∥
∥φQ(k, 0)xQ(0)

∥
∥ ≤ cQ

∥
∥xQ(0)

∥
∥ak

Q, (3.9)

for some cQ > 0 and aQ ∈ (0, 1), where φQ(k, 0) is the state transition matrix of the system
(3.7). The expression of the state variable xQ in (3.4) is given by:

xQ(k) = φQ(k, 0)xQ(0) −
k−1∑

j=0

φQ

(
k, j
)
BQC

y
r x̃
(
j
)
. (3.10)

It follows

∥
∥xQ(k)

∥
∥ ≤ ∥∥φQ(k, 0)xQ(0)

∥
∥ +

k−1∑

j=0

∥
∥φQ

(
k, j
)∥
∥
∥
∥
∥BQC

y
r x̃
(
j
)∥∥
∥

≤ cQ
∥
∥xQ(0)

∥
∥ak

Q + cQc̃‖x̃(0)‖
∥
∥
∥BQC

y
r

∥
∥
∥
max

k−1∑

j=0

a
k−j
Q ãj .

(3.11)

Hence,

∥
∥xQ(k)

∥
∥ ≤ cQ

∥
∥xQ(0)

∥
∥ak

Q +
cQc̃aQ‖x̃(0)‖

∥
∥
∥BQC

y
r

∥
∥
∥
max

aQ − ã

(
ak
Q − ãk

)
, if aQ /= ã

∥
∥xQ(k)

∥
∥ ≤ cQ

∥
∥xQ(0)

∥
∥ak

Q + cQc̃‖x̃(0)‖
∥
∥
∥BQC

y
r

∥
∥
∥
max

kak
Q, if aQ = ã,

(3.12)

which yields

∥
∥xQ(k)

∥
∥ ≤

⎡

⎢
⎣cQ

∥
∥xQ(0)

∥
∥ +

2cQc̃‖x̃(0)‖
∥
∥
∥BQC

y
r

∥
∥
∥
max∣

∣aQ − ã
∣
∣

⎤

⎥
⎦a

k
m, aQ /= ã, (3.13)

where ‖BQC
y
r ‖max is the maximum value of ‖BQC

y
r ‖ and am = max(aQ, ã). Therefore, we have

xQ → 0 as k → ∞ for any xQ(0). Similarly, we have that x → 0 as k → ∞ for any x(0) in
(3.4).

The internal stability of the switched closed loop system (3.4) is then given by the
following result.
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Lemma 3.2. The origin is an asymptotically stable equilibrium point for the switched system (3.4)
under arbitrary switching ifAQ is a stability matrix and there exist matrices PK = PT

K > 0, PL = PT
L >

0, and matrices Kr , Lr , r ∈ {1, 2}, such that

[Ar + BrKr]TPK[Ar + BrKr] − PK < 0,

[
Ar + LrC

y
r

]T
PL

[
Ar + LrC

y
r

]
− PL < 0.

(3.14)

Proof. Condition (3.14) implies that each of the switched systems S1 and S2 admits a common
Lyapunov function. Hence, each of those two systems is asymptotically stable under arbitrary
switching. Since AQ is a stability matrix, system S3 is also asymptotically stable. Based on
Lemma 3.1, it follows immediately that the switched system (3.4) is asymptotically stable
under arbitrary switching.

Remark 3.3. Based on Lemma 3.1 and Lemma 3.2, a Youla parameterized stabilizing controller
can be designed by separately considering the subsystems S1, S2, and S3. If feasible
parameters Kr and Lr can be found to make the switched systems S1 and S2 asymptotically
stable, then a stable Q parameter of the form Q(z) = ((b1zs−1 + · · · + bs)/(zs + a1z

s−1 + · · · +
as))

∑nq

i=1 θiz
1−i could make the overall switched system (3.4) asymptotically stable. The state-

space realization of Q can be given as:

AQ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0 0 −as 0 0 0
1 · · · 0 0 −as−1 0 0 0
...

. . .
...

...
...

...
...

...
0 · · · 1 0 −a2 0 0 0
0 · · · 0 1 −a1 0 0 0
0 · · · 0 0 1 0 0 0

0 · · · 0 0 0
. . . 0 0

0 · · · 0 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

nQ×nQ

, BQ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bs
bs−1
...
b2
b1
0
...
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

nQ×1

,

CQ =
[
01×(s−1) θT

]
,

(3.15)

where θ = [θ1, . . . , θnq]
T and nQ = s+nq − 1. It follows thatAQ is a fixed stability matrix, BQ is

a fixed matrix, and the matrix CQ changes with the parameter vectors θ. A set of stabilizing
controllers for switched system (3.4) is hence parameterized by the parameter vector θ ∈
Rnq . The desired controller could be searched among θ ∈ Rnq according to the regulation
conditions to be discussed in Sections 4 and 5.

4. Regulation Conditions for the Switched Bimodal Systems

This section presents regulation conditions for the switched closed loop system (3.2) against
the external input signals dr and dw. Due to the presence of the unknown random signal
dw, it is not possible to achieve exact output regulation. Consequently, the goal behind the
regulator design is to achieve exact output regulation against the deterministic exogenous
input dr and minimize the H2 norm of the closed loop system relating the input dw to the
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performance variable e. It is proposed in this section to achieve these goals by exploiting the
flexibility in the selection of theQ parameter in the parameterized set of stabilizing controllers
for the switched system. It is well known that the exact regulation conditions for each of the
two systems Σcl

1 and Σcl
2 against dr can be presented in the form of interpolation conditions

[13, 14] and can be written in the form of linear equations in the unknown parameter vectors

θr = [θ1
r , . . . , θ

nq

r ]
T
, r ∈ {1, 2}, as follows:

Aθrθr + Bθr = 0, (4.1)

where Aθr and Bθr are properly formulated matrices. However, using the resulting vector θr ,
r ∈ {1, 2}, the controllers do not guarantee achieving regulation in the switched closed loop
system. In the following, additional conditions are placed on the controllers satisfying (4.1)
so that switching in the closed loop systemwould stop after a finite amount of time and exact
output regulation would be achieved in the switched closed loop system (3.2) against the
deterministic input dr . Furthermore, in order to minimize the effects of the unknown random
disturbance dw on the performance variable e, an H2 performance constraint is added in the
design of the regulator for the closed loop system. Consider the closed loop system (3.2), and
let Tw denote the transfer function from dw to e for

∑cl
1 when δ > 0 or for

∑cl
2 when δ < 0

and ‖Tw‖2 denote theH2 norm of Tw, then we have the following regulation condition for the
switched system (3.2).

Theorem 4.1. Consider the closed loop system (3.2) subject to bounded inputs dr and dw. Let κ =
maxr∈{1,2},k≥0(‖dr(k)‖2 +‖dw(k)‖2)/= 0, and α > 0 a preset constant and 0 < ε � 1. If for r ∈ {1, 2},
there exist matrices P > 0, X > 0, S > 0, and positive scalars μ and β ≤ |δ| such that the following
matrix inequalities are satisfied:

⎡

⎢
⎢
⎢
⎣

−P + αP 0
(
Âr

)T
P

0 − (1 − ε)μ
κ

I
[
Ed
r Ew

r

]T
P

PÂr P
[
Ed
r Ew

r

] −P

⎤

⎥
⎥
⎥
⎦

< 0, (4.2)

⎡

⎢
⎢
⎢
⎣

αP 0 (Cex
r )T

0

(
β − μ

)

κ
I

[
(De

r )
T

(Fe
r )

T

]

Cex
r

[
De

r Fe
r

]
βI

⎤

⎥
⎥
⎥
⎦

> 0, (4.3)

Aθrθr + Bθr = 0, r =

{
1 if δ > 0,

2 if δ < 0,
(4.4)

⎡

⎢
⎣

−X XÂr 0
ÂT

r X −X (Cex
r )T

0 Cex
r −I

⎤

⎥
⎦ < 0, r =

{
1 if δ > 0,

2 if δ < 0,
(4.5)
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⎡

⎣

X 0 XEw
r

0 I Fe
r

(Ew
r )

TX (Fe
r )

T S

⎤

⎦ > 0, r =

{
1 if δ > 0,

2 if δ < 0,
(4.6)

Tr(S) < γ2, (4.7)

then the state vector χ(k) and the performance variable e(k) of the switched closed loop system (3.2)
are ultimately bounded. Moreover, the switched closed loop system achieves exact output regulation
against the deterministic input dr and satisfies ‖Tw‖2 < γ with respect to the unknown random input
dw.

Proof. Consider the state space representation (3.2) and the quadratic function V (χ) = χTPχ,

based on the Schur complement formula on (4.2), for any nonzero vector
[

χ(k)
dr(k)
dw(k)

]

∈ R2N+h+1,

we have

⎡

⎣
χ(k)
dr(k)
dw(k)

⎤

⎦

T⎡

⎢
⎣

(
Âr

)T
PÂr − P + αP

(
Âr

)T
P
[
Ed
r Ew

r

]

[
Ed
r Ew

r

]T
PÂr

[
Ed
r Ew

r

]T
P
[
Ed
r Ew

r

] − (1 − ε)μ
κ

I

⎤

⎥
⎦

⎡

⎣
χ(k)
dr(k)
dw(k)

⎤

⎦ < 0. (4.8)

It follows from the above inequality that for the switched system (3.2):

V
(
χ(k + 1)

) − V
(
χ(k)

)
<

(1 − ε)μ
κ

[
dr(k)
dw(k)

]T[
dr(k)
dw(k)

]

− αV
(
χ(k)

)
. (4.9)

Hence, V (χ(k + 1)) − V (χ(k)) < 0 holds whenever

αV
(
χ(k)

) ≥ (1 − ε)μ ≥ (1 − ε)μ
κ

(
‖dr(k)‖2 + ‖dw(k)‖2

)
. (4.10)

Consequently, V (χ(k)) cannot ultimately exceed the value (1 − ε)μ/(α), and we have
limk→∞V (χ(k)) ≤ (1 − ε)μ/(α).

Therefore, there exists a finite time kb such that

V
(
χ(k)

) ≤ μ

α
, ∀k ≥ kb. (4.11)

Using the Schur complement formula, inequality (4.3) is equivalent to:

⎡

⎣
αP 0

0

(
β − μ

)

κ
I

⎤

⎦ − 1
β

⎡

⎢
⎣

(Cex
r )T

(De
r )

T

(Fe
r )

T

⎤

⎥
⎦
[
Cex

r De
r Fe

r

]
> 0. (4.12)



10 Mathematical Problems in Engineering

Multiplying from the left by
[

χ(k)
dr(k)
dw(k)

]T

and from the right by
[

χ(k)
dr(k)
dw(k)

]

yields

e2(k) < β

(

αV
(
χ(k)

)
+

(
β − μ

)

κ

[
dr(k)
dw(k)

]T[
dr(k)
dw(k)

])

< β
(
αV
(
χ(k)

)
+ β − μ

)
.

(4.13)

Then, based on (4.11), we have e2(k) < β2, ∀k ≥ kb. Hence, e(k) is ultimately bounded and
we have

|e(k)| < β, ∀k ≥ kb. (4.14)

If β ≤ |δ| is satisfied, then after a long enough time kb, the output e(k) will always be such
that |e(k)| < β ≤ |δ| and there will be no more switching. For the case of δ > 0, the system
∑cl

1 is active for k ≥ kb. Given that the system
∑cl

1 is asymptotically stable and that the
parameter vector θ1 satisfies the regulation condition in (4.1), then exact output regulation
for the switched system is achieved against the deterministic input dr . Furthermore, based on
(4.5)–(4.7), it is easy to obtain Tr((Fe

r )
TFe

r +(E
w
r )

TXEw
r ) < γ2, where ÂT

r XÂr−X+(Cex
r )TCex

r < 0
and X > 0, which implies ‖Tw‖2 < γ [15]. The analysis is similar for the case of δ < 0.

Remark 4.2. The main reason for considering common Lyapunov functions as opposed to
multiple Lyapunov functions in (3.14), (4.2) and (4.3) is as follows.The existence of a common
Lyapunov function for each of the switched systems S1 and S2 in (3.14) implies the existence
of a common Lyapunov function in (4.2) and (4.3) for the system (3.4). The less conservative
regulation conditions (4.2) and (4.3) can be formulated using multiple Lyapunov functions
as in the approach presented in [13]. However, as outlined in Section 5, the use of a common
Lyapunov function allows for the regulation conditions to be transformed into linear matrix
inequalities (LMIs) in the regulator synthesis algorithm using an appropriate congruence
transformation so that a global optimal solution can be found for the controller. The use of
multiple Lyapunov functions would havemade such transformation very difficult. Moreover,
the synthesis algorithm normally would in that case be formulated using bilinear matrix
inequalities, which would typically yield a conservative local solution for the controller.

Remark 4.3. In Theorem 4.1, the H2 performance constraint applies only to the closed loop
system that is active when regulation against the deterministic exogenous input is achieved,
that is, the closed loop system operating in mode 1 if δ > 0 and in mode 2 if δ < 0. This is
due to the fact that if conditions (4.2) and (4.3) are satisfied, then switching in the closed
loop system stops after a finite amount of time. Consequently, it is enough to apply the
additional H2 performance constraint only to the closed loop system that is active when
switching stops after a finite amount of time. Optimal performance for switched systems
defined based on other performance measures, as presented for example in [16, 17], can
also be considered. However, that will introduce conservativeness in the final solution since
continuous switching is assumed to take place in those approaches, which is not the case for
the systems considered in this paper.



Mathematical Problems in Engineering 11

5. Regulator Synthesis

The synthesis method aims at finding the proper Kr , Lr , and CQr such that conditions (4.2)–
(4.7) are satisfied. The main idea behind the regulator synthesis is to first design the gainsKr

and Lr based on (3.14). Since AQ and BQ in (4.2) and (4.5) are fixed, then it is only necessary
to find the matrices CQr such that the regulation conditions (4.2)–(4.7) are satisfied. Partition
P in (4.2) as

(
[P1]n×n P2

PT
2 P3

)
and defineΩ1 = P−1

1 ,Ω2 = P−1
1 P2,Ω3 = P3 −PT

2 P
−1
1 P2, Ω =

[
Ω1 0
−ΩT

2 I

]
and

Mr

(
Ω1,Ω2,Ω3, CQr

)

=

⎡

⎢
⎢
⎣

[Ar + BrKr]Ω1 Ω2

[
AQ −BQCr

0 Ar + LrCr

]

− [Ar + BrKr]Ω2 +
[
BrCQr BrKr

]

0 Ω3

[
AQ −BQCr

0 Ar + LrCr

]

⎤

⎥
⎥
⎦.

(5.1)

Multiplying (4.2) from the left side by diag(Ω, I,Ω) and from the right side by diag (Ω, I,Ω)T

yields

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(α − 1)
[
Ω1 0
0 Ω3

]

0 MT
r

(
Ω1,Ω2,Ω3, CQr

)

0 − (1 − ε)μ
κ

I
[
Ed
r Ew

r

]T
[
I 0
ΩT

2 Ω3

]

Mr

(
Ω1,Ω2,Ω3, CQr

)
[
I Ω2

0 Ω3

]
[
Ed
r Ew

r

] −
[
Ω1 0
0 Ω3

]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0. (5.2)

Multiplying (4.3) from the left side by diag(Ω, I, I) and from the right side by diag(ΩT , I, I)
yields

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α

[
Ω1 0
0 Ω3

]

0
[
Ω1 0
−ΩT

2 I

]

(Cex
r )T

0

(
β − μ

)

κ
I

[
(De

r )
T

(Fe
r )

T

]

Cex
r

[
Ω1 −Ω2

0 I

]
[
De

r Fe
r

]
βI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

> 0. (5.3)



12 Mathematical Problems in Engineering

Similarly, we partition X in (4.5) as
(

[X1]n×n X2

XT
2 X3

)
and define Ψ1 = X−1

1 , Ψ2 = X−1
1 X2, Ψ3 =

X3 −XT
2X

−1
1 X2 andΨ =

[
Ψ1 0
−ΨT

2 I

]
. Multiplying (4.5) from the left side by diag(Ψ,Ψ, I) and from

the right side by diag(ΨT ,ΨT , I) yields the following:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
[
Ψ1 0
0 Ψ3

]

Mr

(
Ψ1,Ψ2,Ψ3, CQr

)
0

MT
r

(
Ψ1,Ψ2,Ψ3, CQr

) −
[
Ψ1 0
0 Ψ3

] [
Ψ1 0
−ΨT

2 I

]

(Cex
r )T

0 Cex
r

[
Ψ1 −Ψ2

0 I

]

−I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, r =

{
1 if δ > 0,

2 if δ < 0.

(5.4)

Multiplying (4.6) from the left side by diag(Ψ, I, I) and from the right side by diag(ΨT , I, I)
yields

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[
Ψ1 0
0 Ψ3

]

0
[
I Ψ2

0 Ψ3

]

Ew
r

0 I Fe
r

(Ew
r )

T
[
I 0
ΨT

2 Ψ3

]

(Fe
r )

T S

⎤

⎥
⎥
⎥
⎥
⎥
⎦

> 0, (5.5)

In the following, a regulator synthesis algorithm is presented to obtain CQr matrices that
simultaneously minimize the H2 performance γ and satisfy the regulation conditions in
Theorem 4.1. The main steps in the proposed regulator synthesis procedure are summarized
below.

(1) Design of an internally stabilizing controller: design the controller parameters Kr

and Lr to make the switched closed loop system (3.2) internally stable by solving
(3.14) for the unknown matrices PK = PT

K > 0, PL = PT
L > 0 and matrices Kr , Lr ,

r ∈ {1, 2}.
(2) Find an upper bound αm on the value of α in (5.2) with unknown Ω1 > 0, Ω2,

Ω3 > 0, and CQr , which is a generalized eigenvalue problem. Select a value of α in
the interval α ∈ (0, αm).

(3) Substitute |δ| for β in (5.3).

(4) Minimize Tr(S) subject to (4.4), (5.2), (5.3), (5.4) and (5.5), in the unknown μ, Ω1,
Ω2, Ω3, Ψ1, Ψ2, Ψ3, S, and CQr with known α.

Note that (5.2) and (5.3) are linear in the unknown parameters β, μ, Ω1, Ω2, Ω3 and
CQr only if α is prefixed. The value of α can be selected using a linear search in the interval α ∈
(0, αm) in order to solve the optimization problem in Step 4. In the following, an experimental
example is presented to show the effectiveness of the proposed regulator synthesis method.

6. Experimental Evaluation

The experimental setup represents a mechanical system subject to contact vibrations and
is motivated by the flying height regulation problem in hard or optical disk drives [5–7].
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Figure 3: Images of the experimental setup.

The experimental setup consists mainly of a flexible beam subject to intermittent contact
with a fictitious contact surface. The system has two modes of operation, one corresponding
to the case of noncontact between the beam tip and the contact surface, and the second
corresponds to the case when contact takes place. The control goal in the experiment is
to maintain a constant separation between the tip of the flexible beam and the contact
surface in the presence of external disturbances and switching between the noncontact
mode and the contact mode of the system. Images of the experimental setup are shown in
Figure 3. A flexible beam (the suspension beam in a hard disk drive) is actuated using a
multilayer piezoelectric actuator (PZT). A Laser Doppler Vibrometer (LDV) provides real-
time measurements of the position and velocity of the beam tip. A small-size permanent
magnet is attached to the tip of the beam. In the experimental setup, contact between the
beam tip and a contact surface is simulated by generating a vertical contact force using an
electromagnetic actuator underneath and applying the generated force to the beam tip. The
forces representing deterministic disturbances and random disturbances are also produced
using the electromagnetic actuator. The sampling period in the experimental setup is of
1KHz. The two subsystem models corresponding to the contact mode and the noncontact
mode are obtained using system identification method. The regulator is designed so that the
tip of the suspension beam tracks a contact surface sc = (5 sin(240πt)−60)×10−6 m at a desired
separation height of 60 × 10−6 m. The output y and the performance variable e are identical
and are defined to be the difference between the actual separation and the desired separation
height. The state space representation as in (2.1) is given as

A1 =
[
0 −0.8735
1 −0.5645

]

, A2 =
[
0 −0.9313
1 −0.2459

]

,

B1 =
[
1.8045
0.9125

]

, B2 =
[
2.1601
1.0036

]

,
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Dx
1 =
[
0.2021 0
0.2010 0

]

, Fx
1 =
[
0.2021
0.2010

]

,

Dx
2 =
[
0.2267 0
0.2187 0

]

, Fx
2 =
[
0.2267
0.2187

]

,

Ce
1 = C

y

1 =
[
0 1
]
, Ce

2 = C
y

2 =
[
0 1
]
,

D
y

1 = D
y

2 = De
1 = De

2 =
[
0 1
]
, F

y

1 = F
y

2 = Fe
1 = Fe

2 = [0].

d1 =

⎡

⎣
0.5 cos

(

240πk +
3π
4

)

+ 0.4 sin(240πk) + 0.3 cos(240πk)

0.5 sin(240πk)

⎤

⎦volts,

d2 =

⎡

⎣
0.5 cos

(

240πk +
3π
4

)

0.5 sin(240πk)

⎤

⎦volts.

(6.1)

The switching rule is defined as r =
{

1 if e≤−6 volts
2 if e>−6 volts . To construct a parameterized set of

stabilizing controllers, the gains Kr , Lr , r ∈ {1, 2}, designed based on (3.14) are given by:

K1 = [−159.1746 504.2805] × 10−3, K2 = [−126.6187 407.4727] × 10−3,

L1 = [873.4887 564.5477]T × 10−3, L2 = [931.2618 245.8963]T × 10−3.
(6.2)

The set of controllers to be designed is obtained by considering Qr parameters of the form
Qr = ((0.46z + 0.45)/(z2 − 1.4z + 0.9))((θ1

r /z) + (θ2
r /z

2) + (θ3
r /z

3) + (θ4
r /z

4)) × 103. Since δ < 0,
condition (4.1) needs to consider only the system Σ2 and yields:

Aθ2 =
[
0.8619 8.8250 12.0044 8.6766
11.9739 8.1385 −0.1084 −8.2966

]

× 103, Bθ2 =
[
305.1971
−261.1491

]

× 10−3. (6.3)

First, without considering the H2 performance constraint in the regulator synthesis
procedure, the regulator is designed based only on the regulation conditions (4.4), (5.2), and
(5.3). We have

CQ1 =
[
0 −1.0448 0.4263 −0.0905 0.0975

] × 10−3,

CQ2 =
[
0 −0.5360 −0.5121 1.3472 −1.3250] × 10−3.

(6.4)

The experimental results corresponding to the above designed controller are shown in
Figures 4, 5, 6, and 7, which include the two cases of with and without the unknown random
disturbance dw. It can be seen that the resulting system with the designed controller can
exactly reject the known disturbance in the presence of switching (contacting), however
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Figure 4: Experimental results of the performance variable and the positions of the tip and of the contact
surface for the case of dw = 0 and obtained using the controller designed without accounting for the H2
performance constraint.

it cannot attenuate the disturbance dw properly. By considering the H2 constraint in the
regulator synthesis procedure, we obtain

CQ1 =
[
0 0.1376 −0.2452 0.1665 0.0208

] × 10−3,

CQ2 =
[
0 0.1129 −0.2334 0.2105 −0.1002] × 10−3,

γ2 = 0.118.

(6.5)

The experimental results are shown in Figures 8 and 9, which indicate that the disturbance dw

has been attenuated effectively and the tip of the suspension beam tracks the contact surface
while maintaining the desired separation between the tip and the contact surface.

7. Conclusion

The problem of regulation in discrete-time bimodal switched systems against partially known
deterministic exogenous inputs and unknown random inputs is treated. A regulator design
approach based on the parameterization of a set of stabilizing controllers for the switched
system is presented. First, regulation conditions for the switched system are derived based
on the Youla parameterization of a set of stabilizing controllers, where a set ofQ parameters is
constructed to achieve regulation against the deterministic exogenous inputs and also against
the unknown random exogenous input. Then, the regulator synthesis algorithm is developed
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Figure 5: Experimental results showing the random disturbance dw and the total current in the
electromagnetic actuator coil obtained using the controller designed without accounting for the H2
performance constraint.
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Figure 6: Experimental results of the performance variable and the positions of the tip and of the contact
surface in the presence of dw and obtained using the controller designed without accounting for the H2
performance constraint.
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Figure 7: Experimental results showing the random disturbance dw and the total current in the
electromagnetic actuator coil obtained using the controller designed without accounting for the H2
performance constraint.
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Figure 8: Experimental results of the performance variable and the positions of the tip and of the contact
surface in the presence of dw and obtained using the controller designed by accounting for the H2
performance constraint.
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Figure 9: Experimental results showing the random disturbance dw and the total current in the
electromagnetic actuator coil obtained using the controller designed by accounting for theH2 performance
constraint.

based on solving a set of properly formulated linear matrix inequalities. Finally, a switched
bimodal mechanical system experimental setup involving a flexible beam subject to contact
vibrations is used to successfully demonstrate the performance of the proposed regulator.

Acknowledgments

The authors would like to thank the associate editor and the anonymous reviewers for
their comments. This work was supported by the National Natural Science Foundation of
China (51075254), the Shanghai Pujiang Program (11PJ1404000), the Innovation Program
of Shanghai Municipal Education Commission (11YZ16), and the Natural Sciences and
Engineering Research Council of Canada.

References

[1] D. Liberzon, Switching in Systems and Control, Birkhauser Boston, Boston, Mass, USA, 2003.
[2] Z. Sun and S. S. Ge, Switched Linear Systems-Control and Design, Springer, London, UK, 2005.
[3] E.-K. Boukas, Stochastic Switching Systems: Analysis and Design, Birkhäuser Boston Inc., Boston, Mass,
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